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Introduction: Hypothalamic glucose-sensitive neural circuits, which regulate

energy metabolism and can contribute to diseases such as obesity and type 2

diabetes, have been di�cult to study in humans. We developed an approach to

assess hypothalamic functional connectivity changes during glucose loading using

functional magnetic resonance imaging (fMRI).

Methods: To do so, we conducted oral glucose tolerance tests while acquiring

functional images before, and 10 and 45 min after glucose ingestion in a healthy

male and cross-sectionally in 20 healthy participants on two di�erent diets.

Results: At group level, 39 fMRI sessions were not su�cient to detect glucose-

mediated connectivity changes. However, 10 repeated sessions in a single subject

revealed significant intrinsic functional connectivity increases 45min after glucose

intake in the arcuate, paraventricular, and dorsomedial nuclei, as well as in the

posterior hypothalamic area, median eminence, and mammillary bodies.

Discussion: Our methodology allowed to outline glucose-sensitive hypothalamic

pathways in a single human being and holds promise in delineating individual

pathophysiology mechanisms in patients with dysglycemia.

KEYWORDS

fMRI, hypothalamus, energy metabolism, glucose regulation, functional connectivity,

glucose-sensitive neural circuits, oral glucose tolerance test

1 Introduction

Glucose is sensed not only in the periphery like the tongue, pancreas, intestine, carotid

bodies, or the portal vein; but also by glucose sensing neurons within the central nervous

system. These neurons are mainly located in the hypothalamus and in the brainstem, and

can be either excited or inhibited by glucose. In the brain, the most important region

for sensing and integrating metabolic information is the hypothalamic arcuate nucleus

which responds to glucose, insulin, leptin, ghrelin, as well as free fatty acids (Timper and

Brüning, 2017). Neurons in the arcuate nucleus are connected to other hypothalamic regions

like the paraventricular, dorsomedial, and ventromedial nuclei, together with the lateral

hypothalamic area. These regions regulate energy homeostasis through the control of food

intake and through autonomic nervous system efferents regulating pancreatic and hepatic

function as well es energy expenditure (Timper and Brüning, 2017).

While the advent of new technologies such as optogenetics or chemogenetics resulted in

rapid advances in knowledge of hypothalamic metabolic control in animals (Huang et al.,

2022), the hypothalamus has been a difficult region to study in humans due to its small size,

location deep within the brain, and its proximity to the ventricles and air-filled sinus. Hence,

direct knowledge on neurally mediated glucose regulation in humans is scarce.
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Previous functional magnetic resonance imaging (fMRI)

studies on human hypothalamic glucose regulation often relied on

region-of-interest based analyses in groups of subjects (Matsuda

et al., 1999; Liu et al., 2000; Smeets et al., 2005b; van Opstal

et al., 2015; Osada et al., 2017; Simon et al., 2020). However,

these methodologies still have important limitations. First, inter-

individual variability in glucose control, hypothalamic function,

and anatomy introduce background noise, thus, reducing statistical

power. Second, individual hypothalamic control mechanisms

cannot be discerned, which is particularly relevant when studying

patients with rare pathologies affecting these circuits. Third, region-

of-interest based analyses are prone to selection bias of specific

areas. Recent improvements in acquisition, processing, and analysis

now permit to capture hypothalamic activity changes in groups

of people without the need of subjectively defined regions, as

shown by studies on pain (Schulte et al., 2017) or on autonomic

reflexes (Napadow et al., 2007; Macefield and Henderson, 2016).

We combined these advances with a glucose challenge in the

scanner to elucidate hypothalamic glucose-sensitive pathways, both

in the classical cross-sectional approach in multiple subjects, as

well as using repeated measurements to visualize the pathways in

a single subject.

2 Methods

The study was conducted at the German Aerospace Center in

Cologne, Germany, in compliance with the Declaration of Helsinki

(World Medical Association, 2013), and was approved by the ethics

committee of the North Rhine medical board. The results in this

paper correspond to an exploratory endpoint from a larger trial

registered at the German Clinical Trials Register (DRKS00020750),

whose primary results have been already published (De Gioannis

et al., 2022). All participants provided informed consent.

We followed two approaches to study glucose-sensitive

hypothalamic regions: a group and a single subject approach.

2.1 Group design

We studied 20 healthy participants (7 women, 27 ± 8 years,

22.6 ± 2.0 kg/m2) who had been randomly assigned to two dietary

interventions in a crossover design: four days normocaloric and

four days modestly hypercaloric nutrition. Between the dietary

blocks there was a washout phase of 23 days (Figure 1A). This

washout phase ensured that the scans were 28 days apart (23 days

washout + 4 days diet in between). Therefore, female participants

were roughly in the same hormonal status. The normocaloric diet

was adapted to the individual energy requirements by measuring

resting metabolic rate through indirect calorimetry (Quark RMR,

COSMED) and with the Freiburger questionnaire (Frey et al.,

1999). The normocaloric diet supplied 9, 924 ± 1, 837 kJ of energy

(84 ± 13 g protein, 74 ± 13 g fat, 310 ± 65 g carbohydrates, and

35±5 g fiber). The hypercaloric diet provided 25 %more energy by

increasing fat content to 132 ± 25 g. Following each dietary block,

we conducted an oral glucose tolerance test on empty stomach with

a pre-manufactured drink containing 75 g of glucose in 300 ml

water (Dextrose O.G.-T., Roche). The glucose tolerance tests were

carried out either at around 8:00 AM or 10:00 AM; always at the

same time for each subject. We acquired functional images before,

and 10 and 45minutes after glucose ingestion. Each functional scan

had a duration of 9.3 minutes (Figure 1B).

The subjects were recruited after obtaining a detailed

anamnesis, physical examination, 12-lead electrocardiogram, blood

pressure, and routine blood analysis. Eligible were healthy people

aged 18–40 years (18–25 kg/m2, >55 beats per minute at rest)

without recent body mass changes > 3 kg, history of syncope,

cardiac arrhythmia, smoking history, nor alcohol or drug abuse.

A detailed description of the procedures can be found in our

previous publication (De Gioannis et al., 2022).

2.2 Single subject design

In an n-of-1 trial, we repeated ten oral glucose tolerance tests at

different days on the same subject (healthy male, 56 years, 64 kg,

1.77 m) (Figure 1A). The glucose challenges were conducted at

around 9:00 AM on empty stomach with the same drink as in the

group design while acquiring functional scans at the same time

points. Additionally, on four of the days, we measured venous

plasma glucose and insulin levels at seven time points (-5, 15, 30,

45, 60, 90, and 120 min after glucose intake) (Figure 1B).

2.3 MRI acquisition and preprocessing

MRI acquisition and preprocessing were carried out as

described previously (Manuel et al., 2020). In this study we used

a 3 T Siemens Biograph mMR with a 32-channel head coil;

the functional sequence had an isotropic resolution of 2 mm

(TR = 1.18 s; TE = 32 ms; simultaneous multi-slice factor 6;

partial Fourier 7/8); and the structural T1 had an isotropic

resolution of 1 mm. We also acquired a reference scan for motion

correction and template formation (equivalent to the functional

sequence without through-plane acceleration), and reference scans

for unwarping (two spin-echo images with opposed phase-

encoding directions and without through-plane acceleration). All

other parameters, especially all preprocessing steps, remained

unaltered. Hence, we corrected motion and distortion [MCFLIRT

(Jenkinson et al., 2002) and topup (Andersson et al., 2003)],

extracted the brain [BET; Smith (2002)], applied grand mean

scaling and a high pass filter (0.01 Hz), and normalized the data

to a study template [ANTs; Avants et al. (2008)].

2.4 Data analysis

For the analysis (Figure 2), we first performed a masked

independent component analysis [mICA; Beissner et al. (2014)] on

the concatenated functional data using a hypothalamic mask. ICA

dimensionalities (45 for the group and 31 for the single subject

data) were derived by maximizing reproducibility in a test-retest

analysis between 1 and 100 dimensions using 20 random split-

half samplings and Hungarian sorting of their cross-correlation

matrix (mICA toolboxMoher Alsady et al., 2016). The specificity of
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FIGURE 1

(A) Study designs. (B) Measurement procedure during each oral glucose tolerance test (oGTT) in both designs. Blood samples were taken at four days

of the single subject study. (C) Measured plasma glucose and insulin levels (median and range) during four measurements of the single subject study.

independent components was tested by running a dual regression

(Beckmann et al., 2009) to the whole brain. To do so, we

calculated the weighted quotient of activation in gray matter versus

white matter together with cerebrospinal fluid (probabilistic masks

obtained using FAST Zhang et al., 2001). Two components in the

group data and three components in the single subject data were

considered unspecific for having a quotient smaller than one, i.e.,

they showed more functional connectivity to white matter and

cerebrospinal fluid than to gray matter.

Afterwards, we carried out a functional connectivity analysis

using a dual regression to the hypothalamus. For the group data,

we computed a 2 × 3 analysis of variance using multi-level block

permutation [PALM, Winkler et al. (2015)]. Differences between

the three time points in the single subject design were calculated

with a non-parametric F-test followed by post-hoc paired two-

sided t-tests [Randomise, Winkler et al. (2014)]. The results were

thresholded at p < 0.05 using family-wise error correction with

threshold-free cluster enhancement (Smith and Nichols, 2009).

Moreover, we applied a Bonferroni correction to account for the

multiple comparisons due to themultiple independent components

(43 in the group and 28 in the single subject data). We identified

hypothalamic regions with the help of a recently published

MRI-atlas (Figure 3B) (Neudorfer et al., 2020). Additionally, we

performed a supplementary hierarchical network clustering of the

28 single subject independent components based on the full cross-

correlation matrix of the time series [FSLNets; Smith et al. (2013)].

We assessed hypothalamic signal-to-noise ratio in the data in

two different ways. First, we computed the temporal signal-to-noise

ratio (tSNR) by dividing the mean by the standard deviation of the

signal within the hypothalamic mask. Second, we calculated the

contrast-to-noise ratio (CNR) as the ratio between the standard

deviation of the signal in the third block (45 min after glucose

ingestion) and baseline’s standard deviation (Welvaert and Rosseel,

2013).

3 Results

3.1 Group

We segmented the group data into 45 regions using a masked

independent component analysis of the fMRI time series, followed

by removal of two unspecific components. The remaining 43

independent components were subjected to a dual regression

analysis combined with an analysis of variance (Figure 2). None of

the components showed significant connectivity changes; neither

between time points, nor between diets, nor any interactions. We

did not find any statistical trends (p < 0.1) either.
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FIGURE 2

Analysis outline. Independent components (ICs) in the hypothalamus, derived from a masked independent component analysis (ICA), were tested for

specificity by calculating their functional connectivity to the whole brain. Specific components were then tested for functional connectivity changes

during the glucose challenge using a dual regression. The first step of the dual regression extracts the individual time courses of the BOLD signal for

the group-level spatial ICs using a general linear model (GLM). These individual time courses are then used in a second step to obtain the individual

spatial maps, which are then compared using inference tests. Figure adapted from Manuel et al. (2020).

3.2 Single subject

Venous plasma glucose and insulin levels followed the expected

time courses after oral glucose in a healthy male (56 years, 64 kg,

1.77 m) (Jarrett et al., 1972). Plasma glucose rapidly increased and

peaked 30 min after glucose intake (median: 147 mg/dl; range:

141–155 mg/dl), while insulin also increased with a maximum

approximately 15 min thereafter (median: 44.2 mU/l; range: 37.7–

56.9 mU/l) (Figure 1C).

The single subject fMRI-data was analyzed similarly to the

group data. Three out of the 31 hypothalamic regions were

deemed as noise. The remaining 28 independent components

(Supplementary Table S1) were tested for their involvement in

glucose regulation using a dual regression analysis (Figure 2).

In a non-parametric F-test, four components showed statistically

significant differences in functional connectivity between the

three time points (baseline, 10 and 45 min after glucose intake).

Post-hoc paired t-tests revealed that these connectivity changes

were all between baseline and 45 min after glucose intake. By

overlaying an anatomical atlas onto the images, we identified

eight hypothalamic nuclei within these four regions: the arcuate,

paraventricular, dorsomedial, periventricular, and tuberomamillary

nuclei, mamillary bodies, median eminence, as well as the posterior

hypothalamic area. Moreover, two regions encompassing the

mamillary bodies increased their functional connectivity to the

ventromedial hypothalamic nucleus (see Figure 3, as well as

Supplementary Tables S1, S2).

Specifically, the first component, encompassing the mamillary

bodies, posterior hypothalamic area, and the paraventricular

and dorsomedial hypothalamic nuclei, increased its intrinsic

functional connectivity, as well as its connectivity to the nearby

ventromedial hypothalamic nucleus (Figure 3C). The second

independent component, which included the mamillary bodies,

and the arcuate and tuberomamillary nuclei, also increased its

intrinsic functional connectivity, as well as its connectivity to

the dorsomedial, ventromedial, and periventricular hypothalamic

nuclei (Figure 3D). Both the third (mamillary bodies, arcuate

and periventricular nuclei) and fourth (median eminence) regions

increased their intrinsic connectivity 45 min after glucose ingestion

compared to baseline (Figures 3E, F).

A hierarchical network clustering of the 28 independent

components (Supplementary Figure S1) showed that the

first three components, all of which partially encompass

the mamillary bodies, are closer to each other than to the

component located in the median eminence. We did not find any

statistically significant difference in the network across the three

time points.

3.3 Signal-to-noise ratio

The overall hypothalamic temporal signal-to-noise ratio (tSNR)

of the concatenated group data was 8.97, whereas the tSNR of the

concatenated data of the n-of-1 trial was 15.72. Contrast-to-noise

ratio (CNR) in the hypothalamus was similar in the group and in

the single subject approach (1.09 vs. 1.10 respectively). The single

subject CNR appears to be less smoothed, having more structure

(Figure 4).
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FIGURE 3

Functional connectivity changes following oral glucose ingestion in a single subject. (A) Sagittal image showing slice localization. (B) Hypothalamic

regions from the atlas of Neudorfer et al. (2020). (C–F) Four independent components are depicted on the left as mixture model thresholded

probability maps. On the right, we show functional connectivity changes obtained through a dual regression analysis. The red contour delineates

statistically significant voxels in the F-test comparing all three conditions (rest, 10 min and 45 min after glucose intake), while the heat map describes

overlapping functional connectivity increases 45 min after glucose intake. Although the omnibus and post-hoc results seem not to overlap in some

slices, they do overlap in 3D. The reasons for the divergence of individual voxels are several and not trivial: (1) the number of parallel comparisons is

di�erent at omnibus (28) and at post-hoc (6) level leading to larger clusters after p-value correction; (2) non-parametric testing does not yield the

exact same p-values when rerun; (3) omnibus F-tests with post-hoc t-tests are not completely equivalent (Chen et al., 2018); (4) we use

threshold-free cluster enhancement (Smith and Nichols, 2009) which favours larger clusters. All images are in the study template transformed to MNI

standard space. Arc, arcuate nucleus; DMH, dorsomedial hypothalamic nucleus; LH, lateral hypothalamic area; MM, mamillary bodies; PeVN,

periventricular hypothalamic nucleus; PH, posterior hypothalamic area; PVN, paraventricular hypothalamic nucleus; SCN, suprachiasmatic nucleus;

SON, supraoptic nucleus; TuMM, tuberomamillary nucleus; vent., ventricle; VMH, ventromedial hypothalamic nucleus.

These values for the concatenated data contrast with the values

for the individual measurement blocks. The tSNR was significantly

higher in the group than in the single subject trial (39.80± 4.32 vs.

30.61±2.06; p < 0.001), while the contrast-to-noise ratio was lower

in the group data (1.04± 0.09 vs. 1.14± 0.11; p = 0.0428).

4 Discussion

Previous fMRI studies investigating glucose regulation in

humans (see Supplementary Table S3) have shown BOLD (blood

oxygenation level dependent) signal decreases in the lower
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FIGURE 4

Comparison of (A) temporal signal-to-noise ratio (tSNR) and (B) contrast-to-noise ratio (CNR) between the concatenated group and single subject

data.

posterior and upper anterior hypothalamus following glucose

ingestion (Matsuda et al., 1999; Liu et al., 2000; Flanagan et al.,

2012). A recent study found signal decreases in the ventromedial

hypothalamic and in the arcuate nucleus, and signal increases

in the lateral hypothalamic area after glucose ingestion (Osada

et al., 2017). The hypothalamic signal decreases, which have

been observed after glucose, but not after water, aspartame or

maltodextrin ingestion (Smeets et al., 2005a), are dose dependent

(Smeets et al., 2005b). Moreover, the BOLD-signal decrease lasts

longer after glucose ingestion than after intravenous injection,

similarly to plasma insulin levels (Smeets et al., 2007; Purnell et al.,

2011; Simon et al., 2023). Intragastric glucose injection also leads

to a signal decrease in the hypothalamus (Simon et al., 2020). The

hypothalamic response to glucose is altered in obesity (Matsuda

et al., 1999) and in type 2Diabetesmellitus (Vidarsdottir et al., 2007;

Teeuwisse et al., 2012). In patients with Anorexia nervosa, one

study found no difference after oral glucose (vanOpstal et al., 2015),

whereas another found significant differences in hypothalamic

signal intensity after intragastric glucose (Simon et al., 2020).

In contrast to all aforementioned studies, our study was not

designed to compare absolute intensity changes as we acquired

three time series instead of one, and BOLD-signal intensity is not

preserved across series. However, our higher spatial and temporal

resolution allowed us to use a data driven approach to segment the

hypothalamus in functionally independent regions, and to calculate

functional connectivity changes between the time points.

Our results show that hypothalamic glucose-sensitive regions

can be delineated through fMRI in a single subject. In fact, while

ten repeated fMRI studies were sufficient to delineate glucose-

mediated hypothalamic connectivity changes in a single subject,

a cross-sectional study in 20 subjects with 39 fMRI scans overall

failed to show such a response. The group data also did not

reveal statistically significant differences between diets. The finding

is in line with our previous findings that four days moderate

hypercaloric diet do neither alter orthostatic tolerance, nor blood

pressure and heart rate regulation which are controlled at the level

of the brainstem (De Gioannis et al., 2022).

Using an n-of-1 trial approach, we visualized six out of

the seven most important hypothalamic regions for energy

homeostasis (Figure 5). The arcuate nucleus is the main region for

sensing and integrating metabolic information. Being capable of

sensing leptin and ghrelin, as well as glucose and insulin (Korf

and Møller, 2021); the arcuate nucleus is perfectly equipped for

controlling energy homeostasis. This nucleus does so by regulating

food intake, autonomic outflow, and pancreatic activity through

its neural connections to other nuclei like the paraventricular,

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1297197
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Manuel et al. 10.3389/fnins.2023.1297197

FIGURE 5

Glucose sensitive hypothalamic pathways: Most important

hypothalamic nuclei for glucose regulation and their function in

energy homeostasis. The blue ovals highlight the significant

functional connectivity changes between the regions, as found in

Figure 3. Arc, arcuate nucleus; DMH, dorsomedial hypothalamic

nucleus; LH, lateral hypothalamic area; ME, median eminence; MM,

mamillary bodies; PVN, paraventricular hypothalamic nucleus;

TuMM, tuberomamillary nucleus; VMH, ventromedial hypothalamic

nucleus.

dorsomedial, and ventromedial hypothalamic nuclei, as well as to

regions in the brainstem like the parabrachial, solitary, and dorsal

vagal nuclei (Timper and Brüning, 2017). This network around the

arcuate nucleus has been coined themelanocortin system due to the

importance of melanocortin receptors.

Close to the arcuate nucleus, in the infundibular stalk, lies the

median eminence, a neurohaemal region. The median eminence is

not only important for releasing hormones into the hypophyseal

portal system, but also as a sensory region. The floor of the third

ventricle around the arcuate nucleus and the median eminence

is equipped with specialized glia cells, the tanycytes, which are

responsible for modulating the transport of hormones between

systemic circulation and cerebrospinal fluid. The fact that an

ablation of this region increases body fat content (Yoo et al., 2020),

highlights its importance in energy homeostasis.

Another region that we observed and which is involved

in metabolic regulation is the ventromedial hypothalamic

nucleus. Located directly cranial to the arcuate nucleus, the

ventromedial nucleus has long been known to lead to obesity if

damaged (Hetherington and Ranson, 1942). There has been some

controversy regarding its involvement in metabolic regulation

due to its proximity to the arcuate nucleus; however, the current

accepted notion is that the ventromedial hypothalamic nucleus

regulates satiety (King, 2006).

Cranial to the ventromedial nucleus lies the dorsomedial

hypothalamic nucleus, which is mainly responsible for

thermoregulation and for circadian rhythms through connections

to the suprachiasmatic nucleus (Bernardis and Bellinger, 1998).

Moreover, this region is also involved in metabolic regulation, and,

when damaged, leads to appetite loss (Bellinger and Bernardis,

2002). Indeed, the dorsomedial hypothalamic nucleus may be the

main region for food-entrainable circadian rhythms, although this

hypothesis is still debated (Moriya et al., 2009).

The paraventricular hypothalamic nucleus is a crucial

integration hub, connecting via afferents and efferents to

other nuclei in the hypothalamus, thalamus, brainstem, and

the amygdala. Moreover, the paraventricular hypothalamic

nucleus is directly involved in humoral responses through the

neurohypophysis, as well as through the hypophyseal portal system

via the median eminence (Coote, 2004). Through its connections,

the paraventricular nucleus coordinates stress responses, emotions,

circadian rhythms, body temperature, reproduction, and

metabolism. Bilateral lesions of the paraventricular nucleus

lead to obesity (Leibowitz et al., 1981).

Three of the independent components that we identified

included the mamillary bodies. Although best known for their

involvement in memory, the mamillary bodies also seem to be

important for other processes since they have been involved in

heart failure (Kumar et al., 2009) and obesity (Gold et al., 1972). The

tuberomamillary nucleus, a key region of the histaminergic system,

has also been involved in satiety (Sakata et al., 2003). Nonetheless,

our knowledge on these aspects is still scarce and ought yet to be

studied thoroughly.

To our knowledge, the posterior hypothalamic area is not

directly involved in energy homeostasis. However, due to its

connections to the brainstem (Coote, 2004), the posterior

hypothalamic area may be involved in autonomic regulation.

Moreover, this region has been associated with adaptive

behavior because of its links to the hippocampus and amygdala

(Abrahamson and Moore, 2001). A word of caution should be

given here: we reported all the nuclei which had at least 5% of

their area within the independent component. The posterior

hypothalamic area fulfilled this criterion, but was located at the

verge of the component, and could, thus, be an effect of our limited

resolution.

In our experiment, we did not observe functional connectivity

changes in the lateral hypothalamic area. This region contains both,

glucose-excited and glucose-inhibited neurons, and its dysfunction

may lead to obesity or to leanness depending on the affected

neurons (Burdakov et al., 2013). The simultaneous excitation and

inhibition by glucose in nearby regions can lead to a net zero change

in the fMRI signal, which integrates the response of thousands of

neurons in each voxel. Thus, glucose ingestion might not be the

ideal stimulus for visualizing the lateral hypothalamic area using

fMRI.

Most likely, we did not observe connectivity differences in the

group data due to large inter-individual variability in the response

to oral glucose. Although having almost four times as many data

points and a larger temporal SNR in the separatemeasurements, the

concatenated group data had only 57% of the single subject’s tSNR

within the hypothalamus. These numbers point to a large inter-

individual variability. It is known that there are at least two different

response types to glucose ingestion; the most common one being

an initial increase in plasma glucose levels with a steady decrease

afterwards towards baseline. However, also oscillating forms have

been observed; i.e., rapid increases in plasma glucose followed by

an overcompensation and a second increase in plasma glucose in

the second hour (Tschritter et al., 2003). Other factors that could

affect the response are circadian (Jarrett et al., 1972), age, and
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sex differences (Boyns et al., 1969). We did not characterize the

individual glucose and insulin responses prior to the oral glucose

tolerance tests. This problem should be addressed in future studies,

as even relatively small delays of 5–10 min in the response could

greatly affect the fMRI signal. One invasive solution to this problem

would be to clamp plasma glucose levels (Heise et al., 2016).

Finally, inter-individual differences in hypothalamic anatomy and

regulation could introduce variability in the group results.

Our single subject fMRI approach combining data-driven

parcellation with functional connectivity analysis during a glucose

challenge delineated for the first time individual glucose-sensitive

hypothalamic pathways in a human being. Indeed, the approach

was more powerful for gaining insight into human hypothalamic

physiology than studying multiple persons in a cross-sectional

fashion. Glucose ingestion engaged six out of the seven most

important hypothalamic regions for energy homeostasis. This

study demonstrates that glucose-sensitive hypothalamic pathways

can be depicted when comparing functional connectivity during

peak insulinemia and baseline. Nonetheless, future studies should

address the number of repetitions needed to robustly identify these

regions, as well as validate the results in more subjects. Individual

hypothalamic fMRI might help to elucidate human physiology and

disease mechanisms in single patients. The approach could have

particular relevance in studies tracing hypothalamic function in

patients with rare disorders affecting this region of the brain.
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