Validation Campaigns for Aeolus with the ALADIN Airborne Demonstrator and 2-µm Doppler Wind Lidar Team

21st Coherent Laser Radar Conference, Big Sky, Montana 26 June to 1 June 2022

Christian Lemmerz¹, Oliver Lux¹, Benjamin Witschas¹, Stephan Rahm¹, Karsten Schmidt¹, Uwe Marksteiner¹, Alexander Geiß², Andreas Schäfler¹, Fabian Weiler¹ and Oliver Reitebuch¹

German Aerospace Center (DLR) – Oberpfaffenhofen
Ludwig-Maximilians-University (LMU) – Munich

Knowledge for Tomorrow

1 001

Outline

• DLR Airborne Doppler Wind Lidars for the Validation of Aeolus

Airborne Campaigns Overview

• Preliminary Analysis Topics and Results

Summary

2

Complex New Technologies on Aeolus -> Verification With the Airborne Demonstrator

Dedicated Pre-launch Activities: Example Spectral Characterization With A2D and Related Results

First Rayleigh-Brillouin (RB) line shape measurements with atmospheric molecular returns with the A2D on the alpine research station Schneefernerhaus on Mt. Zugspitze in 2009 with horizontally pointing lidar beam

Detailed characterization of A2D Rayleigh and Mie spectrometers

- Resolution of the RB spectrum
- Consideration in Aeolus processor confirmed

units)

Normalized intensity/(arb.

Detailed characterization of the Aeolus spectrometers

- Accurate spectral referencing between laser and receiver
- Monitoring of spectrometer performance in space relevant for wind and aerosol products calibration

A2D: First measurements of tropospheric temperature profiles from ground and airborne during daylight with a high spectral resolution lidar

Witschas et al. (2022), AMT

Airborne temperature profile, Iceland 2016 Witschas et al. (2014 & 2021), Optics Letters

Aeolus Wind Validation at DLR with the A2D and the 2-µm Doppler Wind Lidars

- The A2D was operated for measurements from ground and on the DLR Falcon 20 aircraft mostly with the scanning coherent 2-µm Doppler wind lidar (DWL) providing reference profiles of windspeed and –direction
- Continuous improvement of the A2D and refinement of operational and analysis methods as a result of several ground and airborne campaigns during the mission implementation phase were fundamental to the early Aeolus success (wind already 3 weeks after launch)

> DLR Airborne Validation > 30.06.2022 CLRC 2022

5

Major Airborne Campaigns Before Launch (DLR/NASA/CNES)

- The A2D together with the 2-µm DWL tested mission procedures and algorithms for the complex new technology on Aeolus in flight 2015 & 2016 in Iceland
- Complements instrument tests by ESA and space industry with atmospheric measurements
- Demonstrated: Aeolus measurement principle works reliably also in harsh airborne environmental conditions
- More than 150 recommendations for the Aeolus mission derived from A2D activities for instrument alignment, operation, retrieval algorithms and calibration/validation already before launch

Reitebuch et al. (2009), **JAOT**; Reitebuch (2012); **Springer**; Lemmerz et al. (2017), **AO**; Lux et al. (2018), **AMT**; Marksteiner et al. (2018), **Remote Sensing**; Witschas et al (2017), **JAOT**

DLR Aeolus Airborne Campaigns Locations Overview

Current Topics of the AVATAR-T Data Analysis

- Aeolus Mie cloudy gap w.r.t. A2D (and 2-μm DWL) coverage within the dust laden altitudes up to 7 km
- Study Mie signal influence on Rayleigh wind error and bias in this area and potential for a Mie – dust wind product (in addition to Mie-coudy), improved QC...
- Aeolus L2B winds quality control: Develop strategy to balance outliers and the Estimated Error (EE) influence on statistical results of instrumental bias and random errors for each channel → combination of EE-threshold and modified Z-score (Z_m)

CLRC 2022

Falcon flight tracks from the 11 Aeolus

Wind data from the 2-µm DWL, the ECMWF model as well as the Aeolus and A2D Rayleigh and Mie channels from the Aeolus underflight on 10 September 2021

Statistical Comparison of L2B and 2-µm DWL winds - AVATART

- → Systematic error is within the specifications (0.7 m/s) for both Ray.-clear/Mie-cloudy winds
- → Largest random error of 7.2 m/s for the Ray.-clear winds due to the low signal levels (and range gate size)
- → The random error of Mie winds (2.6 m/s) is less affected, as the Mie winds are mostly from cloud returns and the SNR is mainly defined by the scattering ratio (particle load) and less by the transmitted laser energy

9

HLOS_{2µ Wind Lidar}/(m/s)

Credits to Benjamin Witschas and Stephan Rahm

Summary and Conclusion

Aeolus – 2-µm DWL statistical comparison results history for the Aeolus processor versions active during the time of the campaign

* For better comparison between campaigns, Rayleigh random errors are calculated for 1 km range gates assuming Poisson noise (AVATART 750 m range gates contributed ~75% of the data). Systematic error of the 2-μm DWL is neglected, the random error is considered to be 1 m/s and is corrected (value on the right side)

** ATM signal is given in arb. units and calculation as a mean per orbit, not for the particular campaign's region

Campaign/data set	Systematic error/(m/s)*		Random error (scaled MAD)/(m/s)*		Mean Laser Energy PD 74/(mJ)	Mean ATM signal level in 10 km**
	Rayleigh	Mie	Rayleigh	Mie		
WindVal III	2.1	2.3	4.0/3.9	2.2/2.0	53	0.75
AVATARE	-4.6	-0.2	4.4/4.3	2.2/2.0	42	0.6
AVATARI (ascending)	0.0	-0.2	4.3/4.2	2.8/2.7	62	0.9
AVATARI (descending)	1.8	-0.6	3.9/3.8	2.5/2.3	62	0.9
AVATART (preliminary)	-0.0	-0.6	6.2/6.1	2.6/2.4	72	0.4

- 4 airborne campaigns were performed for Aeolus in-orbit validation with the A2D and 2-μm DWL with a total of 52 flights, 26400 km along the Aeolus track
- Aeolus performance characterization during lifetime under different conditions concerning Aeolus signal and solar back-ground, geographical regions and atmospheric dynamics
- Thanks to A2D (same technology, but higher resolution) and the 2-µm DWL as a reference, Aeolus performance specific topics are identified and studied with the goal to contribute to further processor upgrades like e.g. mitigating Mie contamination of Rayleigh clear winds or realizing a Mie – Aerosol product
- Aeolus QC-methods are developed which are applicable to all campaigns and the validation community
- The airborne campaign datasets remain relevant for the validation of future processor versions

→ Do a wind mission with support from an airborne demonstrator