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Array PPP-RTK: A High Precision Pose Estimation
Method for Outdoor Scenarios

Xiangdong An, Andrea Bellés, Filippo Rizzi, Lukas Hösch, Christoph Lass, Daniel Medina

Abstract—Advanced driver-assistance system (ADAS) and high
levels of autonomy for vehicular applications require reliable
and high precision pose information for their functioning. Pose
estimation comprises solving the localization and orientation
problems for a rigid body in a three-dimensional space. In
outdoor scenarios, the fusion of Global Navigation Satellite Sys-
tems (GNSS) and inertial data in high-end receivers constitutes
the baseline for ground truth localization solutions, such as
Real-Time Kinematic (RTK) or Precise Point Positioning (PPP).
These techniques present two main disadvantages, namely the
inability to provide absolute orientation information and the
lack of observations redundancy in urban scenarios. This paper
presents Array PPP-RTK, a recursive three-dimensional pose
estimation technique which fuses inertial and multi-antenna
GNSS measurements to provide centimeters and sub-degree
precision for positioning and attitude estimates, respectively. The
core filter is based on adapting the well-known Extended Kalman
Filter (EKF), such that it deals with parameters belonging to the
SO(3) and GNSS integer ambiguity groups. The Array PPP-RTK
observational model is also derived, based on the combination
of carrier phase measurements over multiple antennas along
with State Space Representation (SSR) GNSS corrections. The
performance assessment is based on the real data collected on
an inland waterway scenario. The results demonstrate that a
high precision solution is available 99.5% of the time, with a
horizontal precision of around 6 cm and heading precision of 0.9
degrees. Despite the satellite occlusion after bridge passing, it is
shown that Array PPP-RTK recovers high accurate estimates in
less than ten seconds.

Index Terms—Pose Estimation; Precise Positioning; Extended
Kalman Filtering; GNSS Multi-Antenna; GNSS Inertial Fusion.

I. INTRODUCTION

AUTONOMOUS driving highly depends on navigation
systems which tell autonomous vehicles where they are

and what the orientations are. To enhance the safety, availabil-
ity and reliability of Intelligent Transport Systems (ITS), there
is an increasing demand for navigation systems to provide
continuous and precise position and attitude information. This
information is essential and regularly determined by the fusion
of Global Navigation Satellite System (GNSS) and Inertial
Measurement Units (IMU).

GNSS constitutes the main information supplier for geo-
referenced navigation with an all-weather, all-time availability,
and a minimal installation and maintenance cost. GNSS code-
based localization methods realized instantaneous positioning
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Fig. 1. Array PPP-RTK: a pose estimation technique based on the integration
of inertial data, GNSS code and carrier phase measurements from multiple
antennas, and the low-bandwidth SSR correction data stream.

at meter-level accuracy in open sky conditions. Unfortunately,
this precision is insufficient for a plethora of applications
requiring decimeter- to centimeter-level precision, e.g. Lane-
awareness for automobiles, docking approaches for unmanned
vessels or the operation of autonomous drones and robots
[1]. Instead, the use of GNSS carrier phase observations and
correction data is integrated along with inertial measurements
to reach precise positioning. Real Time Kinematic (RTK)
and Precise Point Positioning (PPP) are the most well-known
techniques applied for achieving sub-decimeter positioning.
Thus, one finds how geodetic receivers combining RTK and
IMU have been widely used in the literatures and serve as
positioning baseline in visual odometry benchmarks [2]–[6].
Nevertheless, compared with the relative positioning mode
employed in RTK, the absolute positioning of PPP-RTK is
a more promising positioning method [7], [8]. Therefore, this
paper is motivated to apply tight integration of Array PPP-
RTK and IMU.

Array PPP-RTK is an idea originally from the concept
of Array-aided PPP (A-PPP) proposed by Teunissen [9]. It
requires a setup of GNSS multiple antennas and a State
Space Representation (SSR) correction data stream. Having
multiple (an array of) antennas whose relative positions shall
be accurately surveyed within the vehicle, brings a twofold
benefit: a) it provides direct or global orientation information;
b) increased GNSS redundancy, which serves to minimize the
convergence time and increases the resilience against signal re-
flection effects. From a methodological perspective, integration
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of Array PPP-RTK and IMU is a recursive Bayesian estimator
which adapts the Extended Kalman Filter (EKF) to deal with
unknown parameters that live in the spaces of real numbers
(i.e., positioning, velocity, inertial biases, etc.), integer num-
bers (i.e., for the GNSS carrier phase ambiguities), and the
SO(3) manifold (i.e., for the orientation). For handling the
geometrical constraints of SO(3), we leverage on Lie Theory
and use the Error State form of the EKF, for which the state to
be estimated belongs to a manifold and its perturbations live in
the tangent space of that manifold. Then, for the estimation of
the integer parameters we follow the three-step decomposition
[10] (float, integer ambiguity, and fixed estimation), and the
navigation solution enables sub-dm, sub-degree pose precision
[11]–[13]. The contributions of this article mainly include:

1) An Array PPP-RTK observational model based on SSR
corrections for simultaneously positioning and attitude
determination is derived.

2) The attitude is represented as a quaternion rather than
a rotation matrix, which is a minimized representation
of the attitude and suitable for integration with IMU
measurements.

3) A unified mathematical model is presented to achieve
tight integration between Array PPP-RTK and IMU
based on EKF.

The rest of the manuscript is organized as follows. Section
II presents the related work on precise positioning and attitude
determination. Section III describes some preliminary concepts
needed for Array PPP-RTK. Then, Section IV offers our
contribution on Array PPP-RTK processing and its estima-
tion. Sections V and VI describe the experimental setup and
analysis of the results, respectively. Finally, Section VII draws
the conclusions and the outlook for this work.

II. RELATED WORK

Precise positioning helps to increase vehicles’ autonomy
levels, and enhance their safety and competitiveness against
conventional transportation. Real-time array calibration (RAC)
is a technology that improves the localization of an array
of antennas based on real-time error correction [14], [15].
It uses the geometric information of the multiple antennas
to narrow and eliminate common errors, and improve the
positioning precision. Compared with RAC, Enhanced RAC
(ERAC) brings a better error correction by mining more
key information [16]. More geometric information is used
when correcting vertex measurements, which is beneficial to
position estimation. Both RAC and ERAC utilize GNSS code
measurements achieving positioning precision at sub-meters
to meters level. However, the safety critical-automated driving
requires a 20 cm positioning accuracy in horizontal [17]. Thus,
GNSS positioning techniques those using code measurements
no longer meet the stringent navigational requirements for
prospective ITS applications, and it is indispensable to apply
centimeter-level positioning methods based on carrier phase
measurements, such as RTK [18] and PPP [19].

PPP and RTK are distinguished upon the type of correction
data used and the combination of observations. RTK is a dif-
ferential positioning technique, and the target’s position is esti-

mated with respect to a geo-referenced base station. The uncer-
tainty budget for RTK is low and the integer ambiguities can
the estimated nearly instantaneously while providing position
with centimeter-accuracy [20], [21]. However, the positioning
performance rapidly decays as the distance between vehicle
and base station grows, and the data stream for the RTK-
related corrections requires a broadband and low-latency com-
munication channel. Unlike RTK, PPP is an absolute position-
ing based on precise satellite orbits and clock products, and
uses only the observations from one receiver to calculate its
precise position. However, PPP cannot mitigate carrier-phase
biases nor reduce the atmospheric delays and, thus, it requires
long convergence time until sub-decimeter precise position-
ing is achieved (ranging from a few minutes to half hour in
dynamic scenarios) [22]–[25].

The hybridization of PPP and RTK denoted as PPP-RTK
combines the conventional PPP with regional corrections and
integer ambiguity resolution to provide quasi-instantaneous
centimeter-accurate positioning [7], [26]. In other words, PPP-
RTK is based on precise satellite orbit, clock, signal biases,
and optional atmospheric products. These products are gen-
erated from a GNSS network of stations, encoded as Space
State Representation (SSR) information, and broadcasted to
users, as illustrated in Fig. 1. Compared with RTK, PPP-
RTK has the advantages of saving bandwidth, covering a
wide area, and serving unlimited users [7], which better meets
the requirements of autonomous driving. Although PPP-RTK
achieves instant ambiguity resolution and rapid convergence
within 30 seconds by utilizing the state-of-the-art SSR cor-
rections and provides continuous positioning information in
an open-sky area, it faces challenges in confined scenarios
such as passing through bridges, canyons or urban areas [27].
IMU is an independent sensor providing precise navigation
information for a short time when GNSS is unavailable [28].
Tightly coupled PPP-RTK and IMU not only enhanced the
solution availability, but also achieved precise positioning at
a centimeter to decimeter level within 20 seconds [29], [30].
Therefore, the complementary use of GNSS and IMU will
definitely enhance the capability of continuous positioning
especially for the applications of transportation.

In addition to positioning, the pose estimation also involves
the orientation. The attitude information is usually obtained
by IMU and corrected by GNSS measurements in a tight
integration of GNSS and IMU system [31], [32] where the
IMU requires an initial alignment, leading to the problem
that the vehicle needs to stay stationary when aligning the
IMU [33], [34]. This initial alignment takes several to tens of
minutes which varies with the grade of IMU sensors. This
problem can be circumvent with the use of multi-antenna
systems. An array of GNSS antennas increases the data
redundancy, its benefits on calculating satellite phase biases,
sensing ionosphere and improving ambiguity resolution have
been investigated and proved [35]–[37]. We focus on antenna
array aided attitude determination, which was indeed one of
the pioneer uses of GNSS in space missions [38]–[40] to
determine the orientation of satellites and space probes. GNSS
antenna array represents an appealing alternative to magne-
tometers, gyroscopes or orientation odometry, and provides a
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drift-less absolute orientation with a fair compromise in terms
of cost, weight, and precision. Thus, the array-aided GNSS
attitude problem has been extensively studied.

A precondition of precise attitude determination in a
GNSS antenna array system is ambiguity resolution. Based
on the Least-squares Ambiguity Decorrelation Adjustment
(LAMBDA) method [10], some famous attitude determination
models were proposed, such as C-LAMBDA (baseline length
Constrained LAMBDA), MC-LAMBDA (Multivariate Con-
strained LAMBDA), and AC-LAMBDA (Affine Constrained
LAMBDA). The C-LAMBDA adds nonlinear baseline length
constraints into the process of ambiguity resolution benefiting
the search for the correct integer ambiguity vector [41]–[43].
MC-LAMBDA is a further extension based on C-LAMBDA,
which makes full use of prior information of the antenna
configurations including not only the baseline length but also
the relative orientation of the multiple antennas [44]–[47].
Although C-LAMBDA and MC-LAMBDA have an increased
success rate in comparison with classical LAMBDA, the
rigorous inclusion of the nonlinear constraints into the am-
biguity objective function has made the complexity of its
integer ambiguity search increase as well. Thus, an AC-
LAMBDA was proposed to make a compromise between
the unconstrained LAMBDA and its more complex MC-
LAMBDA [48]. It decomposed the attitude constraints into
linear and quadratic constraints. By disregarding the quadratic
constraints and only keeping the linear constraints, it avoided
the computational complexity of the MC-LAMBDA through
directly using the standard LAMBDA method [49]. However,
the linear constraints are only present when the number of
baselines is larger than the dimension of their span, which
means if we would like to determine the attitude in 3D, we
can only get some benefits from the AC-LAMBDA when the
number of antennas is greater than three.

Besides the GNSS attitude determination models, the lit-
eratures for GNSS high precision pose estimation, i.e., solv-
ing simultaneously the localization and attitude for a vehi-
cle, are limited to two techniques: A-PPP, and Joint Position-
ing and Attitude determination (JPA). A-PPP proposed a uni-
fied model to estimate the position and attitude simultane-
ously [9] in an antenna array system. The attitude was pa-
rameterized as a rotation matrix and the ambiguity resolu-
tion was realized through solving a novel orthonormality-con-
strained multivariate (mixed) integer least-squares problem. Fi-
nally, it improved the success rate of single-epoch ambiguity
resolution [37], [50]–[52]. However, A-PPP is not designed
for the tight integration with IMU, because the rotation matrix
is not a minimum representation of the attitude. Some trigono-
metric functions must be employed to get the pitch, roll, and
yaw angles of the vehicle. Consequently, the variance-covari-
ance information of the three attitude angles is missing or hard
to obtain, making it inconvenient to achieve tight integration
with IMU. Instead of PPP, JPA method combines the RTK with
attitude information in a multi-antenna system and represents
the attitude as a quaternion in the state vector. The position
and attitude parameters are simultaneously estimated by an
Error-State Kalman Filter (ESKF) [53], [54]. In this work, we
extend the theory behind A-PPP and JPA, and contribute Array

PPP-RTK aided with IMU. Array PPP-RTK constitutes the
most ambitious high precision GNSS navigation technique to
date and provides an precise pose estimation with tight inte-
gration of IMU in a multi-antenna, multi-sensor system.

III. PRELIMINARIES

A. Coordinate Frames and Transformations

It generally involves three coordinate frames in navigation:
1) the body frame (b-frame) whose motion is described; 2)
the geo-referenced frame (e-frame) with which the motion is
respect to; 3) the auxiliary navigation frame (n-frame) for de-
scribing the vehicle’s movement in an accessible manner. The
relationship between different frames is illustrated in Fig. 2.

Let us consider a multi-sensor and multi-antenna platform
which includes N + 1 GNSS antennas and at least one
IMU. The main and the remaining N secondary antennas
are referred to with the subscripts m and s ∈ (1, . . . , N),
respectively. The relative positions of the antennas and IMU
are as depicted on Fig. 2b. Since the relative positions of
antennas are surveyed and accurately known within the body
frame. Then the sth baseline vector in n-frame (ndsm) can be
formulated as

nds,m = q ◦ bdsm ◦ q−1, s ∈ (1, . . . , N), (1)

where ◦ is the operator of quaternion multiplication; q is the
unit-quaternion to represent the body-to-navigation rotation
which is defined as

q =

[
qw
qu

]
= q{eφ} =

[
cos(φ/2)
e sin(φ/2)

]
(2)

with qw and qu the real and complex parts of quaternion, e
a unit rotation axis and φ a rotation angle from b-frame to
n-frame; q−1 is the inverse of q. Our task would be briefly
summarized as simultaneously estimating the position of the
main antenna, and determining the rotation between the body
and navigation frames in an extended Kalman filter.

B. Lie Theory for Kalman Filtering

Consider a generic state estimation vector composed by the
vector of unknown u and the orientation q, such that x⊤ =
[u⊤,q⊤], where (·)⊤ means transpose of a vector/matrix.
Then, the error state is described by δx⊤ = [δu⊤, δθ⊤]. Here,
δθ the rotation vector. The Euclidean space for δθ connects to
the Lie algebra eφ ∈ s3 (with e an unit vector of rotation, and
φ the rotated angle) with the isomorphism (·)∧ : R3 7→ s3.
Then, the Lie algebra connects with the 3D unit-sphere S3

manifold through exponential mapping [55], [56]. The overall
procedure is given by

δθ ∈ R3 (·)∧7−−→ eφ ∈ s3
exp(·)7−−−−→ δq ∈ S3, (3)

(δθ)∧ :

{
e = δθ

∥δθ∥2

φ = ∥δθ∥2
, exp(eφ) :

[
cos(φ/2)
e sin(φ/2)

]
.

Thus, q{θ} corresponds to the mapping between the Eu-
clidean space and the unit quaternion as in (2). With the Lie
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(b)

Fig. 2. Relationship between global frame, navigation frame, and body frame. (a) The global frame is a Earth-Centered, Earth-Fixed (ECEF) coordinate
frame, indicated as e and its axes are (eX, eY , eZ); The navigation frame is also known as a local geodetic coordinate system, denoted as n and the axes
(nN, nE, nD) means north, east, down. (b) The body frame is illustrated as b and its axes (bF , bR, bD) means front, right, down. Both the n-frame and
b-frame are referenced to the position of the main antenna and move with the platform.

Theory tools now widely available, the composition of nominal
and error state is expressed as

x = x0 ⊕ δx =

{
u0 + δu
q0 ◦ δq{δθ} , (4)

Thus, the ESKF adapts the standard Kalman Filter framework
for a chosen non-linear parametrization (here formulated for
a generic state vector by (4)) to preserve the unit-norm
quaternion constraint [57]–[59].

IV. ARRAY PPP-RTK PROCESSING

Array PPP-RTK is a technique for the recursive estimation
of a vehicle’s kinematic properties based on the fusion of
inertial and GNSS multi-antenna data. From a practical imple-
mentation perspective, Array PPP-RTK requires the integration
of three main modules under the same platform as shown in
Fig. 3:

1) Reference station network. The stations are even dis-
tributed in a region and constitute a Continuous Opera-
tion Reference Station (CORS) network, which could
be a national, continental, and even global network.
For example, the German Satellite Positioning Service
(SAPOS) collects the GNSS data and transmits it to
PPP-RTK service center in real-time.

2) PPP-RTK service center. It receives data from a ref-
erence station network, and computes precise orbit
and clock corrections with respect to GNSS broadcast
ephemeris. Besides, it also generates signal biases en-
abling users to resolve integer ambiguities. To speed
up the convergence time of PPP-RTK, tropospheric
and ionospheric model parameters are also estimated,
represented as SSR corrections, and broadcasted to PPP-
RTK users.

3) Multi-sensor, multi-antenna system. The core of this
system is Array PPP-RTK processing engine, which
starts from an initialization and sets the initial state
vector of the Kalman filter. It then uses the acceleration
and angular rate of the IMU as data inputs to predict the
position and attitude. Followed by the state update, in

this phase the precise satellite orbit, clock, signal biases,
tropospheric and ionospheric delays are derived from the
SSR products; Based on the IMU predicted state, the
error state of position and attitude are simultaneously
updated by using GNSS code and phase measurements
from the multi-antenna. The updated solutions are then
used to correct the state predicted by IMU. In addition,
ambiguity resolution is implemented to improve the
precision of the state estimation, if ambiguity resolution
succeeds then derive the solutions with ambiguities fixed
to integers, otherwise keep the ambiguities as float
values and proceed to the next epoch.

We will present the mathematical models for Array PPP-
RTK processing engine starting from the GNSS observation
equations in a multi-antenna platform, followed by the attitude
determination based on a quaternion representation, and then
the prediction and correction of Kalman filter. Finally, the
ambiguity resolution is adopted to improve the performances.

A. GNSS Observation Equation based on SSR Corrections

GNSS observation equations of double-frequency code and
phase measurements from satellite i to the main antenna m
are written as

P i
m,1 =ρim + c(tm − dti,P1) +M i · Tm + Iim

+ ϵ(P i
m,1)

P i
m,2 =ρim + c(tm − dti,P2) +M i · Tm + g · Iim

+ hm,2 + ϵ(P i
m,2)

Li
m,1 =ρim + c(tm − dti,L1) +M i · Tm − Iim

+ λ1 · ãim,1 + ϵ(Li
m,1)

Li
m,2 =ρim + c(tm − dti,L2) +M i · Tm − g · Iim

+ λ2 · ãim,2 + ϵ(Li
m,2)

Si
m,T =M i · Tm + ϵ(Si

m,T )

Si
m,I =Iim + ϵ(Si

m,I)

(5)

where
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Fig. 3. Flowchart of data acquisition and processing chain, which includes three modules (1) Reference station network, (2) PPP-RTK service center, and
(3) Multi-sensor, multi-antenna system.

• P i
m,1, P

i
m,2 mean the code measurements from a satellite

i to the main antenna m at the first and second frequency,
respectively;

• Li
m,1, L

i
m,2 stand for the corresponding phase measure-

ments;
• ρim =

√
(Xi −Xm)2 + (Y i − Ym)2 + (Zi − Zm)2 is

the geometric distance between the satellite position
(Xi, Y i, Zi) and antenna position (Xm, Ym, Zm);

• c is the speed of light in a vacuum and tm the receiver
clock offset;

• dti,P1, dti,P2, dti,L1, dti,L2 are SSR satellite clock offset
plus signal biases for each type of measurements;

• Tm is the zenith tropospheric delay and M i maps the
zenith delay to slant delay [60];

• Iim means the slant ionospheric delay, g =
f2
1

f2
2

is the ratio
of the ionospheric delay between the first and second
frequencies, and f1, f2 denote the signal frequencies;

• hm,2 is receiver code bias of the second frequency with
respect to the first frequency;

• λ1 and λ2 denote the signal wavelength;
• ã indicates the float ambiguity, which includes integer

ambiguity plus the phase biases of receiver and satellite;
• Si

m,T and Si
m,I are slant tropospheric and ionospheric

delays calculated based on SSR atmospheric model;
• ε represents the corresponding noise of measurements.

The linearization of (5) is formulated in a matrix format as

P̃ i
m,1

P̃ i
m,2

L̃i
m,1

L̃i
m,2

Si
m,T

Si
m,I


=


Ji
mCn

e c 0 M i 1 0 0
Ji
mCn

e c 1 M i g 0 0
Ji
mCn

e c 0 M i −1 λ1 0
Ji
mCn

e c 0 M i −g 0 λ2

0 0 0 M i 0 0 0
0 0 0 0 1 0 0





δpm

tm
hm,2

Tm

Iim
ãim,1

ãim,2


(6)

in which 
P̃ i
m,1 = P i

m,1 − ρim + c · dti,P1

P̃ i
m,2 = P i

m,2 − ρim + c · dti,P2

L̃i
m,1 = Li

m,1 − ρim + c · dti,L1

L̃i
m,2 = Li

m,2 − ρim + c · dti,L2

(7)

and δpm = (δNm, δEm, δDm) denoting the position adjust-
ment in n-frame. The Jacobian matrix Ji

m is calculated by

Ji
m =

[
−Xi−Xm

ρi
m

,−Y i−Ym

ρi
m

,−Zi−Zm

ρi
m

]
. (8)

The rotation matrix from e-frame to n-frame is represented by
Cn

e and formulated as [61]

Cn
e =

−cos(lon)sin(lat) −sin(lon) −cos(lon)cos(lat)
−sin(lon)sin(lat) cos(lon) −sin(lon)cos(lat)

cos(lat) 0 −sin(lat)


(9)

where (lat, lon) are ellipsoidal latitude and longitude of the
antenna position. The secondary antenna is mounted quite
close to the main antenna, thus similar to (6), the GNSS
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observation equation from satellite i to a secondary antenna
s ∈ (1, . . . , N) is linearized as


P̃ i
s,1

P̃ i
s,2

L̃i
s,1

L̃i
s,2

 =


Ji
mCn

e c 0 M i 1 0 0
Ji
mCn

e c 1 M i g 0 0
Ji
mCn

e c 0 M i −1 λ1 0
Ji
mCn

e c 0 M i −g 0 λ2





δps

ts
hs,2

Ts

Iis
ãis,1
ãis,2


,

(10)
where δps = (δNs, δEs, δDs) denoting the position adjust-
ment for antenna s in n-frame and

P̃ i
s,1 = P i

s,1 − ρim + c · dti,P1

P̃ i
s,2 = P i

s,2 − ρim + c · dti,P2

L̃i
s,1 = Li

s,1 − ρim + c · dti,L1

L̃i
s,2 = Li

s,2 − ρim + c · dti,L2

. (11)

The double-differenced GNSS code and phase observation
equations between satellites (i, j) and antennas (s,m) are
expressed as

P̃ ij
sm,1

P̃ ij
sm,2

L̃ij
sm,1

L̃ij
sm,2

 =


Jij
smCn

e 0 0
Jij
smCn

e 0 0
Jij
smCn

e λ1 0
Jij
smCn

e 0 λ2


ndsm

aijsm,1

aijsm,2

 , (12)

where ndsm = δps − δpm is the baseline vector between the
secondary and main antennas in n-frame, e.g. nd1m and nd1m

illustrated in Fig. 2b. Jij
sm = (Ji

s − Jj
s)− (Ji

m − Jj
m).

P̃ ij
sm,1, P̃ ij

sm,2 and L̃ij
sm,1, L̃ij

sm,2 are double-differenced
code and phase measurements between two satellites
i, j and two stations s, m. aijsm,1 and aijsm,2 indicate the
corresponding double-differenced ambiguities at the
first and second frequencies. One should note that the
receiver clock offset ts, code bias hs,2 are mitigated in the
double-differencing operation. Moreover, tropospheric and
ionospheric delays are significantly reduced and ignored in
(12) due to the fact the distance between the secondary and
main antennas is short, i.e. only several meters.

In (6) and (12), the left item of equation is considered as
an Observed Minus Computed (OMC) vector, the first and
second items at the right side of equation are seen as design
matrix and state vector. If we combine the OMC vector, design
matrix, and state vector of (6) and (12) in one formula, it can
be written as

[
ym

ysm

]
=

[
Hδp

m 0 Ho
m Ha

m 0
0 Hdsm

sm 0 0 Ha
sm

]
δpm

ndsm

om

ãm
asm


(13)

in which ym is undifferenced OMC vector for the main
antenna; ysm are double-differenced OMC vectors for the
secondary-main antenna pairs sm, s ∈ (1, . . . , N). The sub-
script of H indicates the design matrix corresponding to
main antenna m or a secondary-main antenna pair (sm); Its
superscript marks the type of parameters, such as position

p, baselines dsm, and ambiguities a; The other parame-
ters for the main antennas, e.g. receiver clock offset, code
bias, tropospheric, and ionospheric delays, are denoted as o.
Equation (13) is the GNSS observation equation in a multi-
antenna platform, and in the next section we are going to talk
about how to convert the baseline vectors (ndsm) to attitude
parameters in the GNSS observational model.

B. Quaternion-Based Attitude Representation

The state vector in (13) does not contain any attitude
information. From (1), we know the baseline in n-frame is
a function of quaternion:

ndsm = f(q) = q ◦ bdsm ◦ q−1 (14)

where bdsm means the baseline vector in b-frame which is
known and precisely pre-measured, q is a quaternion contain-
ing rotation information which is unknown and needs to be
determined. The true state of quaternion is decomposed into
a nominal state q0 and error state δq as

q = q0 ◦ δq. (15)

This decomposition could be understood like two consecutive
rotations: the initial rotation represented by q0 with an angle of
θ and an adjustment rotation indicated by δq with an angle
of δθ. The Jacobian matrix of ndsm with respect to δq is
derived based on the chain rule as

Jδθ
sm =

∂f(q)

∂δθ
=

∂(q ◦ bdsm ◦ q−1)

∂q

∂q

∂δq

∂δq

∂δθ
. (16)

The detailed derivation of derivatives in (16) can be found in
[62], their results are given here without explanation as

∂(q ◦ bdsm ◦ q−1)

∂q
= 2[qw · bdsm − [bdsm×]qu,

qu
⊤ · bdsmI3 + qu · bdsm − bdsmqu

⊤ − qw[bdsm×]]

, (17)

∂q

∂δq
=

∂(q0 ◦ δq)
∂δq

= qwI4 +

[
0 −qu

⊤

qu [qu×]

]
, (18)

and

∂δq

∂δθ
=

1

2


0 0 0
1 0 0
0 1 0
0 0 1

 , (19)

where [bdsm×] and [qu×] are the skew-symmetric matrix
of bdsm and qu. Based on (14), (15) and (16), we get the
linearized equations for the secondary-main baseline vector

ndsm = q0 ◦ bdsm ◦ q−1
0 + Jδθ

smδθ (20)

Substitute (20) into (13) and derive[
ym

ỹsm

]
=

[
ym

ysm −Hdsm
sm (q0 ◦ bdsm ◦ q−1

0 )

]
=

[
Hδp

m 0 Ho
m Ha

m 0
0 Hδθ

sm 0 0 Ha
sm

]
δpm

δθ
om

ãm
asm


(21)
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with

Hδθ
sm = Hdsm

sm Jδθ
sm. (22)

Equation (21) is the mathematical model for Array PPP-RTK
in a multi-antenna platform. In the next section, the IMU is
fused within this mathematical model and the ESKF is adopted
to solve this equation.

C. Error State Kalman Filter

1) State vector: From (21), we can see the state vector
includes position, attitude, receiver clock offset, code bias,
atmospheric delays, and ambiguities. However, in a multi-
sensor platform of GNSS and IMU, the state vector also
includes parameters corresponding to IMU, such as velocity,
gyroscope and accelerometer biases. To make it clear, we
classify the parameters in four groups:

x =
[
x⊤

kin x⊤
IMU x⊤

GNSS x⊤
a
]⊤

, (23)

xkin =
[
δp⊤ δv⊤ δθ⊤]⊤ , (24)

xIMU =
[
b⊤
a b⊤

ω

]⊤
, (25)

xGNSS =
[
t⊤m Tm i⊤

]⊤
, (26)

xa =
[
ã⊤m a⊤1m . . . a⊤Nm

]⊤
, (27)

where xkin means kinematic parameters including error state
of position (p), velocity (v), and attitude (θ); xIMU indicates
the bias parameters of accelerometer (ba) and gyroscope (bω);
xGNSS includes the GNSS related parameters, such as receiver
clock offset (tm), tropospheric delay (Tm), Ionospheric delays
for satellite-receiver pairs (i); xa denotes ambiguities for
main antenna (am) and double differenced ambiguities for
secondary-main antenna pairs (a1m, . . . ,aNm).

2) Prediction step with IMU: In prediction phase, the
mechanization process of Inertial Navigation System (INS)
uses IMU outputs to predict the velocity, position, and attitude
of the object. The state transition matrices for xkin and xIMU
are derived by the relative state dynamic model of INS [63],
[64]:
δṗ = −ωn

en × δp+ δv

δv̇ = −(ωn
en + 2ωn

ie)× δv +Cn
b f

b × δθ+ δgn +Cn
b δf

b

δθ̇ = −(ωn
en +ωn

ie)× δθ−Cn
b δω

b
ib

,

(28)
where δṗ, δv̇, and δθ̇ are the derivative of position, velocity,
and euler angles vectors, respectively; ωn

en is the rotation
angular rate of n-frame with respect to e-frame projected in
n-frame; ωn

ie is the rotation angular rate of e-frame with
respect to inertial i-frame projected in n-frame; δgn represents
the gravity corrections; f b and ωb

ib are the specific force
and angular rate from accelerometers and gyroscopes in the
b-frame; Cn

b represents the attitude direction cosine matrix
for transforming from b-frame to n-frame; δf b and δωb

ib are
systematic errors of the accelerometer and gyroscope in b-
frame,respectively.

3) Correction step: A GNSS OMC vector in a multi-
antenna platform at time k is constructed as

yk = Hkxk|k−1 +Wk (29)

in which xk|k−1 is the predicted state vector by IMU. Wk is
the observation noise and assumed to be zero mean Gaussian
white noise with covariance Rk, which is constructed based on
the observation noise ϵ in (5) and the cross-correlation between
the main and secondary antennas has been considered [65].
The OMC vector yk and design matrix Hk can be constructed
based on (21) as{

yk = [y⊤
m y⊤

1m . . . y⊤
sm]⊤

Hk = [Hkin HIMU HGNSS Ha]
, (30)

where

Hkin =


Hδp

m 0 0
0 0 Hδθ

1m
...

...
...

0 0 Hδθ
Nm

 , HIMU =


0 0
0 0
...

...
0 0

 (31)

and

HGNSS =


Ho

m

0
...
0

 ,HGNSS =


Ha

m 0 0 0
0 Ha

1m 0 0

0 0
. . . 0

0 0 0 Ha
Nm

 .

(32)
The meanings of symbols in (30), (31) and (32) refer to
(21). It should be noted that in the GNSS correction step the
coefficients corresponding to velocity (the second column of
Hkin) and IMU biases (HIMU) are zeros. In addition, the IMU
is directly mounted under the main antenna, thus the level-arm
between the IMU and main antennas has been ignored.

The correction step is actually using GNSS measurements
to calibrate the state predicted by IMU, the adjustment of state
vector and its variance-covariance matrix are obtained by{

x̂k|k = Kk(yk −Hkxk|k−1)

Pk|k = (I−KkHk)Pk|k−1

, (33)

in which the Kk is the Kalman gain matrix [66]. The updated
state is calculated as

xk|k = xk|k−1 ⊕ x̂k|k, (34)

where the symbol ⊕ is a generic composition defined in (4).

D. Ambiguity Resolution

After the correction step, we get the solutions without
ambiguity resolution named as float solutions:

xk|k = [x⊤
kin x⊤

IMU x⊤
GNSS x⊤

a ]⊤k|k. (35)

If we take a close look at (21) and (27), we can see the symbol
ãm denoting undifferenced ambiguities for main antenna has
a tilde, while the double-differenced ambiguities a1m and asm
don’t. This is because although satellite phase biases have
been corrected by SSR products, the undifferenced ambiguities
ãm still contain the receiver phase biases which have been
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mitigated in the double-differenced ambiguities. Therefore,
before the ambiguity resolution, we need to transform the
undifferenced ambiguities to single-differenced ambiguities
between two satellites, so as to eliminate receiver phase biases
and recover integer features of the ambiguities for the main
antenna. This transformation can be achieved by

x̂a = Tx̂a =


U 0 0 0
0 I 0 0

0 0
. . . 0

0 0 0 I




ãm
a1m

...
aNm


k|k

, (36)

where U, constructed according to [27], is an matrix to trans-
form the undifferenced ambiguities ãm to single-differenced
ambiguities am. Let a = [a⊤m a⊤1m . . . a⊤Nm]⊤ and the
corresponding variance-covariance matrix is transformed to

Pkin, kin Pkin, IMU Pkin, GNSS Pkin, a
PIMU, kin PIMU, IMU PIMU, GNSS PIMU, a
PGNSS, kin PGNSS, IMU PGNSS, GNSS PGNSS, a
Pa, kin Pa, IMU Pa, GNSS Pa, a

 =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 T

Pk|k


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 T


⊤

.

(37)

Then, the ambiguity vector xa and its covariance Pa,a are
used for ambiguity resolution.

The C-LAMBDA, MC-LAMBDA, and AC-LAMBDA
methods mentioned in Section II mainly focus on ambiguity
solution in unaided, single frequency, single epoch cases, and
the difficulty of computing and estimating the integer ambi-
guities depends very much on the strength of the underlying
model. In the unaided, single frequency, single epoch case, the
mathematical models lack the necessary strength. Therefore,
additional prior information, such as baseline length and
orthonormality of the rotation matrix, is often used in case of
attitude determination to strengthen the ambiguity resolution.
However, we focus on IMU-aided, double-frequency, multi-
epoch GPS+Galileo ambiguity resolution. Clearly, the strength
of the GNSS mathematical model is improved when aided
by IMU, when the number of tracked satellites gets larger,
when the number of measurement epochs increases, and when
used frequencies gets more. In addition, the baseline length
constraints have been fulfilled by transforming the coordinate
difference to quaternion in the observational models, and the
quadratic constraints has been removed in the linearization
of the quaternion. In such cases the models have sufficient
strength, the standard LAMBDA methods can be used directly
for ambiguity resolution [42]. This has been proven that the
differences in success rate between classical LAMBDA and
MC-LAMBDA become less pronounced when the strength
of the underlying GNSS model increases. For instance, with
8 satellites and a phase and code precision of 3 mm and
5 cm, respectively, a close to 100% success rate is already
achieved with the standard LAMBDA method [43]. Therefore,
we finally choose the standard LAMBDA method to avoid
the computational complexity of MC-LAMBDA while also

achieving a comparable success rate of ambiguity resolution
with a strengthened mathematical model.

Once the ambiguity is successfully resolved to an integer
vector xa, the position, velocity, and attitude solutions with
ambiguity resolution, named as fixed solutions, can be derived
as

xkin = xkin ⊕Pa,kinP
−1
a,a(xa − x̂a), (38)

where the meaning of the operator ⊕ can be found in (4).

V. EXPERIMENTAL SETUP AND DATA COLLECTION

A. Setup of Platform

We installed the multi-sensor platform on our research boat
Aurora. Aurora carries one tactical grade IMU and three
geodetic antennas as shown in Fig. 4. The three antennas
are connected to three JAVAD GNSS receivers. The main
antenna is mounted at the bow of the boat with the IMU
directly below it. Two secondary antennas are mounted at
the left and right edges of Aurora’s roof. The definition of
the whole body frame (b-frame) is illustrated in Fig. 4: the
origin point of b-frame is the main antenna and the positions
of the two secondary antennas in b-frame are determined based
on the geometric information. From Fig. 4, we know the
(Front,Right,Down) coordinates in b-frame for the left and
right secondary antennas are (−1.682,−0.687,−0.194) and
(−1.682, 0.540,−0.194).

B. Measurement Campaign

We conducted a measurement campaign on the urban water-
ways of Berlin on November 8, 2022. Between 2:30 pm and
4:30 pm, the boat moved around the small island Seestraßenin-
sel. In total, it passed seven times around the island and 18
times under bridges. Fig. 4 illustrates the trajectory. During this
measurement campaign, we were receiving SSR corrections of
satellite orbit, clock, and signal biases as well as tropospheric
and ionospheric delays from SAPOS. The SSR products were
generated based on 11 reference stations located near Berlin,
as shown by the black circles in Fig. 5. Close to the location
of the measurement campaign, we also chose an RTK base
station, indicated as red diamond in Fig. 5. This base station
serves for computing RTK solutions as references. With these
references, section VI evaluates the positioning performance
of the Array PPP-RTK method.

C. Data Processing Strategies

Table I shows the processing strategies. The GNSS receivers
have the capability to track and receive GPS, Galileo and
GLONASS satellites and signals, but only GPS and Galileo
are implemented for Array PPP-RTK because the decode of
SSR corrections for GLONASS is under development. We are
using a tactical grade IMU (Sensonor STIM300). Based on
the specifications of IMU sensor, its configurations have been
modified.
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Fig. 4. On the left, the research vessel Aurora and its multi-antenna and multi-sensor platform. On the top right, side view of the geometric structure and
the inter-antenna baselines in the body frame. On the bottom right, the trajectory of the measurement campaign, the red star marks the start and stop point.

Fig. 5. Reference stations used by SAPOS to generate SSR corrections

VI. RESULTS ANALYSIS

As explained in the introduction, position and attitude
are two key aspects of precise navigation. Thus, the first
part focuses on the performance of the positioning results,
especially the precision and convergence time, whereas the
second part presents the performance of the attitude estimation
in terms of accuracy and rapid initialization.

A. Positioning Performances

As mentioned in Section V-B, an RTK reference trajectory
is obtained by using RTKLib [67] with an RTK base station
visible in Fig. 5. The configuration parameters of the RTKLib

TABLE I
DATA PROCESSING AND CONFIGURATION FOR ARRAY PPP-RTK.

GNSS items Processing strategies

GNSS signals GPS (L1, L2) Galileo (E1, E5a)

Observation noise
Elevation dependent: ( σ

sin(Elev)
)2, where σ

for code measurement is 0.6 m and for phase
measurement is 0.01 cycle

Sampling rate 2 Hz

Elevation mask 15°

Ambiguities Resolved by Partial-LAMBDA and minimum
success rate is set as 99.5%

Satellite orbit,
clock, and signal
biases

Corrected by SSR products from SAPOS

Atmospheric
delays

Mitigated in the double-differencing operation
for secondary antennas. Estimate residual iono-
spheric and tropospheric delays with respect to
SSR atmospheric products for main antenna

processor are described in Table II. It is worth noting that
GLONASS were also used in addition to GPS and Galileo
to generate the reference trajectory. This was fundamental to
increase the availability of satellites during passing through
bridges, increasing the reliability of RTK solutions. Moreover,
RTK solutions are computed based on final orbit and clock
products from Center for Orbit Determination in Europe
(CODE), which are generated based on a global station
network. The SSR orbit and clocks applied by PPP-RTK are
determined based on a regional station network. As a result,
there exists positioning offset between PPP-RTK and RTK
solutions. This positioning offset is calculated by averaging the
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TABLE II
DATA PROCESSING STRATEGIES OF RTK SOLUTIONS

Items Processing strategies

GNSS signals GPS(L1, L2), GLONASS(G1, G2),
Galileo(E1, E5a)

Observation noise

Elevation dependent: a2 + (b/sin(Elev))2

where a = 0.002 m and b = 0.002 m, the noise
ratio between code and phase measurements is
100

Sampling rate 2 Hz

Elevation mask 15°

Ambiguities
Resolve GPS and Galileo ambiguities by
LAMBDA, ratio test threshold is set as 2; Keep
GLONASS ambiguities as float values

Satellite orbit,
clock, and signal
biases

Apply precise satellite orbit and clock from
CODE, and signal biases are mitigated in the
double-differenced observations

Atmospheric
delays

Reduced in the double-differenced observations
and ignored

positioning differences between PPP-RTK and RTK solutions,
and removed in the evaluation analysis [27].

To highlight the performance improvement of the Array
PPP-RTK algorithm with the fusion of multi-antenna and IMU,
two additional solutions have been computed: (a) a PPP-RTK
solution with the main antenna only; (b) a tightly coupled
PPP-RTK and IMU solution based on single main antenna.
The solution (c) presents the tightly coupled Array PPP-RTK
and IMU solutions. A comparison between them is analyzed
in the following.

1) Positioning precision: The trajectory comparison for
different types of solutions is presented in Fig. 6. Based on the
SSR products, the PPP-RTK solutions (a) always realized rapid
ambiguity resolution within seconds even after passing through
the bridges. For this reason, the convergence time of the
positioning solution is also strongly reduced as it is visible in
Fig. 7a, which presents the errors in the East-North coordinate
frame. The main disadvantage of PPP-RTK is also obvious and
visible in Fig. 6a, i.e. it cannot provide continuous solutions
during passing through a bridge. Additionally, in the vicinity
of the bridges the error tends to be larger due to multi-path
signals and potential cycle slips. This motivates the integration
of the IMU sensor which compensates the unavailability of
GNSS signals during passing through a bridge. The solutions
(b) with tightly coupled PPP-RTK and IMU not only provide
continuously positioning results under the bridges, but also
improve the fixing rate of ambiguity resolution. The fixing rate
here defined as the ratio between the fixed epochs and the total
epochs. The total epochs here also include the epochs when
there is not available GNSS satellites at all and only IMU
works, e.g., when the boat is under a bridge. The fixing rate
increased from 98.6% in solution (a) to 99.4% in solution
(b). Although the increase is small, the improvement mainly
occurs during crossing bridges, which can be observed through
the comparison of red dots in Fig. 7b and Fig. 7a especially
at time 16:20. This is important to enhance the reliability of
the positioning and reduce the initialization time. Therefore,
the IMU integration reduces the time to obtain fixed solutions

TABLE III
STANDARD DEVIATIONS OF ERRORS FOR DIFFERENT SOLUTIONS IN THE

EAST AND NORTH COMPONENTS

Solution type
RMS

East North

Solution (a) 0.132 m 0.084 m

Solution (b) 0.090 m 0.073 m

Solution (c) 0.055 m 0.058 m

lowering down the positioning errors. From solution (b) to
solution (c), two secondary antennas are added. The cross
correlation between the three antennas is considered and the
fixing rate increased to 99.5%. Even though the contribution
to positioning precision is minor, the main benefit is visible
on the attitude estimation which will be discussed in Section
VI-B.

The horizontal positioning errors compared with the ref-
erence RTK solutions in the east and north components are
presented in Fig. 7. For all the three types of solutions, the
positioning errors are lower than 0.1 m in open-sky areas. In
total, the boat passed through bridges 18 times, and most of
the large position errors are observed shortly after the bridge
crossings. To quantify the error, the standard deviations of
errors in the east and north directions are used to evaluate
the precision, as listed in Table III . For the solution (a), the
standard deviations of errors in the east and north components
are 0.132 m and 0.084 m, respectively. With the integration
of IMU (solution (b)), the standard deviations decreased to
0.090 m and 0.073 m. Additionally, the visible large errors in
solution (a) after crossing bridges are considerably reduced in
solution (b). The Solution (c) introduces multi-antenna system,
which helps to calibrate the attitude determination of IMU.
The accurate attitude information in turn improves the IMU-
derived positioning results. Thus, the standard deviations of
solution (c) are further improved to 0.055 m and 0.058 m in
east and north components. As it is visible in Fig. 6 and 7,
and by considering standard deviations of errors in the east
and north components, it appears clear that the Array PPP-
RTK with multi-antenna and IMU integration considerably
improves the positioning precision, especially in GNSS-denied
environments. The achieved precision in the positioning do-
main largely satisfies the positioning requirements of many
intelligent transportation applications.

2) Convergence time: Many applications require fast con-
vergence time within a few seconds. Thus, in addition to
positioning precision, the convergence time is considered as
another performance indicator and evaluated for the three
types of solutions. In this manuscript, the convergence time
is defined as the time the horizontal positioning errors starts
to be better than 0.1 m and stays within 0.1 m for the next
10 epochs [27]. The boat passed bridges 18 times, and we
evaluated the convergence time over these times. The results
are listed in Table IV, where the convergence time t is grouped
in 4 different time-bins in seconds: t ∈ [0, 5], t ∈ (5, 10],
t ∈ (10, 15], and t > 15. In solution (a), 10 of 18 samples
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Fig. 6. Trajectory comparison for different types of solutions: (a) PPP-RTK using the main antenna only; (b) Tightly coupled PPP-RTK and IMU solutions
based on single main antenna; (c) Tightly coupled Array PPP-RTK and IMU solutions based on three antennas. The white and red colors mean fixed and
float solutions, respectively. The orange colors in (b) and (c) means IMU derived positions where GNSS is unavailable.

Fig. 7. Horizontal positioning errors of three types of solutions compared with RTK solutions: (a) PPP-RTK using the main antenna only; (b) Tightly coupled
PPP-RTK and IMU solutions based on the single main antenna; (c) Tightly coupled Array PPP-RTK and IMU solutions based on the three antennas. The red
and black colors denote the float and fixed solutions, respectively. The orange dashed vertical lines mark the time of passing through bridges.

achieved rapid convergence with an average time of 3 s for
the time-bin t ∈ [0, 5]; As for t ∈ (5, 10], there were 5
samples with an average time of 8.2 s, and 2 samples took
more than 15 s to converge. From solution (a) to solution (b),
the samples with t ∈ [0, 5] was increased by 1, meanwhile the
average convergence time of this time-bin was reduced from
3 s to 2 s. Moreover, 5 samples had an average convergence
time of 8.1 s for t ∈ (10, 15] and the longest convergence
time was 18 s. With regards to solution (c), the samples with
t ∈ [0, 5] was increased to 12 with an average of 1.5 s. For
t ∈ (5, 10], the average time of 5 samples was 7.9 s and
only one sample had a convergence time of 18 s. In summary,
PPP-RTK is characterized by a rapid convergence time. For
the solution (a), 15 of the 18 samples converged within 10
seconds, whereas when an IMU was integrated 16 over the
18 samples converged within 10 s. Last but not least, when
multiple GNSS antennas were used in combination with the
IMU, 17 of the 18 samples converged rapidly within 10 s
showing the benefits of the proposed approach.

B. Performances of Attitude Determination
The attitude solution estimated by Array PPP-RTK method

in the multi-antenna, multi-sensor platform is illustrated in Fig.

TABLE IV
CONVERGENCE TIME FOR DIFFERENT TYPES OF SOLUTIONS.

Convergence
time (s)

Number of samples (Average time)

0 < t ≤ 5 5 < t ≤ 10 10 < t ≤ 15 t > 15

Solution (a) 10 (3.0 s) 5 (8.2 s) 1 (15.0 s) 2 (19.0 s)

Solution (b) 11 (2.0 s) 5 (8.1 s) 1 (14.0 s) 1 (18.0 s)

Solution (c) 12 (1.5 s) 5 (7.9 s) 0 (-) 1 (18.0 s)

8. The roll and pitch varied around zero, and heading ranges
from -180° to 180°. The boat turned around within seconds at
16:10, thus there was a 180° change of heading at that time.
What we should note is that benefiting from IMU integration
the Array PPP-RTK method can continuously provide attitude
solutions even during passing through the bridges. In other
words, it improves the solution continuity and availability in
a harsh environment.

To evaluate the attitude estimation process, an accurate
reference is needed. The optimal way to obtain a reference
attitude information is using a navigation grade IMU with a
precise attitude initialization. However, the navigation grade
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Fig. 8. Attitude solution estimated by Array PPP-RTK method in the multi-
antenna, multi-sensor system. The orange dashed vertical lines indicate the
time of crossing bridges.

IMU was not available in this measurement campaign. As an
alternative approach, the moving-baseline solution provided by
RTKLib was used to estimate attitude information. The attitude
accuracy derived by this RTK method not only depends on the
RTK accuracy but also the baseline length. Given a baseline
length of 1.7 m and assuming the horizontal and vertical
accuracy of RTK solution is 0.02 m and 0.05 m, the expected
attitude accuracies are 0.02/1.7×180◦/π = 0.67◦ for heading
and 0.05/1.7 × 180◦/π = 1.69◦ for pitch and roll. Fig. 9
presents the differences of the roll, pitch and heading angles
between the Array PPP-RTK and RTK methods. As it is
visible, some data gaps are present in the results due to the fact
that the RTK method cannot continuously generate attitude
information when GNSS signals are obstructed by the bridges.
Some large attitude discrepancies are observed just before
and after the bridge crossing. The standard deviations of the
attitude differences are 1.56°, 2.03° and 0.86° in roll, pitch
and heading. As expected, the standard deviations of roll and
pitch is larger than that of heading, because their computation
depends on the vertical component, while heading is based
on horizontal components. As is known, RTK solutions have
a rapid convergence of several seconds. Benefiting from the
multi-antenna system, the Array PPP-RTK method provided
continuous attitude solutions under bridges and also achieved
rapid convergence, which can be seen from the initialization
at the beginning and re-initialization after passing the bridges.

PPP-RTK and IMU integrated on one antenna (solution
(b) in Section VI-A) can also generate attitude information.
However, in this case the initialization of the attitude plays
a crucial role to obtain fast reliable solution. If no prior
attitude information is available, the expected convergence
time is quite long. With this regard, the usage of the multi-
antenna system provides an initial accurate attitude estimation
by drastically reducing the convergence time of the estimation
process. To highlight the contribution of multi-antenna system
to the attitude determination, we compared the PPP-RTK
and IMU attitude determination in single-antenna and multi-

Fig. 9. Attitude difference between Array PPP-RTK and RTK methods. The
orange dashed vertical lines indicate the time of crossing bridges.

antenna system, as presented in Fig. 10. It can be seen
that the heading estimation with a single antenna required
approximately 40 minutes to converge to a stable solution
due to the large error (approximately 100 degrees) in the
initialization process. If the initial attitude information is not
known in advance, the error on the heading may range from
-180 to 180 degrees. On the other hand, if the initial attitude
error is small, the convergence time is dramatically reduced,
and a stable and accurate information can be retrieved. For
instance, this can be observed for the pitch and roll estimation
presented in Fig. 10. The actual pitch and roll for the boat
are clearly close to zero, thus by initializing the filter with
zero pitch and roll angles provided a good initial estimates
with small errors and lowered down the convergence time. For
such a reason, the usage of the multi-antenna system provides
a good initial attitude estimation which significantly reduces
the convergence time of the provided solution.

VII. CONCLUSIONS AND OUTLOOKS

We derived a quaternion-based unified mathematical model
for Array PPP-RTK with tight integration of IMU in a multi-
antenna system, achieving continuous and precise joint po-
sitioning and attitude determination. The corresponding per-
formances have been evaluated with a real data set collected
from a measurement campaign. The results demonstrate that
the fixing rate of the ambiguities achieved 99.5%, the precision
of positioning errors are 0.055 m and 0.058 m in the east
and north components. The boat crossed bridges 18 times
and in 17 of the 18 cases the horizontal positioning errors
converged to 10 cm within 10 seconds. In terms of attitude,
the multiple antennas facilitate the initial alignment of IMU
and the convergence time of heading is significantly reduced
from 40 minutes with a single antenna to a few seconds with
a multi-antenna system. Thus, the Array PPP-RTK method
based on a multi-antenna, multi-sensor platform is capable
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Fig. 10. PPP-RTK and IMU attitude determination on a single antenna
compared with that in a multi-antenna system.

of providing continuous and precise positioning and attitude
information for intelligent vehicles.

Considering the complexities of automated navigation es-
pecially in a harsh environment, the Array PPP-RTK method
could be improved and optimized in the following aspects:

• Compute a more accurate attitude as reference for evalua-
tion and validation. Install a navigation grade IMU within
this platform and assign accurate initial attitude, so that
to get accurate attitude information to assess the results.

• Tune between GNSS and IMU. The Array PPP-RTK
method is based on a multi-sensor platform, the contri-
bution of different sensors to Array PPP-RTK should be
tuned and optimized according to the specifications of the
sensor, especially for IMU.

• Tune between different parameters. The process noise of
different parameters should also be optimized according
to the dynamic characteristics of the parameters and target
applications. For example, the process noise of roll and
pitch should be smaller than the heading, because the roll
and pitch angles usually fluctuate around zero and vary
a little for the land vehicle application.

• Mitigate the effects of Non Line-Of-Sight (NLOS) signals
aided by LiDAR and Camera. As you may have noticed in
Fig. 4, the research boat is a multi-sensor platform includ-
ing also LiDAR and Camera sensors. For transportation
applications, the vehicle usually drives in an urban area
where exists a lot NLOS signals. The NLOS signals
is an error source for GNSS data processing in harsh
environments. With the perception information collected
by LiDar and Camera, we can detect and exclude GNSS
NLOS signals.
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[62] J. Solà, “Quaternion kinematics for the error-state kalman filter,”
CoRR, vol. abs/1711.02508, 2017. [Online]. Available: http://arxiv.org/
abs/1711.02508

[63] E.-H. Shin, “Estimation techniques for low-cost inertial navigation,”
Ph.D. dissertation, University of Calgary, May 2005. [Online]. Available:
https://www.ucalgary.ca/engo webdocs/NES/05.20219.EHShin.pdf

[64] Z. Gao, H. Zhang, M. Ge, X. Niu, W. Shen, J. Wickert, and H. Schuh,
“Tightly coupled integration of multi-gnss ppp and mems inertial
measurement unit data,” GPS Solutions, vol. 21, no. 2, pp. 377–391, Apr
2017. [Online]. Available: https://doi.org/10.1007/s10291-016-0527-z
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