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Abstract—Imaging the subsurface of extra-terrestrial bodies
and planets has gained significant attention in recent space
exploration missions. Multi-agent systems that autonomously
perform subsurface imaging have been proposed. There, agents
collaborate to image the subsurface by leveraging their wireless
connections, enabling each agent to obtain an estimate of the
subsurface image. However, traditional subsurface imaging tech-
niques rely on a single entity for data collection and inversion,
making them centralized schemes that limit direct availability
of subsurface images at the agents. In this article, we propose
the joint use of distributed seismic imaging techniques based on
traveltime tomography and full waveform inversion, namely, the
distributed traveltime tomography (D-TOMO) and the adapt-
then-combine full waveform inversion (ATC-FWI). Combined
in a sequential manner these techniques allow each agent to
infer high-resolution subsurface images by exchanging data with
their neighboring agents starting from a simple initial subsurface
model. Unlike existing decentralized seismic imaging methods,
our proposed scheme is fully distributed and provides flexibility
without the need of anchor nodes or a full mesh topology. We
demonstrate that ATC-FWI can recover high-frequency compo-
nents based on a low-resolution subsurface image provided by
D-TOMO in the initial stage. To assess the imaging performance,
we employ a synthetic model, the SEG/EAGE salt model as well
as real data from field measurements conducted over a tunnel.

Index Terms—Distributed imaging, traveltime tomography, full
waveform inversion, seismic imaging, seismic exploration, multi-
agent networks, inverse problems

I. INTRODUCTION

A. Motivation

GEOPHYSICAL imaging for extra-terrestrial applications
has become increasingly relevant in the last decade.

Recent space missions dedicate substantial resources to gain
more insight into the global composition and geophysical
structure of e.g. Mars or Moon [1], [2], [3]. Future space
missions will also focus on providing more detailed insights
to the near-surface of such planets to reveal anomalies such
as caves or lava tubes [4]. Such anomalies are of high interest
as they could be used as safe habitats for humans and space
equipment that might be harmed on the surface. To discover
such anomalies concepts of seismic exploration surveys con-
ducted by a multi-agent network have been proposed in the
past [5], [6]. Here, the vision is to use multiple robotic agents
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Fig. 1: Conceptual illustration of a multi-agent system that au-
tonomously explores a subsurface using seismic imaging. The agents
are connected to each other over wireless links. Each agent is
equipped with a geophone to measure seismic data. One agent acts
as source by injecting seismic waves into the subsurface as indicated
by the red circle.

connected to each other over wireless links to autonomously
image a subsurface in a cooperative fashion. This concept is
illustrated in Fig. 1. Based on the reconstructed subsurface
image the agents shall then optimize their sampling positions
to enhance certain features in the image or the whole image
itself. However, in traditional seismic imaging all measured
data are collected at a central entity that performs the inver-
sion. Hence, the reconstructed image is not available locally at
the agents but at the central entity only. To address this issue,
distributed subsurface imaging is required that provides each
agent with an estimate of the subsurface.

In relation to seismic networks and decentralized processing
of seismic data, several works have been proposed recently.
In [7] a distributed traveltime tomography for seismic net-
works is proposed. The authors employ a Bayesian algebraic
reconstruction technique to obtain tomographic images of
the subsurface in large-scale networks. The images can be
obtained within the seismic network. However, the network
contains a sink node that still needs to gather data from
all nodes, performs an average and distributes it back to all
nodes. Hence, it is not a completely distributed processing
method since a central entity is needed. The methods [8],
[9] rely on similar approaches for ambient noise tomography
with possibly multiple sink nodes that collect data only from
nodes directly connected to them. The sink nodes need to be
connected in a full mesh topology to obtain data over the
complete area of interest which poses a strong restriction.
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Fig. 2: Overview of the proposed joint distributed imaging scheme: Each receiver is initialized with the same starting model, e.g., a model
of gradually increasing velocity. D-TOMO obtains low-resolution subsurface images in a distributed way at each receiver. These are then
used as initial models for the ATC-FWI which enhances the resolution substantially.

Unlike these methods we proposed fully distributed imag-
ing schemes based on traveltime tomography (TT) and full
waveform inversion (FWI). Specifically, we developed the
distributed traveltime tomography (D-TOMO) [12] and the
adapt-then-combine full waveform inversion (ATC-FWI) [13].
These schemes enable each agent to obtain a subsurface image
that resembles the traditional, centralized imaging result. Our
proposed algorithms offer a higher flexibility compared to the
aforementioned distributed imaging schemes in the literature.
For instance, we do not require any central entity such as
anchor nodes. Rather each agent in the network has the
same functionality and obtains a subsurface image locally
via cooperation with neighboring agents. Furthermore, our
network topology can be flexibly changed and does not require
a full mesh topology. This is highly relevant for an autonomous
exploration by rovers where the network topology is changed
due to movement of the rovers.

B. Main Contributions

In this article, we propose and investigate a joint distributed
subsurface imaging scheme that combines both D-TOMO and
ATC-FWI. D-TOMO obtains subsurface images of low spatial
resolution at each agent/node in a distributed fashion. We
propose to use these image as initial subsurface models for the
ATC-FWI which aims at enhancing their spatial resolution in
a distributed way enabling each node to obtain high-resolution
subsurface images locally. Fig. 2 illustrates our proposed joint
scheme. Our contributions can be summarized as follows:

1) In literature it is common to initialize the FWI with a
blurred version of the ground truth image [14], [15].
This was also done in our previous study for the ATC-
FWI [13]. In contrast to that, here we investigate the
effect of obtaining an initial subsurface image for ATC-
FWI by D-TOMO. These initial images can differ over
the nodes due to the distributed computing nature of D-
TOMO. We also demonstrate that only a low number of
iterations for D-TOMO is sufficient to still obtain high-
resolution images by ATC-FWI. In the extreme case,
even only one iteration by D-TOMO is suitable.

2) In contrast to our previous work, we investigate both
D-TOMO and ATC-FWI using seismic benchmark data
and more importantly, real data obtained in a seismic
field experiment. The benchmark data consists of the
SEG/EAGE salt model [16] that is widely utilized as
a benchmark velocity model in seismic imaging. We

demonstrate that our proposed joint scheme allows for
high-resolution distributed imaging starting from a sim-
ple initial velocity model at each node. As real dataset
we employ seismic field data that we recorded over
a highway tunnel using hammer strikes as an active
source. In particular, we show that D-TOMO is able
to image the tunnel anomaly in the subsurface and that
the obtained images match available ground truth data
on the tunnel.

3) As a further contribution, we provide a rigorous deriva-
tion of the gradient in adjoint-state-based TT that is
used in D-TOMO. To this end, we rely on functional
derivatives. To the best of our knowledge there is no
accurate gradient derivation for this method that uses
functional derivatives in the literature.

II. BRIEF REVIEW OF SEISMIC IMAGING METHODS

We start by briefly introducing the seismic imaging methods
used in our proposed algorithms. Both TT and FWI consider
the minimization of a least-squares cost between observed
and synthesized data based on an estimate of the subsurface
model. To obtain synthesized data, in both methods a partial
differential equation (PDE) needs to be solved. This results
in a highly nonlinear inverse problem with respect to (w.r.t.)
the subsurface model with the cost function having multiple
local minima. Both TT and FWI apply iterative optimization
methods to approach a point close to the global minimum by
computing a gradient and updating the subsurface estimate
accordingly. To solve the respective PDE, numerical methods
are required. Here, we rely on finite differences and discretize
the computational domain in a regular grid of Nx×Nz cells for
the x and z-axis, respectively. We start our description in the
continuous domain and then transfer results to the discretized
domain for the model updates.

A. Traveltime Tomography (TT)
TT images geophysical subsurface structures based on mea-

sured traveltimes between a source and multiple receivers or
geophones. It relies on first-arrival traveltimes in the measured
seismograms, i.e., the time of the event of an incoming wave
at a specific receiver. In mathematical terms, TT considers
the minimization of the squared residual between measured
and synthesized traveltimes at the receiver positions for NR

receivers and NS sources with respect to a spatial velocity
function m(x). The scalar function m(x) represents the P -
wave velocity distribution over the spatial coordinate x =
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(x, z) ∈ R2 in the subsurface domain Ω ⊂ R2. The corre-
sponding cost function to be minimized is given by [17]

min
m

JTT(m) =
1

2

NS∑
s=1

∫
∂Ω

|Ts(m,x)− T obs
s (x)|2dx, (1)

where T obs
s and Ts are, respectively, the measured and syn-

thesized traveltimes for source s. ∂Ω is the boundary of the
subsurface domain along which the receivers are placed at
positions xr ∈ R2. To keep notation uncluttered we omit
the dependence of m on x here. The measured traveltimes
T obs
s are picked either automatically or by hand from the

seismogram at each receiver r. In problem (1) the traveltimes
Ts(m,x) need to be synthesized based on the current velocity
model estimate m(x) to obtain the residuals. This can be
achieved by solving the eikonal equation given as

|∇Ts(x)|2 =
1

m(x)2
, s.t. Ts(xs) = 0,x ∈ Ω (2)

w.r.t. the traveltime function Ts(x) for a shot s. The associ-
ated constraint demands that the traveltime is zero at source
location xs ∈ R2. Solving (2) with respect to Ts(x) gives
a map of traveltimes over x which is then sampled at the
receiver locations to give Ts(m,xr). Note that solving the
inverse problem in this setting requires solving (2) multiple
times. To this end, several numerical methods exist, e.g. the
fast marching method [18], fast sweeping method [19] or the
fast iterative method [20].

Since TT utilizes an iterative, gradient-based minimization
scheme to estimate m(x) the gradient of JTT(m) is required.
To calculate such gradient ray tracing has been applied in
the past to linearize the traveltime around the current velocity
model m [21], [22]. An alternative is the adjoint-state method.
This method is a general technique to solve optimization prob-
lems that are constrained by a PDE [23]. Here, an additional
variable, the adjoint-state λs(x), is introduced per shot s to
account for the PDE constraint. Applying the adjoint-state
method to problem (1), we obtain the following gradient:

dJTT(m)

dm
= −

NS∑
s=1

λs(x)

m(x)3
, (3)

where d/dm denotes the total derivative w.r.t. m. The adjoint-
state λs(x) for shot s is computed by solving the following
(adjoint) PDE:

∇ · (λs(x)∇Ts(x)) = 0, x ∈ Ω (4a)

λs(xr) (∇Ts(xr) · n) = Ts(xr)− T obs
s (xr), xr ∈ ∂Ω (4b)

By (·) we denote the dot product between two vector fields.
A detailed derivation of the gradient in (3) and the adjoint-
state equations in (4) is given in Appendix A and B. To
compute the adjoint-state, we initialize λs(x) by the residuals
Ts(xr) − T obs

s (xr) following the boundary condition (4b)
where n is the unit vector normal to the boundary ∂Ω. Then
(4a) is used to solve for the adjoint-state λs(x) in the inner
domain Ω. To this end, we employ the fast sweeping method,
cf. [24], [17]. With the adjoint-state λs(x) the gradient is
computed following (3). However, authors in [24] describe

that such gradient computation might lead to instabilities in
an iterative minimization procedure. Thus in [24, Eq. (2.17)],
the authors proposed the following gradient smoothing:

(I − ν∆)m∆(x) = −
NS∑
s=1

λs(x)

m(x)3
(5)

with m∆(x) being the smoothed gradient, I the identity
operator and ∆ the Laplace operator. Parameter ν ≥ 0
controls the smoothness of m∆(x). As described, we use
finite differences to discretize domain Ω. This results in vector
representations for the velocity model m(x), the adjoint-
states λs(x) and the gradient m∆(x) that we denote via
m ∈ RNxNz ,m∆ ∈ RNxNz and λs ∈ RNxNz , respectively.
To minimize the cost JTT(m) iteratively gradient descent can
be used as

m[k+1] = m[k] − α
[k]
TTm∆. (6)

The parameter α
[k]
TT > 0 is a step size parameter that needs

to be chosen appropriately to guarantee convergence. Other
optimization schemes such as nonlinear conjugate gradient or
the L-BFGS can be applied here to accelerate convergence.

B. Full Waveform Inversion (FWI)

Beside TT another subsurface imaging technique is the
full waveform inversion. Different from TT it uses the whole
seismic trace that is measured by the receivers. While TT uses
the eikonal equation to generate traveltimes, FWI employs the
acoustic or elastic wave equation to synthesize seismic traces
[15]. The general objective in FWI is similar to TT: minimize
a residual error between observed and synthesized seismic data
with respect to a subsurface model parameter m such as the
P -wave velocity, S-wave velocity, etc.

In its basic form, FWI considers a least-squares cost be-
tween measured seismic data dobss,r and synthesized seismic
data dsyns,r at receiver r for source s over a measurement time τ
[15]. More formally,

min
m

JFWI(m) =
1

2

NS∑
s=1

NR∑
r=1

∫ τ

0

(
dsyns,r (t,m)− dobss,r (t)

)2
dt

(7)
where dsyns,r (t,m) = Ss,rus(x, t,m) is obtained by sampling
the wavefield us(x, t,m) via the operator Ss,r at the receiver
positions xr. For a P -wave velocity model m(x), the wave-
field us(x, t,m) is computed by solving the acoustic wave
equation

1

m(x)2
∂2us(x, t)

∂t2
−∆us(x, t) = fs(x, t) (8)

with initial conditions

us(x, 0) = 0,
∂us(x, 0)

∂t
= 0. (9)

Here, fs(x, t) is the seismic source and us(x, t) is the
wavefield at position x and time t that describes the wave
propagation through the subsurface. Note that (8) describes
the propagation of P -waves only. Thus, conversion into other
wave types such as S-waves at subsurface interfaces is not
represented. To solve (8) numerically, a variety of solvers can
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be used based on finite differences, finite elements, spectral
elements, etc. [25].

To minimize (7) iteratively we need the gradient of
JFWI(m) with respect to m. Again the adjoint-state method
is used for this purpose. Following the adjoint-state method
[23], the gradient is obtained via

dLFWI(m)

dm
= − 2

m(x)3

NS∑
s=1

∫ τ

0

qs(x, τ − t)
∂2us(x, t)

∂t2
dt.

(10)
A derivation of the gradient is given in Appendix C. The
variable qs(x, τ − t) is the adjoint wavefield that is obtained
by solving another wave equation given as(

1

m(x)2
∂2

∂t2
−∆

)
qs(x, t) =

NR∑
r=1

ST
s,r(d

syn
s,r (τ − t)

− dobss,r (τ − t)) (11)

with initial conditions qs(0) = 0, ∂qs(0)/∂t = 0. To solve
(11), the data residuals dsyns,r (τ − t) − dobss,r (τ − t) are first
reversed in time and placed at the receiver positions as source
terms for the wave equation. Then (11) is solved w.r.t. qs(x, t).
To calculate the gradient following (10), the adjoint wavefield
qs(x, τ − t) is again reversed back in time and correlated with
the second derivative of the forward wavefield us(x, t). Such
correlation is known as the imaging condition or migration
[26]. Afterwards gradient descent is used to iteratively min-
imize the cost JFWI(m). After discretization of the spatial
domain Ω we stack all velocity values and all gradient values
into vectors m[k] ∈ RNxNz and m

[k]
∆ ∈ RNxNz , respectively,

at iteration k. The current velocity model is then updated using

m[k+1] = m[k] − α
[k]
FWIm

[k]
∆ , (12)

where α
[k]
FWI > 0 is a step size that needs proper selection

either manually or by a line search method.

III. JOINT DISTRIBUTED SUBSURFACE IMAGING

The imaging methods presented so far are centralized meth-
ods, i.e., all measurement data is assumed to be available at a
single entity that performs the inversion. In the following, we
briefly review both D-TOMO and ATC-FWI proposed in our
earlier works that allow each receiver in a seismic network
to obtain a subsurface image locally via cooperation with
other receivers and without dependence on a central processing
entity. Afterwards, we discuss their joint operation. We start
by introducing a model for the seismic network.

A. Seismic Network Model

We consider a seismic network of NR receivers/geophones
placed in a line array for a 2D subsurface imaging task. The
topology of the seismic network is described via a graph
G = {R, E} with a set of nodes J = {1, 2, . . . , NR} and
a set of edges E = {(r, ℓ)|r, ℓ ∈ R, r ̸= ℓ} for wireless
connections among the receivers. We assume that the graph G
is undirected and strongly connected [27], i.e., each receiver
can be reached by any other receiver in the network over
multiple hops. Furthermore, we define a neighborhood set

N3 = {1, 2, 3, r,NR}

1 2 3 r NR

x

z

Fig. 3: Example of a line array network topology with neighborhood
set N3 of receiver 3.

Nr for each receiver j consisting of those receivers that
are directly connected to receiver r and of the receiver r
itself. Each neighbor ℓ contained in Nr can exchange data
with receiver r and vice versa. Moreover, we assume that
all receiver positions {xr}NR

r=1 are known to each receiver r.
An example of the network topology is shown in Fig. 3. For
subsurface imaging, we assume NS arbitrary shot locations
on the surface and a total measurement time of τ per shot
s = {1, 2, . . . , NS}. Each receiver r has a fixed Cartesian
coordinate denoted by xr = (xr, zr) with the x- and z-
coordinate.

B. Distributed Traveltime Tomography (D-TOMO)

In the following, we briefly review the D-TOMO as a
distributed traveltime tomography method. For further details
the reader is referred to [12].

The key observation that enables each receiver to obtain an
image locally is that the traveltime residuals ρr = Ts(xr) −
T obs
s (xr) of all receivers r = 1, . . . , NR are the necessary

data to compute the adjoint-state field λs(x) in (4b) and by
that also the gradient m∆(x) in (5). Thus, if all traveltime
residuals {ρr}NR

r=1 are available at each receiver r, the adjoint-
state field and the gradient can be computed locally and an
update of the subsurface image m(x) can be performed by
each receiver individually. However, the traveltime residuals
are distributed over the receivers, one at each corresponding
receiver. To make all traveltime residuals available at each
receiver, we proposed to perform a distributed regression
of these residuals within the seismic network. To this end,
we model the distribution of traveltime residuals ρr over
the receiver positions xr via a nonlinear function ρ(x). The
distributed regression will then provide each receiver with an
estimate of the function ρ(x) and by that with an estimate
of all traveltime residuals. To facilitate distributed regression
we employ the kernel distributed consensus-based estimation
(KDiCE) algorithm proposed in [28]. This algorithm uses
kernels to perform a regression of nonlinear functions in a
distributed fashion within a network of nodes. The function
ρ(x) is then modeled via a linear combination of Gaussian
kernels with kernel bandwidth σ ∈ R such that all traveltime
residuals ρ = [ρ1, . . . , ρNR

]T ∈ RNR are approximated by
the linear combination Gwr. The matrix G ∈ RNR×NR is
a symmetric Gram matrix containing Gaussian kernel eval-
uations whereas wr represents the receiver-specific weight
vector that combines the Gaussian kernels correspondingly.
Then a distributed least-squares problem is formulated w.r.t
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the weights wr:

{w⋆
r |r ∈ R} = argmin

{wr|r∈R}

NR∑
r=1

||ρ−Gwr||22 (13a)

s.t. wr = wℓ, r ∈ R, ℓ ∈ Nr (13b)

The additional constraint (13b) is a consensus constraint which
introduces convergence to the same weight vector for all
receivers over a connected network graph, i.e., w1 = w2 =
. . . = wNR

. Problem (13) can be solved in a distributed
fashion using the alternating direction method of multipliers,
cf. [28], [12]. This results in the following update formulas:

z[n+1]
r =

1

|Nr|
∑
ℓ∈Nr

(
w

[n]
ℓ − εv

[n]
ℓr

)
, (14a)

v
[n+1]
rℓ = v

[n]
rℓ − ε−1

(
w[k]

r − z
[n+1]
ℓ

)
, (14b)

w[n+1]
r =

[
g(xr)g(xr)

T + ε−1|Nr|INR

]−1 ×{
ρrg(xr) +

∑
ℓ∈Nr

(
z
[n+1]
ℓ

ε
+ v

[n+1]
rℓ

)}
. (14c)

Variable z
[n]
r is an auxiliary variable that serves as an interme-

diate result of the weight vector wr. Note that g(xr)g(xr)
T

in (14c) is a rank-1 matrix. Hence, computing the inverse can
be avoided easily by applying the matrix inversion lemma.
When the network has reached consensus, it holds that
zr = wr,∀r ∈ R. The parameter ε > 0 can be tuned to
control the distributed regression to prioritize consensus over
minimizing the data fit in (13a) and vice versa. Furthermore,
vrℓ is a Lagrange multiplier that accounts for the consensus
constraint (13b) and enables convergence to a consensus
solution over the network. In terms of communication within
the network, weight vectors w

[n]
r , Lagrange multipliers v

[n]
rℓ

and auxiliary variables z
[n+1]
r need to be exchanged by each

receiver r with its neighbors ℓ ∈ Nr in each iteration n. With
the weight vector w

[n]
r available locally each receiver r can

approximate the residuals ρ via ρ̂[n]
r = Gw

[n]
r .

Once estimates of the traveltime residuals ρ are available,
we can perform a local tomography update per receiver r. To
this end, each receiver r has its own individual subsurface
model mr(x). Then, following (4) each receiver computes
an individual adjoint-state variable λr,s(x) using the corre-
sponding estimated traveltime residual ρ̂r and afterwards a
TT gradient m∆,r(x) via (5). Finally, each receiver updates
its local subsurface model mr(x). In terms of vector notation
we have the model update at iteration k:

m[k+1]
r = m[k]

r − α
[k]
TTm∆,r (15)

Using a distributed regression scheme in combination with
the TT formulas (4) and (5) enables each receiver to image
the subsurface locally. Note that the iteration index for D-
TOMO is k and therefore different to the iteration index of the
distributed regression which is n. The reason is that in each D-
TOMO iteration k, the distributed regression (14) is performed
iteratively over the iteration n. When the distributed regression
has finished, the gradient computation and the model update
are performed locally. A pseudo-code of D-TOMO can be
found in [12].

C. Adapt-Then-Combine Full Waveform Inversion (ATC-FWI)

D-TOMO enables the reconstruction of a velocity model
in a distributed fashion within the network of receivers.
However, since D-TOMO relies on the eikonal equation and on
traveltimes, the spatial resolution of the obtained images will
be rather low since it is limited by the first Fresnel zone [29].
To enhance the spatial resolution of the subsurface images FWI
can be used. To this end, we proposed a distributed FWI based
on the adapt-then-combine (ATC) technique [30] in [13]. In
the following, we briefly review the algorithm here.

To enable a distributed implementation of the FWI, we first
separate the original cost (7) over the receivers:

JFWI(m) =
∑
r∈R

JFWI,r(m) (16)

where

JFWI,r(m) =
1

2

NS∑
s=1

∫ τ

0

(
dsyns,r (t,m)− dobss,r (t)

)2
dt (17)

is the local FWI cost at receiver r. For each local cost
JFWI,r a local gradient m∆,r(x) can be computed w.r.t. m
following the same procedure as in the centralized FWI in
Section II-B. To this end, forward wavefield us,r(x, t) and
adjoint wavefield qs,r(x, t) are required by each receiver r.
The forward wavefield us,r(x, t) is generated using the cur-
rent local subsurface model mr(x) of receiver r whereas
the adjoint wavefield uses the receiver-specific data residual
only, i.e., dsyns,r (t,m) − dobss,r (t). The adjoint wavefield can
be computed analogously following (11) with the local data
residual placed at receiver position xr. Using the adjoint
wavefield qs,r(x, t), each receiver r then computes the gra-
dient following (10) where m(x) is replaced by the current
local subsurface model mr(x). To obtain subsurface images
at each receiver as estimates of the global FWI result, the ATC
technique is applied. To this end, velocity model and gradient
are first discretized and then described by vectors m

[k]
r and

m
[k]
∆,r, respectively. Applying the ATC results in the following

update formulas for receiver r and iteration k:

(Adapt) m̃
[k+1]
r = m[k]

r − α
[k]
FWI

∑
ℓ∈Nr

cℓrm
[k]
∆,ℓ (18a)

(Combine) m[k+1]
r =

∑
ℓ∈Nr

aℓrm̃
[k+1]
ℓ (18b)

In each iteration k, first the gradients m
[k]
∆,ℓ are exchanged

among neighboring receivers ℓ ∈ Nr and then fused to adapt
the current local model m

[k]
r with a gradient descent step.

After that, the intermediate models m̃
[k+1]
r are exchanged

among the receivers and then fused to give the updated model
m

[k+1]
r . The coefficients cℓr, aℓr ∈ R are weighting factors for

the fusion process at receiver r w.r.t. data from neighbor ℓ. In
[31] several selection strategies are proposed for the weights to
enable convergence close to the global model. Equations (18)
form the so-called ATC-FWI. A pseudo-code of the algorithm
and further details can be found in [13].
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(a) True velocity model
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Fig. 4: (a) True velocity model of the elliptic anomaly and (b)
background velocity as starting model.

D. Joint Imaging Scheme

As described in the previous sections both D-TOMO and
ATC-FWI enable distributed imaging of the subsurface. How-
ever, D-TOMO alone obtains low-resolution subsurface im-
ages only due to the limited information contained in first-
arrival traveltimes. On the other hand, ATC-FWI requires a
sufficiently good initial model of the subsurface in order to
converge to a reasonable solution. This is due to the fact
that the cost function in FWI has multiple local minima in
which the imaging scheme can get trapped. Hence, to enable
high-resolution distributed subsurface imaging starting from
a simple starting model we propose to use D-TOMO and
ATC-FWI in a cascaded manner as illustrated in Fig. 2. It
should be noted that images provided by D-TOMO can slightly
differ among the receivers depending on their position and the
connectivity of the seismic network. Hence, for the ATC-FWI
each receiver is possibly initialized with a slightly different
starting model. However, in the numerical evaluations we
show that subsurface images provided by D-TOMO serve as
sufficiently good starting models for the ATC-FWI to obtain
high-resolution subsurface images. Additionally, as we show
in Section IV-C in a joint scheme it is possible to perform D-
TOMO for a low number of iterations (1− 5) only to obtain
rough starting models. ATC-FWI is then still able to obtain
sufficiently good subsurface images.

Remark: In both D-TOMO and ATC-FWI the same step size
is used for each receiver in the model updates (15) and (18a),
respectively. In general, a line search method can be used to
optimize the step size value. However, this is only possible
in a centralized setting where the global cost JTT and JFWI

can be evaluated for different step size values. In a distributed
setting, the global cost is not available locally at each receiver.
Therefore, in D-TOMO and ATC-FWI the global cost needs to
be estimated by each receiver to apply line search methods.
Since this is out of the scope of this paper, we rely on a basic
gradient descent update where the step size at each receiver
is the same and follows a fixed strategy.

IV. NUMERICAL EVALUATION

In this section, we present extensive numerical results of our
proposed joint imaging scheme. We start with two synthetic
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Fig. 5: D-TOMO imaging results for elliptic anomaly.

TABLE I: Parameter values for imaging the ellipse.

D-TOMO NTOMO = 10, α
[0]
TOMO = 250,

NADMM = 100, ν = 106, ε = 100, σ = 1

ATC-FWI NFWI = 20, α
[0]
FWI = 0.5, τ = 1 s, fd = 20Hz

velocity models before showing results using real seismic data
acquired from measurements over a highway tunnel.

A. Synthetic Elliptic Model

We consider a synthetic model consisting of an elliptic
anomaly. At the first stage, D-TOMO obtains a smooth P -
wave velocity model which is then refined by ATC-FWI.
The true velocity model is depicted in Fig. 4a with the
elliptic anomaly in the center and an increasing velocity as
background model. As starting model for D-TOMO we assume
knowledge of the background velocity, cf. Fig. 4b. We use
NR = 24 receivers uniformly spread over the surface in a
line array. Each receiver has a maximum of two neighbors
to their left- and right-hand side. We employ NS = 16 shot
positions which are again uniformly spread over the surface.
As source signal we use a Ricker wavelet with dominant
frequency fd = 20Hz. The measurement time is set to τ = 1 s.

The employed parameters for D-TOMO and ATC-
FWI such as step size αTOMO, αFWI, no. of iterations
NTOMO, NADMM, NFWI, regularization parameters ν, ε and
kernel bandwidth σ are listed in Table I. To improve con-
vergence behavior to a local minimum, in both methods the
step size is decaying exponentially over the iterations k via
α
[k]
TT = α

[0]
TT0.95

k and α
[k]
FWI = α

[0]
FWI0.8

k, respectively. In
the model update we normalize the gradient to be in the
range [−1, 1] which is valid in our implementation due to a
decaying step size. Fig. 5 shows the imaging results obtained
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Fig. 6: ATC-FWI imaging results for elliptic anomaly.

by D-TOMO at three different receivers in the line array. It
can be seen that D-TOMO is able to image the anomaly in
the subsurface with similar quality over the shown receivers.
However, the spatial resolution is low. Thus the contour of
the anomaly cannot be identified accurately. To enhance the
spatial resolution we now apply the ATC-FWI. We use the
subsurface models obtained at each receiver by D-TOMO
as starting models at the corresponding receivers for ATC-
FWI. The resulting subsurface images for five receivers are
depicted in Fig. 6. It can be clearly seen that the initial
model obtained by D-TOMO is significantly improved in its
spatial resolution by ATC-FWI. Compared to the true velocity
model we observe high accuracy at all receivers especially
at the middle receiver no. 12. However the absolute velocity
of 3 km/s in the anomaly is not recovered exactly. Despite
that the reconstructed models show high similarity over the
receivers and achieve similar reconstruction performance com-
pared to central FWI. For receivers 1 and 24 (first and last
in the array) one observes slight deviations in the right- and
left-hand side of the domain, respectively. This is due to the
location of the respective receiver. For receiver 1, being the
first on the left-hand side of the line array, deviations can
be observed on the right-hand side since seismic data from
receivers here will likely diminish in the data exchange process
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Fig. 7: NMSE over receiver no. for D-TOMO and ATC-FWI for
elliptic anomaly after NTOMO = 10 and NFWI = 20 iterations,
respectively.
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Fig. 8: Costs of (a) D-TOMO vs. TOMO and (b) ATC-FWI vs. FWI
for elliptic model.

through the network. The same behavior can be observed for
the last receiver on the far right-hand side of the array. For
receivers 6 and 18 the deviations are smaller.

In Fig. 7 the NMSE = ||mr − mtrue||22/||mtrue||22 over
the receiver no. is depicted for both D-TOMO and ATC-
FWI. As reference, the NMSE performance of the centralized
schemes is shown as well. One can observe that especially
receivers located in the center of the array achieve lowest
NMSE. On one hand, this is due to the higher connectivity
of these receivers in the network. On the other hand, their
position right above the center of the anomaly is beneficial
for their reconstruction performance. Fig. 8a and 8b show the
residual cost over the iterations for both D-TOMO and ATC-
FWI compared to their central counterpart. In both cases, we
observe that the costs converge over the iterations and that our
proposed distributed imaging methods achieve costs close to
their central counterpart.

B. Synthetic SEG/EAGE Salt Model

As a further synthetic example we consider the SEG/EAGE
salt model [16] that is frequently used in seismic imaging as
a benchmark model. For our purposes we adapt the original
3D salt model by selecting a 2D slice, scaling the velocities

TABLE II: Parameters for imaging the SEG/EAGE salt model.

D-TOMO NTOMO = 10, α
[0]
TOMO = 150,

NADMM = 100, ν = 104, ε = 100, σ = 1

ATC-FWI NFWI = 15, α
[0]
FWI = 0.3, τ = 1 s, fd = 20Hz
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Fig. 9: (a) True velocity model of the salt model and (b) velocity
gradient as starting model.
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Fig. 10: D-TOMO results for salt model.

and resampling the grid points to obtain a smaller model. The
resulting ground truth model for our experiment is depicted
in Fig. 9a. Again we apply D-TOMO first and then ATC-
FWI. For the starting model of D-TOMO we assume an
increasing velocity model as shown in Fig. 9b that resembles
the background velocity of the true model. We use the same
array configuration as in Section IV-A except that each receiver
has a maximum of three receivers to their left- and right-
hand side, respectively. We employ NS = 20 shot positions
uniformly aligned over the surface.

For D-TOMO and ATC-FWI the respective parameters
are listed in Table II. As before, the step size is decaying
exponentially in the same fashion as described in Section IV-A.
For D-TOMO the resulting subsurface images are depicted in
Fig. 10. One can observe that the anomaly in the subsurface
is recovered by D-TOMO, however, with very low spatial
resolution. The salt anomaly from the true model is barely
visible. Nevertheless, the individual subsurface images of the
receivers coincide very well with the central result. Fig. 11
shows the images recovered by ATC-FWI when using the
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Fig. 11: Imaging results for salt model using ATC-FWI and FWI.

results from D-TOMO as respective starting models. It can be
clearly seen that the low-resolved anomaly from D-TOMO is
significantly enhanced in its spatial resolution for the depicted
receivers. In particular, the salt anomaly from the true velocity
model can now be identified more clearly especially for
receivers 12, 18 and 24. Compared to the central FWI result,
ATC-FWI achieves similar imaging results for receiver 12,
18 and 24. At receiver 1 and 6, deviations to the central
result are more visible since data from receivers on the right-
hand side of the line array diminish over the data exchange
process in the network. However, these data are decisive to
reconstruct the finer structures on the right-hand side of the salt
anomaly. Therefore, details of the anomaly from x = 200m
on are not recovered accurately. This is also visible from the
NMSE in Fig. 12: Receivers located in the center or right-
hand side of the array achieve a lower NMSE compared to
receivers on the left-hand side for both D-TOMO and ATC-
FWI. Fig. 13a and 13b depict the costs over the iterations for
both D-TOMO and ATC-FWI and their central benchmarks.
The curves confirm that both distributed schemes perform very
close to their central benchmarks. Also for the SEG/EAGE
salt model our proposed joint imaging scheme can be used to
image such an anomaly in a distributed fashion.
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C. Joint Imaging Performance With Few Iterations of D-
TOMO

In the following, we investigate the effect of low iterations
for D-TOMO on the imaging performance of ATC-FWI.
Since D-TOMO consists of two nested iterative methods (the
ADMM for the distributed regression and the tomographic
updates themselves) it is desirable to keep the number of
iterations low to reduce communication exchanges among the
receivers. To this end, we perform D-TOMO for NTOMO =
1, . . . , 5 iterations. The obtained images are then used to
initialize ATC-FWI which is run for NFWI = 20 iterations.
We perform the evaluation for both ellipse and salt model with
the same set of parameters used in the respective sections.

Fig. 14 depicts the imaging results over the number of
iterations performed by D-TOMO. To keep the amount of
images limited we show the results of receiver 18. The
numbers in the boxes indicate the NMSE of the recovered
images. It is noticeable that even with only one iteration
performed by D-TOMO, ATC-FWI is still able to obtain good
imaging results. With an increased number of iterations the
quality is enhanced. Compared to NTOMO = 10 iterations as
performed in the preceding evaluations, ATC-FWI achieves
satisfactory imaging results. For the salt model, with higher
number of iterations for D-TOMO the imaging results by ATC-
FWI contain higher velocity values for the salt body that are
closer to the ground truth, cf. Fig. 11. Nevertheless, these
results demonstrate that with only a low number of iterations
for D-TOMO, ATC-FWI is robust enough to still obtain high-
resolution subsurface images with satisfactory quality.

TABLE III: Parameters for imaging the highway tunnel.

D-TOMO NTOMO = 20, α
[0]
TOMO = 250,

NADMM = 100, ν = 104, ε = 100, σ = 1

ATC-FWI NFWI = 20, α
[0]
FWI = 0.01, τ = 0.4 s, fd = 20Hz

D. Field Data Over Highway Tunnel

Lastly, we apply our proposed joint distributed imaging
scheme to real seismic data acquired in the field. Specifically,
we use seismic data that we recorded over a tunnel on the
A99 highway in Aubing, Germany. Here, we used NR = 16
GS-20DX geophones from Geospace Technologies with a res-
onance frequency of 40Hz. These were placed in a line array
with a distance of 3m to each other such that the complete
array had a length of 45m. The array has been distributed
over the highway tunnel where a part of the array covers the
tunnel, see Fig. 16. This is done to identify the tunnel structure
more easily in the reconstructed images. Furthermore, NS = 8
shot positions were used with four shots per position to stack
the acquired seismic data for a higher signal-to-noise ratio in
the measurements. As source signal we used strikes with a
4 kg sledgehammer. In total, four measurement phases were
conducted. In each phase the complete line array was moved
such that it had a 3m distance to its preceding location
and new measurements were performed. Fig. 15 exemplary
shows measured seismic traces at four different shot positions.
One can see that the shot is moved into positive x-direction
and multiple refracted waves are recorded. The data was
recorded using a Geode Seismograph from Geometrics with
16 channels. The measurement data has been published as an
open data set (see also [32]).

To obtain first-arrival traveltimes from our measurements
we pick them manually. Then we apply D-TOMO on the
picked traveltime data. For the depicted results we use data
from the first array (Line 1 in Fig. 16). We assume that each
receiver has two neighbors to their left- and right-hand side
except for the first and last receiver who have one neighbor
only. The resulting images at three receivers and the central
result are shown in Fig. 17. Since the spatial resolution of D-
TOMO is low an accurate identification of the tunnel edges
is difficult. It should be noted that our measurement data is
likely to contain significant noise due to cars driving through
the tunnel during the measurements. Nevertheless, the outer
tunnel shape is clearly visible in the reconstructed images.
From the highway management site we knew that the tunnel
ceiling is expected to lie at a depth of approximately 4− 6m.
Moreover, GPS data indicates the start of the tunnel from
the first geophone in the line array to be at approximately
18m. Also here the subsurface images obtained by D-TOMO
coincide well with these data. Compared to the central imaging
result, D-TOMO obtains very similar results.

Now we apply ATC-FWI to the tunnel data to increase the
resolution of the images. To this end, we assume a Ricker
wavelet as source with a dominant frequency of fd = 20Hz.
The parameters used are summarized in Table III and the
resulting images are depicted in Fig. 18. Compared to D-
TOMO, we observe some enhancement in the spatial reso-
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Fig. 15: Seismic traces of measurement data over highway tunnel for four selected shot positions. The data is normalized between [−1, 1].

lution. However, a significant improvement as in the synthetic
examples cannot be observed. A possible reason for this
behavior are low frequency parts that are missing in the
recorded signals. Low frequencies in seismic measurements
are decisive for FWI to achieve a high resolution. Fig. 19
depicts the power spectral density (PSD) of the recorded
signals averaged over all receivers for one shot. It can be seen
that most of the power is located roughly around 50Hz. This is
due to a high resonance frequency of 40Hz in the geophones
and also due to using hammer strikes that possibly do not
excite low frequencies in the area of 10Hz. Another reason can
lie in the simplified wave equation that we employ here. Since
we use the acoustic wave equation we are able to model P -
wave propagation only ignoring S-wave propagation. Hence,
possible shear wave components in the recorded signals are not
exploited by our algorithms such that the image by D-TOMO
is not significantly enhanced by ATC-FWI. Nevertheless, our
results demonstrate that D-TOMO can be successfully applied

to perform imaging on real seismic data. For ATC-FWI to be
successful low frequencies are required in the seismic data.

V. CONCLUSION

In this paper, we proposed and investigated a joint imaging
scheme consisting of D-TOMO and ATC-FWI for distributed
subsurface imaging in seismic networks. By means of dis-
tributed imaging each receiver in the network is able to obtain
an image of the subsurface locally by exploiting information
exchange with neighboring receivers. Our proposed joint imag-
ing scheme is fully distributed, i.e., it requires neither a full
mesh topology nor anchor nodes that process intermediate
results. Thus, our scheme has high flexibility in terms of
topology and each receiver can be designed in the same fash-
ion. In extensive numerical evaluations we illustrated that our
proposed joint scheme achieves central imaging performance.
Images obtained by D-TOMO can be directly used to initialize
ATC-FWI. We observed that ATC-FWI is able to enhance
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Fig. 16: Google maps view of tunnel over A99 highway in Aubing,
Germany, and geophone positions. The tunnel is indicated in yellow.
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Fig. 17: D-TOMO and TT results for highway tunnel data after
NTOMO = 20 iterations.

the imaging results by D-TOMO significantly in their spatial
resolution especially for the synthetic models. In particular,
running D-TOMO for only a low number of iterations showed
to be sufficient for ATC-FWI to still obtain high-resolution
subsurface images. For real seismic data we used an own
dataset that was recorded over a highway tunnel. Here, D-
TOMO is able to recover rough structures of the tunnel that
coincide with available ground truth information. However,
ATC-FWI does not significantly enhance the imaging results
in the used setting. Possible reasons are the high resonance
frequency of the used geophones and usage of the simplified
acoustic wave equation that considers P -wave propagation
only. In a future experiment geophones with lower resonance
frequency of e.g. 10Hz should be considered to obtain low
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Fig. 18: ATC-FWI and FWI results for highway tunnel data after
NFWI = 20 iterations.
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Fig. 19: Power spectral density of the recorded seismic signals
averaged over the receivers. Most power is located around 50Hz
indicating that low frequencies are missing in the recorded traces.

frequency parts in the recorded signal that are decisive for
FWI to obtain high-resolution images.

APPENDIX

A. Derivation of adjoint-state for traveltime tomography

To apply the adjoint-state method to traveltime tomography,
the original cost function in (1) is extended as follows [23]:

L(m,λs, Ts) =
1

2

NS∑
s=1

∫
∂Ω

|Ts(m,x)− T obs
s (x)|2 dx−

1

2

NS∑
s=1

∫
Ω

λs(x)

(
|∇Ts(x)|2 −

1

m(x)2

)
dx,

(19)

where λs(x) is the adjoint-state variable. It can be inter-
preted as a Lagrangian variable that explicitly accounts for
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the constraint given by the eikonal equation (2). Following
Lagrangian optimization the partial derivatives of L(m,λs, Ts)
w.r.t. λs and Ts need to vanish. However, both λs and Ts

are functions w.r.t. x. Therefore, we need to make use of
calculus of variations and compute the functional derivative
of L accordingly. To this end, we cast (19) into the form

L(Ts) =

∫
∂Ω

g(Ts,x)dx−
∫
Ω

f(Ts,∇Ts,x)dx (20)

with

g(Ts,x) =
1

2

NS∑
s=1

∣∣Ts(m,x)− T obs
s (x)

∣∣2 (21a)

f(Ts,∇Ts,x) =
1

2

NS∑
s=1

λs(x)

(
|∇Ts(x)|2 −

1

m(x)2

)
.

(21b)

For the time being, we consider the synthesized travel time Ts

for shot s as the variable of interest. For the other functions
m and λs derivation of the functional derivative follows
analogously. Now, assume a perturbation δ of (20) [33]:

δL(Ts) =

∫
∂Ω

δg(Ts) dx−
∫
Ω

δf(Ts,∇Ts) dx

=

∫
∂Ω

[
∂g

∂Ts
δTs

]
dx−∫

Ω

[
∂f

∂Ts
δTs +

∂f

∂(∇Ts)
· ∇δTs

]
dx (22)

For the last term in the equation above we apply the product
rule for the divergence:

∂f

∂(∇Ts)
· ∇δTs = ∇ ·

(
∂f

∂(∇Ts)
δTs

)
− δTs∇ ·

(
∂f

∂(∇Ts)

)
Then we arrive at

δL(Ts) =

∫
∂Ω

∂g

∂Ts
δTs dx−

∫
Ω

[
∂f

∂Ts
δTs

+∇ ·
(

∂f

∂(∇Ts)
δTs

)
−∇ ·

(
∂f

∂(∇Ts)

)]
dx.

(23)

Now we apply the divergence theorem as follows:∫
Ω

∇ ·
(

∂f

∂(∇Ts)
δTs

)
dx =

∫
∂Ω

(
∂f

∂(∇Ts)
· n
)
δTsdx,

(24)
where n is the unit vector normal to the boundary ∂Ω. Then
we finally arrive at

δL(Ts) =

∫
∂Ω

[
∂g

∂Ts
− ∂f

∂(∇Ts)
· n
]
δTsdx

−
∫
Ω

[
∂f

∂Ts
−∇ ·

(
∂f

∂(∇Ts)

)]
δTsdx (25)

We now require ∂L/∂Ts = 0. With the fundamental lemma of
calculus of variations we can set the integrands to zero [33]:

∇ ·
(

∂f

∂(∇Ts)

)
− ∂f

∂Ts
= 0 in Ω (26a)

∂g

∂Ts
− ∂f

∂(∇Ts)
· n = 0 on ∂Ω (26b)

Now we can evaluate the partial derivatives by inserting g(Ts)
and f(Ts,∇Ts) from (21) and treating both Ts and ∇Ts as
variables. This gives the following set of equations:

∇ · (λs(x)∇Ts(x)) = 0, x ∈ Ω (27a)

λs(x) (∇Ts(x) · n) = Ts(x)− T obs
s (x), x ∈ ∂Ω (27b)

By assuming that receivers are placed on the boundary ∂Ω we
obtain the adjoint-state equations as given in (4).

B. Derivation of gradient for traveltime tomography

According to the adjoint-state method, to obtain the gradi-
ent or total derivative dJ (m)/dm we need to compute the
derivative ∂L(m)/∂m. For this partial derivative functional
derivatives are used since m is a function over x. Therefore,
we apply the same procedure when calculating the adjoint-
state equations but replace Ts by m in conditions (26) to obtain
∂L(m)/∂m.

Since the integrand over ∂Ω in L(m,λs, Ts) from (19) does
not contain m explicitly, the partial derivative needs to be
applied on the second summand only:

∂L(m)

∂m

=
∂

∂m

{
−1

2

NS∑
s=1

∫
Ω

λs(x)

(
|∇Ts(x)|2 −

1

m(x)2

)
dx

}

= −
NS∑
s=1

λs(x)

m(x)3
=

dJ (m)

dm
(28)

which is the result for the gradient given in (3).

C. Derivation of gradient for full waveform inversion

We consider a least-squares cost between seismic measure-
ments dobss,r (t) and synthesized seismic data dsyns,r (t,m), cf.
[15]:

min
m

JFWI(m) =
1

2

NS∑
s=1

NR∑
r=1

∫ τ

0

(
dsyns,r (t,m)− dobss,r (t)

)2
dt

(29)
where dsyns,r (t,m) = Ss,rus(t,m). We apply the adjoint-state
method and extend the cost function following Section 2.2.
and 3.2 in [23]:

LFWI(m) =
1

2

∑
s,r

∫ τ

0

(
dsyns,r (t,m)− dobss,r (t)

)2
dt

+

NS∑
s=1

∫ τ

0

〈
λs(x, t),

1

m(x)2
∂2us(x, t)

∂t2
−∆us(x, t)

− f(x, t)
〉
Ω
dt+

NS∑
s=1

〈
γ0
s , us(0)

〉
Ω
+

NS∑
s=1

〈
γ1
s ,

∂us(0)

∂t

〉
Ω

(30)

with ⟨λs, us⟩Ω =
∫
Ω
λs(x)us(x)dx denoting the inner prod-

uct between two functions in the domain space Ω and γ0
s , γ

1
s

denoting the adjoint-state variables for the initial boundary
conditions of us(t). According to the adjoint-state method (cf.
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Section 3.2 in [23]), we can compute the gradient of JFWI(m)
w.r.t. m via

dJFWI(m)

dm
=

∂LFWI(m)

∂m
(31)

where d/dm denotes the total derivative. Again, since m is
a function, we use functional derivatives and the result from
(26a). However, note that LFWI(m) does not depend on ∇m
such that we can simply build the derivative of LFWI(m) by
treating m as a variable. We then arrive at

dJFWI(m)

dm
=

∂LFWI(m)

∂m

= − 2

m(x)3

NS∑
s=1

∫ τ

0

λs(x, t)
∂2us(x, t)

∂t2
dt (32)

which is the result given in (10) with the substitution
λs(x, t) = qs(x, τ − t). A derivation of the adjoint-state
equation to compute λs(x, t) is given e.g. in [23].
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