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1. Introduction

In 2021, over half of the newly installed
energy capacity globally consisted of photo-
voltaics (PV).[1] This trend is projected to
continue, favored by a drop in costs of
almost 90% since 2010. Installed PV capac-
ity is anticipated to reach 2 TW by 2025, a
figure that would double its 2022 value in
just 3 years.[1] Also, the capacity of concen-
trating solar thermal (CST) has been
increasing with time and reaching new
markets while experiencing a significant
drop in levelized cost of electricity by nearly
70% over the past decade.[2]

However, renewable energies have signif-
icant land use requirements,[3] meaning that
a large amount of land will be converted into
solar energy parks in the coming years. This
can create competition with other activities,
decreasing land for agriculture and posing

The use of image analysis has often been suggested as a practical way to monitor
the soiling accumulated on the surfaces of solar energy conversion devices.
Indeed, the deposited soiling particles can be counted and characterized to
calculate the area they cover, and this area can be converted into an energy loss.
However, several particle counting methodologies exist and can lead to dissimilar
results. This work focuses on the role of thresholding, an essential step where
particles are distinguished from a background based on the pixel brightness.
Sixteen automatic thresholding methods are assessed using 13 200 micrographs
of glass coupons soiled at nine locations globally. In low-to-intermediate soiling
conditions, the “Triangle” method is found to return the minimum coefficient of
variation and a mean deviation closer to zero. On the other hand, methods
assuming a bimodal distribution of pixel brightness underestimate the area
coverage. In addition, since soiling can be unevenly distributed over a surface,
different loss estimations can be returned when the same image analysis process
is used on different spots on a sample’s surface. For these reasons, image
analysis should be repeated at multiple locations on each investigated surface.
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threats to biodiversity.[4] For this reason, while the research com-
munity is looking into new solutions, such as agrivoltaics,[5] float-
ing PV,[6] and building-integrated PV,[7] it is also essential to
maximize the performance of operating solar energy systems.
Indeed, by increasing the energy yield of an existing installation,
not only is the energy output enhanced, but also the utilization of
land and materials is minimized.

The energy yield of solar power systems can be enhanced
through the use of appropriate operation and maintenance
(O&M) routines. The accumulation of dust, dirt, and contami-
nants is a serious issue for these systems, as it decreases the
amount of light reaching a PV cell or a CST receiver, resulting
in reduced electricity or heat generation.[8] This phenomenon,
known as “soiling”, affects systems worldwide and is signifi-
cantly site specific.[9] The magnitude of soiling varies depending
on factors such as geographical position, system configuration,
physicochemical dust properties, and weather patterns, which
also change with seasons. Hence, effective and continuous mon-
itoring of soiling is essential to develop effective O&M strategies
that mitigate its detrimental effects.[10]

Image analysis has been often investigated as a potential
low-cost soiling monitoring technology, at least since the first
outdoor microscope was installed in Qatar.[11] Indeed, using
image analysis of a micrograph, one can count and characterize
the size and the shape of particles deposited on a surface.[12] In
most soiling-related image analysis studies,[13–16] the U.S.
National Institutes of Health’s open-source Image software pack-
age has been employed for this purpose. Several authors[17–20]

presented empirical correlations to convert the area covered
by soiling on a glass coupon into the electrical loss experienced
by adjacent PV modules. However, these correlations can lead
to inconsistent results, as they are obtained with different
experimental and analysis procedures.

A recent round-robin study[21] showed that part of this
variability is due to the image analysis process, which can
produce dissimilar measurements for the same micrograph
even when the same software is used by different operators.
In particular, thresholding was found to be one of the key steps
in image analysis affecting particle counting. Thresholding is a
process needed to convert a micrograph into a binary black and
white image, where each pixel is identified as either background
or part of a particle based on its brightness (or intensity). The
thresholding value can be set from the analysis of the pixel
intensity distribution, either through an automatic threshold
method or manually by the user. Typical intensity distributions
for low-to-intermediate soiling locations are shown in Figure 1.
Several automatic thresholding methodologies exist and a
number of these, all integrated with ImageJ[22] and concisely
described in Section 4, will be compared in this work.
Indeed, when dust particles appear distinctly in micrographs
(i.e., they are well separated and have clear edges), different
thresholding methods are likely to produce similar measure-
ments. However, sometimes particles and soiling deposits have
no clear edges, in which case the thresholding method can
greatly affect the measurement. When asked to employ an auto-
matic threshold detection algorithm, 9 out of the 11 operators
involved in the previous work[21] utilized ImageJ’s Default
thresholding method. Therefore, not enough data was available
to evaluate the impact of the thresholding method on the
variability of image analysis.

In light of the significant impact of thresholding and of the
lack of information on this matter, the present study aims to
extend the previous publication[21] to specifically evaluate the
robustness and the reliability of various global thresholding
methods available in ImageJ. This is done by increasing the
number of analyzed micrographs to 13 200, compared to the 8
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from the previous work. These were obtained, as detailed in
Section 4, through an experimental campaign during which glass
coupons were exposed to the outdoor conditions at nine
locations worldwide for different exposure times, ranging from
1 to 32 days. The micrographs, taken at regular intervals in
different spots of each coupon, represent a wide variety of
soiling conditions. This unprecedented amount of data required
the development of an automated ImageJ script that enabled
the systematic analysis of each micrograph with the same proce-
dure producing a different set of results for each available thresh-
olding method.

The article is organized as follows. The results are reported
and discussed in Section 2, which also includes an evaluation
of the assumptions and the limitations of the current analysis
and some recommendations for future works. The conclusions
are reported in Section 3. The methodologies are described in
Section 4.

2. Results and Discussion

The results of this work are obtained from the analysis of the
micrographs of glass coupons exposed at nine locations world-
wide. As described in Section 4, images (micrographs) were
regularly taken on various spots of the glass coupons. These were
then processed in ImageJ, which returned the area of particles
deposited on each micrograph. The results, obtained using
different automatic algorithms, were then compared to evaluate
the robustness of the various procedures. Finally, a survey was
conducted among various soiling experts to visually assess
the reliability of the different methodologies in a variety of
conditions.

2.1. Thresholding: Variability and Uncertainty

2.1.1. Comparing the Methods

Figure 2 shows the coefficient of variation (i.e., the relative dis-
persion of data points around the mean) returned by the various
thresholding methods, described in Section 4, for three particle-
specific parameters, namely the number of counted particles (N),
the average projected particle area (A), and the fractional area cov-
ered by particles (f ). These parameters were defined and explored
in the previous publication utilizing ImageJ’s Default threshold-
ing method.[21] In the present study, this method is shown in red
at the left side of each of the plots in Figure 2 and 3. As can be
seen, the lowest variabilities are found for the “Percentile”
method. This is not surprising and should not be misinterpreted,
as this method assumes that half of the pixels represent particles,
while the other half represent background. For this reason, it
returns quite consistent results, with an average fractional area
coverage of 0.495� 0.065, whereas the other methods have an
average of 0.109� 0.141. Because of the low-to-intermediate soil-
ing conditions in the present dataset, the “Percentile” method is
found to overestimate the average coverage. This is significant
when compared to other methods (Figure 3). One can expect this
method to underestimate area coverages for heavier soiling
conditions for which particles cover most of the surface of the
coupons. It should be noted that also another method,
“Mean”, is likely to show similar behaviors (Figure 2 and 3).
This is due to the assumption for the algorithm (method), which
sets the mean of the pixel’s intensities as the threshold. As one
can imagine, in low-soiled micrographs with dark backgrounds,
this method would return low threshold values and therefore
high numbers of counted particles.

Figure 1. Two examples of the image analysis workflow for coupons exposed 1 day in Australia (top row) and 14 days in Chile (bottom row). Each row
shows: the original micrograph, the pixel intensity distribution, and the particle counting results (counted particles are red colored).
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The upper left corner of Figure 4 shows the distribution of the
minimum thresholds for each method for the whole dataset. As
shown, “Percentile” returns the lowest minimum threshold val-
ues. As aforementioned, this is not surprising, since for images
with dark backgrounds, the pixel intensity distribution is heavily
positively skewed (i.e., right tailed), and therefore the median
value is low. The same applies to the “Mean” method, which
has the third-lowest threshold. As for the median, also the mean
values of heavily positively skewed (i.e., right tailed) distributions
are likely low. The “MinError” and the “Triangle” methods are
two other methods of lowest variability for area coverage
(Figure 2). The “MinError” is an iterative implementation of
the algorithm proposed by Kittler and Illingworth,[23] where
different thresholds are tested and the one minimizing the error
between the actual and the process images is selected. The
“Triangle” method sets the threshold as the point of maximum
distance between the pixel intensity histogram and the line

between the histogram peak and the farthest end of the histo-
gram. Due to its approach, this algorithm is particularly well
suited for images with a dominant background, as in these cases
and in most soiling studies. As shown in the rightmost plot of
Figure 3, for the three aforementioned methods, the “Triangle”
method is the one returning the smaller deviation from the
average fractional area coverage.

“Intermodes” and “Minimum” are the approaches returning
the highest values for the minimum thresholds (upper left of
Figure 4). This is not surprising as these methods are specifically
recommended for bimodal pixel intensity histograms, which is
not the case in the present dataset. The former one indeed sets
the threshold to the average of the two modes of the histogram.
The latter one sets the threshold to the deepest point in the valley
between the two peaks. Given the high thresholds, these models
return the minimum number of particles and area coverage
values among the investigated methods.

Figure 3. Relative deviation from average for each ImageJ method when the number of particles (N), the average particles’ area (A), and the fractional
area coverage (f ) are calculated. Positive values indicate that the method overestimates the parameter’s value compared to the average of all methods.

Figure 2. Coefficient of variation for each ImageJ method when the number of particles (N), the average particles’ area (A), and the fractional area
coverage (f ) are calculated.
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On the other hand, the “Default”, “IsoData”, and “Shanbhag”
methods return extremely high variability in the number of par-
ticles (their median coefficient of variation in Figure 2 is close to
100%), which also directly impacts the area coverage. This is par-
ticularly noticeable in micrographs with low soiling, such as
those taken from coupons exposed outdoors only for a few days.
According to the ImageJ developers,[24] “Default” is a variation of
“IsoData”, and therefore their similar results are not surprising.
In the latter method, the threshold is set at the end of an iterative
process that starts with the calculation of the two averages, one
for the pixels identified as background and one for those identi-
fied as particles, given an initial threshold. The threshold is incre-
mented until the threshold is larger than the mean of the two
averages. “Shanbhag” is an entropy-based method, which sets
the threshold to the value that minimizes the sum of the so-called
fuzzy membership coefficient of each.[25]

The discussion above raises the question as to whether the
thresholds using ImageJ are dependent on the type of soil
(e.g., the optical nature of the particles found at a given location).
Dark-field microscopy (DFM) utilized in this study is primarily
dependent on light scattering due to the morphology of the
surface.[26] Due to the operating principle of a light
microscopy-based dark field microscope, it follows that the
directly transmitted light is not collected, while the scattered light
is observed and recorded. Using DFM, the images are therefore
not very dependent on the bulk optical properties (i.e., bulk
absorption and transmittance) of the particles that are
deposited, but are instead primarily dependent on the geometry
(shapes and sizes) of the particles. That stated, the scattered
light in the case of a soiled surface can be determined by all
of these factors. As mentioned in prior work,[21,27] the scattering
can be described from Mie scattering theory,[28–30] which itself
utilizes the real and imaginary index of refraction of the particles
as an input. Those optical parameters are dependent on the
chemical and optical nature of the particles that are deposited
(e.g., the soil type). Different results and conclusions could arise
if other types of microscopy (e.g., bright-field microscopy) are
used.

Figure 4 reports how the minimum threshold distributions
vary depending on the investigated method, for the whole dataset
and in each individual location. As shown, the ranking found for
the whole dataset holds with minor variations for all the coun-
tries but Qatar. Qatar is the location where the micrographs have
the highest average intensity (twice that registered in Jordan, and
more than three and four times those found in Australia and the
USA, respectively) and this can possibly explain, at least in part,
the results obtained at this location. This also suggests that the
effectiveness of the various methods is possibly affected more by
the density of the accumulated particles rather than by their types
or shape. However, the lack of additional coupons exposed to
intermediate-to-high soiling conditions does not make it possible
to draw any final conclusions on this assertion. Previous studies,
however, have also suggested that high particle densities can
confound the results returned by ImageJ.[31] Even if the low-
to-intermediate soiling levels investigated in this work are the
most typical ones experienced by PV modules globally, high
levels such as those found in the coupons from Qatar should
be nonetheless investigated in future studies.

Figure 4. Minimum threshold distributions for each ImageJ methodology.
The top plot on the left (“All coupons”) shows the results when all the
coupons are considered. The remaining plots show the results specific
to each investigated location. Methods are ordered in ascending order
according to the minimum threshold in the “All coupons” plot.
Outliers are not shown. The maximum threshold is always 255.
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2.1.2. Survey

Observations are characterized in studies as subjective and objec-
tive. To assess for the former, a survey was conducted, whose
details are given in the “Experimental Section”. It consisted of
a blind test showing nine micrographs, each one having its
own particle counting images, processed with the different
ImageJ thresholding methodologies investigated in this work.
Eighteen experts, at different career stages, were involved from
the PV and the CST communities. The nine micrographs repre-
sented a variety of conditions, from low to high area coverages,
and showed a number of features, such as agglomerations of
particles, scratches, and other types of deposits.

The results of the survey, in which experts selected the meth-
ods that best matched their particle counting expectations, are
shown in Figure 5. The figure considers the percentage of times
eachmethod was selected by experts for a givenmicrograph. If all
the experts selected the samemethod for a micrograph, the result
would be 100%. Similarly, if a method was selected by no expert
on that micrograph, a result for that micrograph would be
returned as 0%. Each boxplot shows the combined results for
each method considering nine micrographs, one per country
(i.e., it is calculated from nine data points, each showing the
results for the indicated thresholding method on one of the
micrographs).

Those taking the survey did not know beforehand the name of
the ImageJ thresholding method that they were selecting. That
said, “MaxEntropy” and “Triangle” are the methods that were
selected most frequently. As suggested by its name, the
“MaxEntropy” algorithm (method) selects the threshold that max-
imizes the interclass entropy. On the other hand, methods con-
ceived for bimodal pixel intensity histograms (“Intermodes” and
“Minimum”) were not often selected, because the micrographs
analyzed in this work had mostly unimodal distributions. As
expected, “Percentile” was the least selected method (0% in
the majority of micrographs), because of the unrealistic assump-
tion for low-to-intermediate soiling conditions of pixels equally

split between background and foreground. Interestingly, how-
ever, this was the most selected method for the micrograph taken
on day 7 in Cape Verde. This is a heavily soiled micrograph, with
a number of large bright particles and a pixel intensity histogram
that has a smooth peak in the dark and a long right leaning tail
with a sudden mode at the brightest pixel intensity. For this rea-
son, no expert selected “Triangle” for this same micrograph, as it
left a large number of uncounted particles.

The wide ranges displayed in Figure 5 also demonstrate how
different soiling can be, in terms of image analysis, at the differ-
ent locations of the study. Overall, the results of the survey sug-
gest that some methods might be more appropriate for image
analysis of soiling micrographs. However, it can be seen that
a one-size-fits-all solution is still elusive, and this can be attrib-
uted to at least two reasons. First, no method was selected by
100% of experts on any micrograph. Therefore, one can conclude
that a visual analysis is not a sufficient way to validate the effec-
tiveness of image analysis. Second, even if a successful method
were found for one micrograph, it would not necessarily work for
other micrographs, even if taken following the same microscopy
procedure. In addition, without the use of a suitable soiling-
related standard image, there is no way to determine which of
the methods that were favored or selected in the survey are
correct and accurate. This was discussed also in a previous
publication.[21]

2.2. Spatial Distribution of Soiling

A previous study suggested that various image analysis
parameters have either higher or lower variability.[21]

However, this section solely focuses on the analysis of the area
covered by particles (f ). Indeed, because of its reported strong
correlation with optical, electrical, or thermal losses,[17–20] this
is thought to be the most relevant image analysis parameter
for soiling studies. Also, building upon the previous findings
of this study, the results presented in this section are obtained
using the “Triangle” thresholding method.

Soiling is not necessarily uniformly distributed over the glass
coupon surfaces. This means that micrographs taken at different
spots on the same coupon might return different results. This is
shown in Figure 6, where each boxplot represents 300 micro-
graphs (a 10� 10 array taken in 3 separate areas on each glass
coupon) using the methodology described in Section 4. As the
size of the boxplot increases, so does the level of soiling
nonuniformity.

If the “Triangle” thresholding method is considered, a linear
correlation can be observed between the mean and the standard
deviation of the area coverages reported in Figure 6. This result,
shown in Figure 7, suggests that a single micrograph might not
be enough to characterize a full coupon. This is especially the
case when the value of f is large. From Figure 7, one can see that
the higher the level of soiling, as given by f, the larger is the stan-
dard deviation and therefore the uncertainty. The ratio of x to y
anywhere on the plot is the coefficient of variation. It is therefore
appropriate to consider a margin of error and the associated sam-
ple size. Specifically, the required sample size can be calculated
for different margins of errors on the estimation of f, taking into
account a 95% confidence interval. The results are shown in

Figure 5. Results of the survey conducted on 18 experts. The boxplots
show the number of times each method was selected as one of those
returning the best particle counting for each micrograph. They are
constructed using nine data points, one for each micrograph.
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Figure 8. On average, it is found that 3–4micrographs are needed
if one can accept a� 0.05 error for the fractional area coverage. At
least 20 samples (micrographs) are needed if the error is lowered
to �0.02. Typically, since the accumulation of soiling increases
with time, the recommended number of samples grows over
time. On average, the number of recommended samples after
28 days is 3–4 times higher compared to the first day.

For coupons with low soiling (such as those coming from
Spain, USA, and Australia in this case), two samples are typically

sufficient. For the coupons with the highest losses (such as
those from Cape Verde and Qatar in the present dataset), a
higher number of samples is required. Intermediate results
are found for the rest of coupons, with slightly higher numbers
for those exposed in Chile and Jordan compared to those from
Algeria and Morocco. Since micrographs can be stitched
together, one can use a linear relationship to convert the
recommended number of micrographs to a minimum area to
be photographed.

Figure 6. Top plot: distribution, as a boxplot, of fractional area coverages, measured with the “Triangle” method of ImageJ, for each country on the
discrete data collection days (1, 3, 7, 14, 28) over the study period. Bottom plot: zoom in on the top graph on those days.

Figure 7. Standard deviation of the fractional area coverage versus the mean of the fractional area coverage distribution for each individual coupon. The
data are calculated using the Triangle method. The colors indicate the installation location for the soiled glass coupons. The dark line represents the best
fit, which follows this equation: y ¼ 0.209⋅x þ 0.015. The linear correlation returns R2 of 63.0% and p-value < 0.05.
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2.3. Assumptions, Limitations, and Future Works

The aim of the present work is to highlight both the possibilities
and the challenges associated with soiling estimation based on
image analysis. This practice is quite common within the
research community and has the potential to facilitate low-cost
soiling monitoring and therefore its mitigation. However,
despite its diffusion in the soiling-related scientific literature,
the lack of standardized practices has hindered so far the possi-
bility of generalizing the results of the experimental investiga-
tions in the PV and CST fields. Through the analysis of
13 200 micrographs, this work was able to assess the applicability
of methods for soiling studies, at least for DFM and for locations
with low-to-intermediate losses. In addition, the identification of
a minimum recommended sample size can help researchers and
experts reduce the uncertainty of their investigations. However,
this is just an initial contribution toward the production of gen-
eral guidelines for such activities, as a number of limitations
have to be taken into account, despite the unprecedented size

of the sample population. These are discussed in this section
and should be addressed in future studies.

First, it should be highlighted that the data collection period in
this work was limited to approximately 1 month. Therefore, it
should be kept in mind that the aforementioned results apply
only to the indicated locations during a specific time period
represented by the studied datasets. This means that, even if
grouped by country, the results of Figure 8 should not be
assumed representative for the investigated locations. The collec-
tion time is indeed too short to characterize the entire annual
soiling profile of a site and does not allow for the evaluation
of the local seasonality and interannual variability. Despite that,
the results provide an indication of the uncertainty that one can
encounter for a given soiling loss.

In addition, the present work provides a comparison of differ-
ent thresholding methods, but it does not assess their accuracy,
as also noted in the previous publication.[21] This indeed would
require knowledge of the actual particle count and size distribu-
tion. However, this information is not available at the present
time. Indeed, in the opinion of the authors of the present study,
comparative studies on the accuracy of the image analysis meth-
odologies could be conducted through one of two methodologies,
each with its own potential and challenges. The first method
could be through the use of a laser diffraction spectrometer,
which employs a laser beam scattered from the particles to char-
acterize the distribution of sizes.[32,33] However, this method
requires the removal of the particles from the surface of the glass
coupon, and therefore the destruction of the surface features and
topology. More importantly, this step introduces a large uncer-
tainty in the process, due to the removal or loss of some of
the particles while others might adhere and remain on the glass
coupon’s surface.

The second approach could be the development of reference
images, where particles of known number and size are displayed.
This is currently being studied, as the images would need to rep-
licate several features of real micrographs in order to avoid biased
results. Real micrographs of soiled coupons, like those analyzed
in this work, might present issues such as nonuniform back-
ground or uneven illumination, out-of-focus particles, translu-
cent particles, surface scratches, and/or agglomerations of
particles with and without similar characteristics.

Examples of the aforementioned issues are shown in Figure 9.
The top row shows a micrograph with limited soiling and a large,
bright, translucent halo. This generates a second peak in the pixel
intensity histogram (shown in the middle), which is unusual in
the present dataset, and confounds the results obtained using the
“Triangle”method. As shown, indeed, the image analysis counts
the large halo as a big particle. In cases like this in which there is
a large halo, additional features would be required for ImageJ to
return a physically meaningful result.

In the bottom row of Figure 9, the large white particles move
the mode of the pixel intensity distribution toward the brightest
side of the histogram. The mode is at 255, and a high threshold is
identified by the “Triangle” method, leading to an erroneously
small number of counted particles. For these reasons, wherever
possible, it is always important to visually check the results of
image analysis, even when the image processing algorithm is
considered robust and reliable.

Figure 8. Sample size to achieve a target error and a confidence interval of
0.95 in the calculation of the fractional area coverage. The color corre-
sponds to the day on which the measurement was done. Day 2 for
Cape Verde is not shown. Day 15 for Jordan and Day 32 for Spain are
reported as Day 14 and Day 28, respectively, for conciseness.
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Issues like the aforementioned ones would affect the particle
counting and, as also discussed within the ImageJ wiki commu-
nity,[22] might hinder the definition of a unique universally valid
procedure. Despite that, it is believed that it is possible to provide
the solar energy community with best practices and caveats when
image analysis is employed for PV or CST soiling analyses, which
has been the focus of this work.

Image analysis can return values for different parameters,
such as the particles’ perimeters, and its results can be used
to calculate additional factors, such as the cleanliness level.[21]

These can be more or less affected by variability and should
be the subject of additional studies on the role of the threshold.
However, this work focuses mainly on the area coverage and on
the two parameters that are used to calculate it because of the
empirical correlations that have been reported with the
transmittance/reflectance losses.[17–20]

In addition, it should be noted that the present work employs a
single simple algorithm for image analysis, with the goal of com-
paring the role of the thresholding procedure. This approach was
chosen because it appeared to be the most common among the
experts involved in the previous study.[21] However, in reality,
more complex algorithms could be employed, making use of
different thresholding methods. Also, as discussed in another
study,[21] the use of different menu entries in ImageJ within
the same algorithm, such as Image > Auto Threshold instead
of Image > Adjust > Threshold…, can produce dissimilar
results. Similarly, the use of local thresholding[34] or preimple-
mented filters in ImageJ (e.g., FFT, IFFT, bandpass filter) as a
preprocessing step could have led to different particle counting
outcomes.

For these reasons, future works should evaluate the use of
more complex algorithms, able to address the challenges faced
by micrographs taken of coupons exposed under different soiling
conditions. These same issues are currently hindering the devel-
opment of reference micrographs and, therefore, the identifica-
tion of accurate universal image analysis procedures. More
studies should be conducted under a wider variety of conditions
and experimental procedures to allow for the accumulation of
more knowledge on this topic and a better quantification of
the uncertainty of image analysis. Meanwhile, authors are
encouraged to keep sharing their image analysis methodologies
to make results more easily replicable.

Furthermore, it should be noted that the present work focuses
only on ImageJ, the software that, as mentioned previously, has
been predominantly used for image analysis in soiling studies.
This is based on traditional image analysis processes. However, it
must be acknowledged that other solutions are also available and
can find application in soiling studies. These include, for exam-
ple, artificial neural networks, which have been employed to
estimate the losses from aerial pictures of soiled modules.[35]

Finally, one should also take note that the present study uti-
lized DFM. This has its strengths as well as limitations, based on
the discussion in Section 2.1. Unlike in a PV panel, where both
scattered light and the direct light through the particles eventu-
ally reach the PV cell, or for a CST mirror, where the scattered
light is excluded, DFM relies mainly on the scattered light.
Although it may be a useful technique to detect and count
particles and estimate their particle size distribution, it is not
the appropriate type of microscopy or imaging technique to
probe other characteristics, such as the spectrum of the light

Figure 9. Examples of micrographs that mislead the “Triangle” method. Each row shows: the original micrograph, the pixel intensity histogram, and the
results of the particle counting (counted particles are red colored). The top row shows a micrograph from a coupon exposed for 1 day in the United States.
The bottom row shows a micrograph from a coupon exposed for 7 days in Qatar.
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collected by the solar energy conversion device (e.g., PV panel or
CST system).

3. Conclusions

Image analysis can be an effective and low-cost tool for estimat-
ing and characterizing soiling in PV and CST systems. Indeed, if
micrographs of soiling accumulated on glass coupons are taken,
these can be analyzed using tools like ImageJ to calculate the area
covered by soiling. This enables the estimation of energy losses
and the evaluation of potential mitigation strategies. However,
prior works have warned about potential inconsistencies of
the image analysis results for soiling in solar energy applications.

This work further explores the uncertainty related to image
analysis by making use of 13 200 micrographs of soiled coupons
exposed at nine locations worldwide. First, the robustness of
various thresholding methodologies is analyzed. It is found that,
despite having the lowest variability, soiling experts should not
employ the “percentile” approach in locations with low-to-
intermediate soiling, because it will assume near-to-half area cov-
erage independently of the soiling conditions. This was also con-
firmed by the results of a survey conducted among experts, which
found this method appropriate for the counting of soiling par-
ticles in very few cases. Similarly, methods that assume bimodal
pixel intensity distributions did not work well in the investigated
dataset, returning the minimum number of particles and being
rarely selected by the experts. Overall, the “Triangle” method
appears to be the best option among the investigated methodolo-
gies for the soiling conditions analyzed in this study. Indeed, it
returns the minimum coefficient of variation and a mean devia-
tion closer to zero. It was also one of the two methods that were
most often selected as best by the participants in the survey.
However, additional studies are needed to evaluate the accuracy
of the various image analysis methods and to further contribute
to identifying best practices for soiling estimation. In particular,
the challenges associated with the use of laser diffraction for this
purpose and the current lack of reliable reference images should
be addressed by the R&D community in future studies.

In order to identify best practices to minimize the uncertainty
in the image analysis-based soiling estimation, the present study
also investigated the potential nonuniform distribution of soiling
on the glass coupons. It was found that, in order to keep the esti-
mation error lower than � 5 %, more than one micrograph
should be taken per coupon. The recommended number of
measurements typically increases with the soiling loss, and
therefore it can be expected to be higher: 1) in locations with high
soiling levels, and 2) as the number of days of exposure increases.
With these aspects in mind, image analysis of particles deposited
on the surfaces of PV and CST systems can be better understood,
both for its utility and potential limitations. The sharing of more
experimental data and results is essential to better understand
the most effective practices to conduct such studies and the con-
ditions in which the various methods perform better. However,
to ensure the reproducibility of the results, future studies should
always include the description of the employed methodologies.
The absence of a clear methodology and the lack of a current
standardized practice hamper the ability to apply findings of one

study to other investigations, limiting the broader impact and
utility of the research.

4. Experimental Section

Outdoor Soiling Collection: Glass coupons were deployed to nine loca-
tions worldwide, listed in Table 1, for a maximum period of 32 days.
Coupons were mounted on PV modules (Figure 10) and exposed to natu-
ral soiling and cleaning events. Different replicates were mounted at each
site, so that measurements could be taken at various times. On each mea-
surement day, a coupon was removed from the experimental setup and
shipped to Fraunhofer CSP, Germany, where microscopy was performed.

Microscopy: The soiled glass surfaces were examined by light micros-
copy using a Carl Zeiss Axio Scope A1 (black and white camera) with
20� magnification and dark-field imaging mode. Using a motorized
XYZ linear stage and the light microscope’s associated software tool, line
scans were made for each sample between one edge of the sample to
almost the end of the opposite edge. For each scan, 10 images per
row and 10 adjacent image rows were acquired, resulting in a total of
100 images for each area of the sample (left plot of Figure 11). Three
separate areas were recorded in this way for each glass coupon. Each
micrograph was 1388 pixels� 1040 pixels at a 3.156 pixels μm�1 scale.

Image Analysis Process: Image analysis returns the number of particles
on each micrograph (right plot of Figure 11). In this case, it also calculated
the projected area of each particle in a given micrograph. An automated
image analysis process was developed in Python 3.7 to automatically run a
macro in ImageJ.[36] The macro, whose script is reported (below), con-
sisted of an algorithm programmed to 1) open each micrograph; 2) set
the scale to 3.156 pixels μm�1; 3) set the background as black, and the
particles as white; 4) automatically determine the global threshold for a
given thresholding method, using the Image > Adjust > Threshold…
menu entry; 5) produce a file with the projected area of each particle
on the image; and 6) save the pixel intensity distribution and the minimum
and maximum threshold values.

Sixteen built-in thresholding methods were individually tested for each
figure, namely, “Default”,[24] “Huang”,[37] “Intermodes”,[38] “IsoData”,[39]

“Li”,[40] “MaxEntropy”,[41] “Mean”,[42] “MinError”,[23] “Minimum”,[38]

“Moments”,[43] “Otsu”,[44] “Percentile”,[45] “RenyiEntropy”,[41]

“Shanbhag”,[46] “Triangle”,[47] and “Yen”.[48] These were the algorithms
that ImageJ used to automatically differentiate the particles from the back-
ground and are briefly described in Table 2. A total of 13 200 images
(micrographs) were analyzed, each of them using all the 16 thresholding
methods, for a total of 211 200 files for particle counting analysis.

Macro Script:
#@ String name
#@ String fname

Table 1. List of locations in which the coupons were deployed. Positive
latitudes are north of the equator, and positive longitudes are east of
the Prime Meridian.

Country Coordinates Installation date Measurement days

Algeria 27.97, �0.18 2017-04-08 1, 3, 7, 14, 28

Australia �23.76, 133.87 2017-03-06 1, 3, 7, 14, 28

Chile �24.09, �69.93 2017-03-21 1, 3, 7, 14, 28

Jordan 32.02, 35.85 2017-08-01 1, 3, 7, 15, 28

Cape Verde 16.86, �24.86 2017-01-06 1, 2, 3, 7, 14, 28

Morocco 32.22, �7.92 2017-04-27 1, 3, 7

Qatar 25.32, 51.43 2016-10-16 1, 3, 7, 14, 28

Spain 37.09, �2.36 2017-05-08 1, 3, 7, 14, 32

United States 33.97, �117.33 2016-11-21 1, 3, 7, 14, 28
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#@ String out_name
#@ String out_name_meas
#@ String out_name_hist
#@ String method

open(fname);
selectWindow(name);
run(“Set Scale…”, “distance=3.156 known=1 unit= μm”);
run(“Options…”, “iterations=1 count=1 black”);
run(“Colors…”, “foreground=white background=black selection=yellow”);
setAutoThreshold(methodþ” dark”);
//run(“Threshold…”);
run(“Set Measurements…”, “area perimeter limit redirect=None decimal=3”);
run(“Analyze Particles…”, “clear”);
saveAs(“Results”, out_name);
run(“Clear Results”);
run(“Measure”);

saveAs(“Results”, out_name_meas);
run(“Clear Results”);
getHistogram(values, counts, 256)
Table.create(“Hist”);
Table.setColumn(“Values”, values); //Column with histogram values
Table.setColumn(“Counts”, counts); //Column with histogram counts
saveAs(“Results”, out_name_hist);
run(“Close”);
Metrics: The image analysis returns, for each micrograph, a file

containing the number of particles (N), and the projected area for each
particle (A). The fractional area coverage (f ) represents the area of the
micrographs that is covered by particles and is calculated as the sum
of the individual particle’s projected areas divided by the micrograph area.

Some results are displayed in boxplots, which comprise a box that
contains 50% of the data points (from first to third quartile) and whiskers
that are 1.5 times the interquartile range long. A line in the box shows the
median value.

Figure 10. Photos of the experimental setups in four countries.

Figure 11. Left plot: 10� 10 grid of micrographs from one spot of the coupon exposed in Cape Verde after 14 days. Particles are white, background is
dark. Right plot: 10� 10 grid of the particle counting results for the same 100 micrographs when the “Triangle” method is employed. Counted particles
are shown in red.
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The methods were compared using the coefficient of variation and the
deviation from average. The coefficient of variation was employed to eval-
uate the variability returned by the various methodologies. It was calcu-
lated as the ratio between the standard deviation and the mean of
each distribution; the higher the coefficient of variation value, the less
invariant the results. Since it allowed for a comparison of variance for dif-
ferent types of parameters, it was also utilized in a previous ImageJ
study.[21] The relative deviation from average was calculated as:

RD½%� ¼ P
P
� 1

� �
⋅100%, where P is the mean value of a parameter

calculated on a given location, day, and method, and P is the mean
value returned by considering all the methods for the same
parameter on the same day and location. A positive RD is returned if
the method overestimates a parameter’s value compared to the other
methods.

The required number of measurements per location (n) was calculated
using a sample size equation,[49] expressed as: n ¼ z2α=2 ⋅σ

2=TE2, where
zα=2 is the z score for a standard normal distribution (where α presents
the α-level), σ is the standard deviation, and TE is the target (or desired)
error. In the present study, a confidence level of 0.95 was considered,
which means that α=2 ¼ 0.025 and zα=2 ¼ 1.96.

Survey: An anonymous survey was circulated among various soiling
experts to evaluate the effectiveness of the various thresholding method-
ologies in particle counting. A copy of the survey is available in the
Supporting Information.

The survey was developed on the Google Form platform and was con-
ducted on a group of 18 experts (6 researchers or scientists, 5 professors,
4 PhD students, 3 engineers). The experts that were invited to participate
were 1) authors of a previous study,[21] 2) involved in the data collection
campaign, or 3) currently affiliated with one of the groups involved in the
data collection campaign.

The survey counted nine micrographs among those investigated in this
work, one per country. These were visually selected by the lead author to
represent a variety of soiling conditions, from low to high fractional area
coverages. The micrographs were also chosen to represent different
exposure times, from 1 to 28 days. Finally, the micrographs showing

various features, such as agglomerations of particles, scratches, and other
types of deposits, were included, in order to allow the experts to assess the
performance of the methods in a variety of conditions.

The initial question sought to establish the participants’ familiarity
with ImageJ, a widely recognized image analysis software. The
binary nature of the question allowed respondents to indicate whether
they had previous experience with the tool. Sixteen of the 18 experts
had performed image analysis, and 14 had used ImageJ before. This
preliminary result underscored ImageJ’s significant presence in the
field of image analysis and its widespread utilization. This foundational
understanding set the stage for subsequent sections of the survey,
enabling a more comprehensive exploration of the participants’ experien-
ces, preferences, and insights related to ImageJ’s functionalities and
impact.

For each micrograph, 17 processed images were provided, produced
with 17 ImageJ thresholding methods (see Table 2). The methods in
the survey also included the “IJ_IsoData”, which was not analyzed in
the rest of the work. In the processed images, counted particles were
red colored. Methods were numbered 1–17. The experts were not told
the correspondence between method name and number. For each micro-
graph, the experts were asked to select the method(s) that best matched
their expected particle counting. They could select as many methods as
they wanted.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Table 2. A description (with a key reference) for each of the ImageJ thresholding methods utilized in this study. More information is available on the
ImageJ webpage.[24]

Method Description References

Default A modified version of the IsoData method. It finds the threshold that minimizes the variance of the foreground and background pixels. [24]

Huang Minimizes the measures of fuzziness (i.e., how uncertain the classification of a pixel is) of an image. [37]

Intermodes Minimizes the difference between the modes (i.e., most frequent levels) of the foreground and background pixel intensities. [38]

IsoData Minimizes the within-class variance (i.e., how spread out the pixels in each class are) of both the foreground and background classes. [39]

Li Minimizes the weighted error (how well the pixels in each class fit a Gaussian distribution) between the foreground and background pixels. [40]

MaxEntropy Finds a probability distribution that is as uncertain as possible, given the constraints (i.e., the pixel intensity histogram of the
image and the desired properties of the thresholded image).

[41]

Mean Sets the threshold as the average of the pixels’ intensities. [42]

MinError Minimizes the sum of the squared errors between the foreground and background pixels. [23]

Minimum Sets the threshold as the minimum intensity that separates the foreground and background pixels. [38]

Moments Attempts to preserve the moments of the original image in the thresholded result. [43]

Otsu Finds the threshold that minimizes the inter-class variance between the foreground and background pixels. [44]

Percentile Sets the threshold according to a certain percentile of the image’s intensity distribution. [45]

RenyiEntropy Variation of the MaxEntropy method, which employs Renyi’s entropy. [41]

Shanbhag Calculates the threshold as the value that maximizes the total entropy of the histogram. [46]

Triangle Finds the threshold that forms a triangle with the minimum and maximum intensities of the image. [47]

Yen Finds the threshold that minimizes the weighted error (measure of how close the pixels in each class are to the mean intensity of the class)
between the foreground and background pixels.
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