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SUMMARY

Model-based test design is increasingly being applied in practice and studied in research. Model-Based
Testing (MBT) exploits abstract models of the software behavior to generate abstract tests, which are then
transformed into concrete tests ready to run on the code. Given that abstract tests are designed to cover
models but are run on code (after transformation), the effectiveness of MBT is dependent on whether model
coverage also ensures coverage of key functional code. In this article, we investigate how MBT approaches
generate tests from model specifications and how the coverage of tests designed strictly based on the model
translates to code coverage. We used snowballing to conduct a systematic literature review. We started with
three primary studies, which we refer to as the initial seeds. At the end of our search iterations, we analyzed
30 studies that helped answer our research questions. More specifically, this article characterizes how test
sets generated at the model level are mapped and applied to the source code level, discusses how tests are
generated from the model specifications, analyzes how the test coverage of models relates to the test coverage
of the code when the same test set is executed, and identifies the technologies and software development
tasks that are on focus in the selected studies. Finally, we identify common characteristics and limitations that
impact the research and practice of MBT: (i) some studies did not fully describe how tools transform abstract
tests into concrete tests; (ii) some studies overlooked the computational cost of model-based approaches; and
(iii) some studies found evidence that bears out a robust correlation between decision coverage at the model
level and branch coverage at the code level. We also noted that most primary studies omitted essential details
about the experiments. Copyright © 2023 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Software engineers apply Model-Driven Development (MDD) [48] and Model-Driven Engineering1

(MDE) [57] to achieve quality in the design of software products at an abstract level before mixing2

details of implementation and the complexities of a programming language. The key idea in both3

MDD and MDE is that the model should define the behavior of software, allowing engineers to4

abstract away from implementation details. Some researchers [57] suggest that MDD can be seen5

as a subset of MDE whose main focus is on generating implementations from models. In contrast,6
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MDE employs more elaborate models to support the evaluation of quality attributes such as reliability7

and security during development and model-driven evolution. A hallmark of MDD and MDE is that8

models are kept at a level where it is still relatively easy to make large-scale changes without getting9

bogged down in implementation details [6].10

This ability to separate abstraction layers has many benefits, including speeding up the overall11

development, reducing the effort of making changes, and producing more reliable software. Partly12

because of the expense of changing software after deployment, MDD tends to be applied more13

commonly in embedded and real-time systems such as transportation systems and electronic14

appliances.15

On the one hand, if a model is executable, such as models written in executable UML [37] or16

Simulink2 [17], then by running the model it is possible to test some of its aspects. Software engineers17

may also exploit sophisticated model-to-code transformation tools to automatically generate code18

from the model. On the other hand, some model languages, such as UML statecharts, are not19

executable and do not have sufficiently defined semantics to support automatic model-to-code20

transformation. Thus, these models are often transformed into code by hand.21

A common application of models is to design test cases. An early example derived test cases from22

(non-executable) UML statecharts [41]. The test cases covered specific elements of the statechart23

at the model-level, then were run on the code-level implementation. Subsequent papers referred24

to test cases defined at the model-level as abstract tests, while their corresponding code-level25

implementations are called concrete tests. This concept, called model-based testing (MBT) [54],26

is now used widely throughout the software industry and has led to hundreds of papers exploring27

various aspects of MBT. A key question is related to coverage. If test cases are designed to cover28

specific aspects of the model (nodes, edges, logic predicates, etc.), what is the relationship between29

model coverage and code coverage? Does the code include decisions that were not in the model?30

Are covered elements of the model dispersed into different places in the code? As the code changes31

over time, how can the tests be kept up to date?32

One of the most significant challenges arises due to standards. For example, the US Federal33

Aviation Administration, the European Union Aviation Safety Agency, and the Transport Canada34

department require that safety-critical software on commercial airplanes and air-traffic control35

systems to be tested to a stringent standard [46]. The same standard is often looked to as a goal in36

other transportation industries, such as trains and automobiles. The coverage requirements in the37

standard are defined on the code level, not the model. Thus, compliance cannot be based on test cases38

derived from models. Software companies must show that test cases that run on the code will fill in39

any “gaps” in coverage introduced by the model-to-code transformation.40

These gaps between model coverage and code coverage also make traceability crucial. To measure41

and ensure code coverage for model-based tests, engineers must be able to trace from model-level42

element to code-level element, and from model-level coverage to code-level coverage. Research into43

these crucial questions has been going on since 1990, and this article is the first attempt to catalog44

and categorize relevant papers. A particular challenge is that these papers have been published in45

many different conferences and journals, and employed diverging sets of terms. This makes it hard46

for researchers and practitioners to get a clear idea of the current state of the art.47

We have carried out a systematic literature review (SLR), which is a study to identify, select,48

and critically appraise research to answer clearly formulated questions [26]. Our SLR focuses on49

scenarios in which abstract models are defined prior to testing and investigates how source code50

coverage can be gauged from test sets generated based on model-based testing approaches. More51

specifically, our SLR makes the following contributions:52

• it characterizes how test sets generated at the model level are mapped and applied to the53

source-code level;54

• it discusses how tests are generated from the model specifications when MBT is applied;55

2http://www.mathworks.com/products/simulink.html – accessed in June, 2023.
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• it analyzes the relationship between the test coverage of models and the test coverage of the56

code when the same test set is executed; and57

• it provides an overview of all selected studies, including varied classifications applied to them,58

which is made available online as complementary material.359

Our SLR applies a snowballing process to search for papers of interest. Snowballing recursively60

analyzes references cited in related papers, and citations to those papers [58]. In the SLR domain,61

such papers are termed primary studies [26] and typically describe research results from well-founded62

experimental procedures or from early research approaches. We started our snowballing process with63

three core primary studies. During three recursions, we analyzed 498 non-duplicate primary studies.64

after the study selection phases, 33 peer-reviewed primary studies (including the 3 seeds) passed our65

study criteria, from which 30 were analyzed in this SLR given that they present either original or66

updated contributions. We categorized the selected studies into several groups. Given our focus on67

test coverage at the model and code levels, our key categorizations concern whether and how the68

study addresses the transformation of abstract tests to concrete tests, and the level of traceability of69

software elements, and the coverage of such elements, across the abstraction levels. Finally, we also70

categorized the selected studies based on the adopted technologies and the level of automation for71

test generation.72

The remainder of this article is organized as follows. Section 2 summarizes concepts related to73

software testing, MDE, and model-based testing, and brings a brief discussion regarding test coverage74

at the model and code levels. Section 3 provides details of our SLR protocol, and the criteria and75

procedures we adopted to select and analyze the selected studies. Section 4 summarizes the results76

from our search. Section 5 addresses our research questions. Section 6 discusses threats to the validity77

of our work, and Section 7 presents prior papers that summarized related literature reviews. Finally,78

Section 8 presents our conclusions as well as implications and recommendations for future research.79

2. BACKGROUND

This section introduces concepts related to model-based testing. We first discuss software testing in80

general, independent of whether the testing is applied to models or code. Then we discuss concepts81

related to utilizing models to develop software, and then focus on model-based testing. Finally, we82

introduce the key issues for testing when transforming abstract, model-based tests to code.83

2.1. General Software Testing84

We start with general concepts and terms related to software testing [4]. Generally, we view testing85

as an act of executing some software artifact on inputs designed to assess whether the behavior is as86

intended. Note that the term artifact is intended to include anything that can be executed, including87

but not limited to code, models, and requirements. The term system under test (SUT) refers to the88

artifact being tested. Researchers also specialize this term to particular artifacts such as module under89

test, method under test, predicate under test, and clause under test.90

Test inputs are the key input values used to satisfy the requirements for testing. Test inputs91

are sometimes called test vectors. To be able to run the tests, the inputs are usually embedded in92

automated scripts or methods (such as JUnit4 methods). Automated tests include additional elements93

beyond test inputs, including test oracles that decide whether the software behaves as intended. Test94

oracles can be implemented as assertions in JUnit.95

3https://doi.org/10.5281/zenodo.8113394
4http://junit.org – accessed in June, 2023.
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2.2. Testing Coverage96

A common technique is to design test cases that ensure some sort of coverage, on the theory that97

if some element of the software artifact is not covered, then we do not know whether its behavior98

is acceptable [4]. The simplest coverage criterion is node coverage, which requires that each node99

in a graph is covered. This equates e.g. to statement overage if the graph represents code, state100

coverage if the graph represents state machines. Thus, node coverage, state coverage, and statement101

coverage amount to the same thing. A slightly more strenuous criterion is edge coverage, which102

requires that each edge in a graph is covered. This equates to decision coverage and branch coverage,103

depending on the type of artifact. Node and edge coverage treat predicates as simple black boxes.104

Thus, a predicate with three clauses (A && B || C) is only evaluated to true and false, without105

considering the different clauses. Modified Condition and Decision Coverage (MCDC) [11] requires106

that each individual clause evaluates to both true and false, with the other clauses being such that107

the clause under test determines the final value of the predicate. Thus, the example predicate p =108

(A && B || C) can be MCDC-covered with the test set {TTF, FTF, TFF, FFT, FFF}. A final109

structural coverage criterion is data-flow coverage, which requires that definitions of variables (defs)110

reach specific uses of those values on at least one path.111

Test cases are sometimes derived from requirements, where for each requirement, at least one test112

case has to ensure that the requirement is satisfied (or, covered). When requirements are used, testers113

usually refer to behavioral or functional requirements that describe how the software should behave.114

But they can also refer to non-functional requirements such as performance, timeliness, liveness,115

stability, smoothness, and responsiveness, among others.116

2.3. Model-Driven Engineering117

Model-driven engineering (MDE) [57] is an approach to software development that starts with an118

abstract design model that ignores concerns regarding the implementation language, operating system,119

and target hardware. An executable model is written in a language with enough semantics so they can120

be simulated directly. Models without such semantics are called non-executable models. Executable121

models are sometimes called formal models. Models are transformed to code either automatically122

by special-purpose compilers or by hand. When transformed by hand, the process is often called123

model-based design (MBD).124

The studies we summarize in this article do not always apply the terminology consistently, so125

we introduce several terms here so we can emphasize their overlap and differences. A platform-126

independent model (PIM) [40] describes the behavior of a system in an abstract modeling language;127

this is also called the model level. The complementary platform-specific model (PSM) [40] is the128

code level, that is, the system implemented in a programming language such as C or Java. Some129

studies also adopt the terms computation independent models (CIM) [40] for models that do not130

depend on a computation model. We also find the terms model-in-the-loop with the aim of describing131

software development processes that include abstract models and processor-in-the-loop to describe132

implementations at the code level.133

2.4. Model-Based Testing134

Models are defined at an abstract, high level, making them convenient artifacts for designing test135

cases [41]. Model-based testing (MBT) designs test cases from an abstract model (model-level136

or abstract tests), and transforms them into test cases that can be run on the code (code-level or137

concrete tests). The term computation-independent tests (CIT) is sometimes used for model-level tests138

and computation-dependent tests for code-level tests. When test cases are designed from informal139

models or code-based models, such as control-flow graphs, we sometimes use the term model-driven140

testing (MDT).141

2.5. Issues of Transforming Models to Code142

When models are transformed to code, whether automatically or by hand, the structure of the code143

might differ from the structure in the design model [7, 39]. This brings up a serious issue: the144

Copyright © 2023 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2023)
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code-level test cases may not achieve the same level of coverage as the model-level test cases. This is145

serious for aeronautics software in particular, and transportation software in general. For example,146

the US Federal Aviation Administration (FAA) requires full code coverage to certify safety critical147

avionics software [46], and requires that each test must be derived from the requirements. This makes148

it imperative that when model-based test cases are transformed to the concrete level, testers are able149

to ensure traceability from abstract tests to concrete tests [2]. When code is automatically derived150

from models, potential problems with the transformation m motivate the application of the so-called151

witness functions (in the form of traceability [3]) that allow differences to be discovered.152

3. STUDY SETUP

This section provides key information about the protocol we defined for our SLR. We follow the153

guidelines for conducting secondary studies proposed by Kitchenham et al. [26] and Wohlin [58].154

Our full protocol is available online.5155

3.1. Goals and Research Questions156

The general goal of this SLR is to analyze the state of the art in model-based testing with respect157

to how source code coverage can be measured from test sets generated using model-based testing158

approaches. This goal is achieved by answering the following research questions (RQs):159

• RQ1: How are test suites that are developed at the model level mapped to the code level; code160

which may or may not be created by automatic transformation?161

• RQ1.1: What is required of the model-to-code transformation to support the transition from162

model level tests to code level tests?163

• RQ2: How are tests generated from the model specifications (e.g. UML or Simulink)?164

• RQ3: How does the coverage of the model produced by abstract tests relate to the coverage of165

the code for the corresponding concrete tests?166

• RQ4: Which are the applied technologies and which are the software development tasks167

focused by studies that address mapping of tests across model and code levels?168

Our RQs emphasize transformation details because we believe that by having a more complete169

understanding of “under the hood” transformation details testers can have a better idea of how to170

improve test cases at both model and code levels. As a result, testing and language design principles171

can be brought to bear on the model-to-code transformation problem. Specifically, by being more172

knowledgeable about details of the modeling language, testers can help the language evolve by173

making certain constructs/elements more explicit (i.e. targeted by the transformation).174

It is also worth mentioning that, as stated by Stürmer et al. [50], rendering high-level models175

into code poses a set of challenges that in a way differ from the challenges inherent to traditional176

compiler design. Most notably, the semantics of the modeling language often is not explicit, and177

may depend on layout information (e.g. position of the states). Consequently, code generation entails178

more than simply performing stepwise transformations from the model representation into code: in179

effect, a series of computation must be derived from the analysis of data dependencies. Therefore,180

understanding the model-to-code transformer backend and how it turns models into code can help181

testers arrive at a better operational understanding of the transformation and allow them to focus on182

corner cases (boundary values and code elements that are seldom covered during MBT).183

5https://doi.org/10.5281/zenodo.8113394
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3.2. Inclusion and Exclusion Criteria184

The inclusion criteria (Section 3.2.1) and exclusion criteria (Section 3.2.2) for study selection are185

presented in this section. A study was selected if it passed ((I1 ∧ I2) ∨ I3) ∧ I4). Studies that186

fulfilled at least one of the exclusion criteria were not selected.187

The protocol available online provides more details about how these criteria were applied.188

Regarding E2, although secondary studies were not included in our final set of selected studies, some189

may be of interest as a source for new studies; therefore, they were analyzed in an additional study190

selection round (details in Section 4).191

3.2.1. Inclusion (I) Criteria192

I1: The study proposes/applies model-based testing for/to models.193

I2: The study addresses automatic model-to-code (or model-to-text) transformation.194

I3: The study addresses the mapping from test suites developed at model level to source code level.195

I4: The study must have undergone peer-review.196

We highlight that this literature review particularly focuses on research that addresses model-197

to-model or model-to-code transformations, with an emphasis on the automatic transformation of198

models to code. Note that our RQs and inclusion criteria (particularly, I2 and I3) reflect this intent.199

This is not strictly the case of MBT in general, which would be the case of I1 if applied individually.200

While the combination of I1 with I2 allows for the selection of studies that explore MBT and forward201

engineering of the models to lower levels of abstraction, I3 solely leads to the selection of studies202

that establish relationships between tests that evolve from the model level to the code level. The three203

rightmost columns of Tables II and III show the criteria each selected study fulfilled.204

Regarding I4, we only selected studies published in scholarly venues (which are well-established205

types within the research community), namely, conference proceedings, symposium proceedings,206

workshop proceedings, and scientific journals.207

3.2.2. Exclusion (E) Criteria208

E1: The study emphasizes hardware testing.209

E2: The study is a secondary study.210

E3: The study is a peer-reviewed study that has not been published in journals, conferences, symposia,211

or workshop proceedings (e.g. Ph.D. theses and technical reports).212

E4: The study is not written in English.213

3.3. Search Strategy214

The first focus of our work is on a literature study. As we found it very hard to find search strings to215

match a manageable number of primary studies of interest to this study, we employed a snowballing216

process based on three initial studies. Snowballing, also referred to as citation analysis, is a literature217

search method that can take one of two forms: backward snowballing or forward snowballing [26, 58].218

Backward snowballing starts the search from a set of studies that are known to be relevant (either a219

start set, or the current set of selected studies). It involves searching the references sections of the220

studies. Forward snowballing entails finding all studies that cite a study from either the start set or the221

current set of selected studies. Both search methods update the set of selected studies in an iterative222

fashion; only the studies included in the previous step are considered in each search iteration, and223

both backward and forward snowballing end when no new primary studies are found in the search224

iterations.225

Three reviewers were in charge of running the search process. During backward snowballing, they226

extracted references from the background, related work, and experimental setup sections of the study227

Copyright © 2023 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2023)
Prepared using stvrauth.cls DOI: 10.1002/stvr



ON TRANSFORMING MODEL-BASED TESTS INTO CODE: A SYSTEMATIC LITERATURE REVIEW 7

under analysis. For studies that did not include these sections, they considered other sections such228

as the introduction. Details of our analysis procedures can also be found in the spreadsheet that is229

available online.6230

Our initial set of primary studies, the seeds, includes the three studies listed in the sequence. In231

order to achieve a comprehensive understanding of the research landscape in this field, we selected232

studies based on three criteria: age, prominence, and relevance. Our goal was to identify a visionary233

paper that identified the problem and a mature paper that represented the current state-of-the-art.234

Along with these two papers, we included a paper from the research group that inspired this work.235

While we acknowledge the limitations of age and prominence as selection criteria, we believe that236

taking these criteria into consideration was necessary to identify key contributions to the field. Older237

studies tend to have more citations since these studies have had more time to accumulate citations,238

while recent studies may not have had the opportunity to accumulate as many citations. However,239

prominent studies may have gained attention more quickly, hence these studies may have been240

cited more frequently in a shorter amount of time. In hindsight, our selection criteria led to the241

identification of seeds that have proven to be valuable for the snowballing process, leading to the242

identification of additional key contributions in the field. Thus, we believe that our approach was a243

useful starting point for our study.244

1. Testing the Untestable: Model Testing of Complex Software-intensive Systems, by Briand et al.245

[9];246

2. Data Flow Model Coverage Analysis: Principles and Practice, by Camus et al. [10]; and247

3. UML Associations: Reducing the Gap in Test Coverage Between Model and Code, by Eriksson248

and Lindström [18].249

Search Stopping Criterion: To keep the review feasible, for the study selection phase we executed250

three snowballing iterations, called rounds, after which we started the data extraction and synthesis.251

We analyze this stopping criterion in Section 6 (Threats to Validity).252

3.4. Procedures for Data Extraction and Analysis253

To answer the RQs described in Section 3.1, we extracted from primary studies the information254

outlined in a data extraction form. Before starting the review, the data extraction form was revised by255

all involved reviewers. Beyond data extraction fields intended to gather general information about256

the primary studies (e.g. title, authors, year, and publication venue), the form includes the following257

fields:258

(1) The general goal of the study;259

(2) A description of the study from the perspective of each research question;260

(3) The main results of the study;261

(4) The conclusion of the study, cf. the original authors;262

(5) The conclusion of the study, cf. the reviewers;263

(6) The target specification language (at model level);264

(7) The target programming language (at code level);265

(8) The tool used for model-to-text transformation (for the main software artifacts);266

(9) The tool used for automatic test case generation (at the model level);267

6https://doi.org/10.5281/zenodo.8113394
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(10) The tool used for test set transformation (from model to source code);268

(11) The obtained code coverage obtained with model-based test set;269

(12) Level of automation for model-based test generation;270

(13) Level of automation for test re-execution (model → code);271

(14) Level of traceability of model elements → code elements; and272

(15) Level of automation for traceability of model elements → code elements.273

After extracting data from all selected studies, the three reviewers in charge of the primary study274

selection checked all extracted data to make sure the data is accurate and ready for further analysis.275

We intentionally structured the data extraction form in terms of the RQs to facilitate the276

identification of pieces of information that would help us develop the discussion as well as outline277

the conclusions with respect to each RQ. In particular: fields (1) to (5) supported the discussions278

regarding RQ1, RQ1.1, RQ2, and RQ3; fields (6) to (10) supported the discussions regarding RQ4;279

field (11) supported the discussions regarding RQ3; and fields (12) to (15) added details to enrich the280

descriptions and discussions presented in this article. All studies that provided relevant information281

with respect to a given RQ are listed in the beginning of the sections that discuss the RQs (namely,282

Sections 5.1 to 5.5).283

4. SEARCH ITERATIONS AND RESULTS

Table I summarizes the search rounds. It shows the number of backward references and forward284

citations analyzed in each study selection round, and shows which studies we have selected. For the285

sake of completeness, the table includes the initial seeds in Round 0. The analysis of forward citations286

was updated in February, 2020. Columns 4, 5, and 8 show two values for each entry regarding forward287

snowballing: the left-hand values refer to the first analysis of forward citations, and the right-hand288

values refer to the most recent analysis. As an example, for study P0003 (column 2), we analyzed 12289

studies retrieved in March 3, 2018, and an additional 12 studies retrieved in February 18, 2020. From290

these, none were included in our dataset (column 8). The table provides the following details:291

• The study IDs7 and references (column 2). The study IDs are composed by a prefix P followed292

by a sequential number assigned to each study we retrieved through either backward or forward293

snowballing.294

• The number of analyzed backward references and forward citations with respect to each seed295

(columns 3 and 4, respectively). The numbers of backward references and forward citations296

listed in the table refer only to non-duplicate entries (i.e. entries that did not appear in a297

previously analyzed study).298

• The date on which forward citations were retrieved with the Google Scholar8 search engine299

(column 5).300

• The number of selected studies through backward snowballing and which studies these are301

(columns 6 and 7).302

• The number of selected studies through forward snowballing and which studies these are303

(columns 8 and 9). In column 9, studies with a * prefix were selected in the forward snowballing304

update.305

7Key primary studies in this literature review are cited in the references, and also indexed by “P”-numbers for brevity.
The P-numbers are used in figures and in the online material, which has complete bibtex-formatted references and much
more information about each primary study and how we categorized it.

8http://scholar.google.com/ – accessed in June, 2023.
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Note that two additional rounds (Additional Round in Table I) were performed. The first concerns306

the analysis of a secondary study (ID P0237) found in Round 2, from which we retrieved and analyzed307

the references. The round named Additional Round (from experts) refers to the analysis of studies308

suggested by experts,9 which was done in February, 2022.309

In total, we analyzed 180 backward references and 318 forward citations. From the backward310

references, 17 studies were selected, whereas 16 studies were selected from forward citations. From311

the 33 selected studies, P0064 [52] was subsumed10 by P0253 [51]; furthermore, P0498 [15] and312

P0499 [35] were subsumed by P00487 [14]. Therefore, we ended up with a set of 30 studies that we313

analyze in the next sections of this article.314

To illustrate the process of analyzing a particular study, from the start set, let us consider study315

P0003, by Briand et al. [9], titled Testing the Untestable: Model Testing of Complex Software-intensive316

Systems. We have observations from both backward and forward snowballing.317

• Backward snowballing: We analyzed the “Background & State of the Art” section of the study,318

since the study is not a conventional paper (it was published in the Visions of 2025 and Beyond319

Track of ICSE 2016). There are eight backward references. From these, two were selected:320

P0010 [49], and P0011 [36].321

• Forward snowballing: We analyzed 12 forward citations to this study in March 2018, and322

another 12 in February 2020. None were selected.323

Tables II and III list the 30 studies we analyze in this article. They show the study ID (column ID),324

the snowballing iteration round (column R) that reflects the first detection of a study, the snowballing325

technique (column B/F for ’B’ackward or ’F’orward), the reference entry (column Ref.), the list of326

authors (column Author(s)), the study title (column Title), the venue in which the study was published327

or presented (column Venue), and the results of the application of the inclusion criteria (columns328

I1, columns I2 and columns I3). In the column that indicates the round, “4” represents the forward329

snowballing update, “a1” represents Additional Round (from SLR), and “e1” represents Additional330

Round (from experts).331

Figure 1 depicts the distribution of selected studies per publisher. IEEE Xplore11 includes the most332

studies in our SRL (twelve studies), followed by ACM Digital Library12 (five studies) and Springer333

SpringerLink13 (four studies).334

Figure 2 shows the citation map between the selected studies. Continuous edges indicate studies335

retrieved via backward snowballing; in these cases, a study in a destination node was cited by the336

study in the origin node (e.g. P0003 cited P0010 and P0011). Dashed edges indicate studies retrieved337

via forward snowballing; in these cases, a study in an origin node cited the study in the destination338

node (e.g. P0010 is cited by P0071, P0086, P0443, P0448, and P0451). Studies with no incoming339

and outgoing edges were included based on experts’ suggestions (namely, P0496, P0497, P0498,340

and P0499). In the citation map, the set of 30 studies we analyze in this article is composed of341

the 3 studies shown in white background (original seeds) and the 27 studies shown in light gray342

background (selected studies).343

The top of Figure 2 has a timeline for study publication. Starting from the left-hand side, the graph344

shows that the most recent selected studies were published in 2019. Figure 2 also provides a transitive345

trace between studies selected in our SLR. The start set (initial seeds) is composed of P0003 [9],346

P0004 [10], and P0005 [18]. By taking P0005 as an example, we see that it was influenced, among347

others, by P0045; then also, P0045 influenced P0234, which in turn influenced P0374, P0375 and348

P0463.349

9The experts were reviewers of prior versions of this article. In the reviews, they suggested a set of studies that we
analyzed according to our study selection criteria. The studies that passed our inclusion criteria were added to our final set.

10A study subsumes another study when it updates a technique previously published, or extends a prior publication.
11http://ieeexplore.ieee.org/Xplore/home.jsp – accessed in June, 2023.
12http://dl.acm.org/ – accessed in June, 2023.
13http://link.springer.com/ – accessed in June, 2023.
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Table II. Selected studies (part 1/2) (R = round; B/F = (B)ackward snowballing, (F)orward snowballing;
I1/I2/I3 = inclusion criterion Ii) (I4 is omitted because all studies are peer-reviewed).

ID R B/F Ref. Author(s) Year Title Venue I1 I2 I3
P0003 0 [9] Briand et al. 2016 Testing the Untestable: Model

Testing of Complex Software-
intensive Systems

International Conference on Software Engi-
neering (ICSE) - Visions of 2025 and Beyond
Track

✓ ✓

P0004 0 [10] Camus et al. 2016 Data Flow Model Coverage
Analysis: Principles and Practice

European Congress on Embedded Real Time
Software and Systems (ERTS)

✓ ✓

P0005 0 [18] Eriksson and Lindström 2016 UML Associations: Reducing the
Gap in Test Coverage Between
Model and Code

International Conference on Model-Driven
Engineering and Software Development
(MODELSWARD)

✓ ✓ ✓

P0010 1 B [49] Shokry and Hinchey 2009 Model-Based Verification of
Embedded Software

IEEE Computer ✓ ✓ ✓

P0011 1 B [36] Matinnejad et al. 2015 Search-based Automated Test-
ing of Continuous Controllers:
Framework, Tool Support, and
Case Studies

Information and Software Technology ✓ ✓

P0045 1 B [20] Eriksson et al. 2013 Transformation Rules for Plat-
form Independent Testing: An
Empirical Study

International Conference on Software Testing,
Verification and Validation (ICST)

✓ ✓ ✓

P0056 1 B [25] Kirner 2009 Towards Preserving Model Cov-
erage and Structural Code Cover-
age

EURASIP Journal on Embedded Systems ✓ ✓ ✓

P0059 1 B [19] Eriksson et al. 2012 Model Transformation Impact
on Test Artifacts: An Empirical
Study

Workshop on Model-Driven Engineering,
Verification and Validation (MoDeVVa)

✓ ✓

P0071 2 F [53] Tekcan et al. 2012 User-driven Automatic Test-case
Generation for DTV/STB Reli-
able Functional Verification

IEEE Transactions on Consumer Electronics ✓ ✓

P0086 2 F [29] Li et al. 2011 A Case Study on SDF-based
Code Generation for ECU Soft-
ware Development

International Workshop on Component-Based
Design of Resource-Constrained Systems
(CORCS)

✓ ✓

P0234 2 F [31] Li and Offutt 2015 A Test Automation Language
Framework for Behavioral Mod-
els

Workshop on Advances in Model Based
Testing (A-MOST)

✓ ✓ ✓

P0223 2 B [7] Baresel et al. 2003 The Interplay between Model
Coverage and Code Coverage

EuroSTAR Software Testing Conference ✓ ✓

P0158 2 B [38] Mohalik et al. 2014 Automatic Test Case Generation
from Simulink/Stateflow Models
using Model Checking

Software Testing, Verification and Reliability ✓ ✓ ✓

P0253 3 F [51] Stürmer et al. 2007 Systematic Testing of Model-
Based Code Generators

IEEE Transactions on Software Engineering ✓ ✓ ✓

P0259 3 F [12] Conrad 2009 Testing-based Translation Valida-
tion of Generated Code in the
Context of IEC 61508

Formal Methods in System Design ✓ ✓

P0313 3 F [45] Pretschner et al. 2005 One Evaluation of Model-based
Testing and Its Automation

International Conference on Software Engi-
neering (ICSE)

✓ ✓ ✓

P0321 3 F [13] Conrad et al. 2005 Automatic Evaluation of ECU
Software Tests

SAE Transactions ✓ ✓

P0362 3 F [2] Amalfitano et al. 2015 Comparing Model Coverage and
Code Coverage in Model Driven
Testing: An Exploratory Study

International Workshop on Testing Techniques
for Event BasED Software (TESTBEDS)

✓ ✓ ✓

P0374 3 F [32] Li and Offutt 2016 Test Oracle Strategies for Model-
Based Testing

IEEE Transactions on Software Engineering ✓ ✓ ✓

P0375 3 F [30] Li et al. 2016 Skyfire: Model-Based Testing
with Cucumber

International Conference on Software Testing,
Verification and Validation (ICST) - Testing
Tool Papers

✓ ✓ ✓

P0381 a1 B [28] Lamancha et al. 2011 Model-driven Testing - Transfor-
mations from Test Models to Test
Code

International Conference on Evaluation of
Novel Approaches to Software Engineering
(ENASE)

✓ ✓ ✓

P0383 a1 B [21] Fraternali and Tisi 2010 Multi-level Tests for Model
Driven Web Applications

International Conference on Web Engineering
(ICWE)

✓ ✓ ✓

P0411 4 F [5] Aniculaesei et al. 2019 Using the SCADE Toolchain
to Generate Requirements-Based
Test Cases for an Adaptive Cruise
Control System

Workshop on Model-Driven Engineering,
Verification and Validation (MoDeVVa)

✓ ✓ ✓

Copyright © 2023 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2023)
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Table III. Selected studies (part 2/2) (R = round; B/F = (B)ackward snowballing, (F)orward snowballing;
I1/I2/I3 = inclusion criterion Ii) (I4 is omitted because all studies are peer-reviewed).

ID R B/F Ref. Author(s) Year Title Venue I1 I2 I3
P0443 4 F [16] Durak et al. 2018 Modeling and Simulation based

Development of an Enhanced
Ground Proximity Warning Sys-
tem for Multicore Targets

International Symposium on Model-driven
Approaches for Simulation Engineering
(Mod4Sim)

✓ ✓ ✓

P0448 4 F [27] Koch et al. 2018 Simulation-based Verification for
Parallelization of Model-based
Applications

Computer Simulation Conference (Summer-
Sim)

✓ ✓ ✓

P0451 4 F [3] Amalfitano et al. 2019 Using Tool Integration
for Improving Traceability
Management Testing Processes:
An Automotive Industrial
Experience

Software: Evolution and Process ✓ ✓ ✓

P0463 4 F [55] Vanhecke et al. 2019 AbsCon: A Test Concretizer for
Model-Based Testing

Workshop on Advances in Model Based
Testing (A-MOST)

✓ ✓

P0474 4 F [23] Kalaee and Rafe 2019 Model-based Test Suite Gener-
ation for Graph Transformation
System Using Model Simulation
and Search-based Techniques

Information and Software Technology ✓ ✓

P0496 e1 [56] Veanes et al. 2008 Model-Based Testing of Object-
Oriented Reactive Systems with
Spec Explorer

Formal Methods and Testing Workshop
(FORTEST)

✓ ✓

P0497 e1 [14] Drave et al. 2019 SMArDT modeling for automo-
tive software testing

Software: Practice and Experience ✓ ✓

Figure 1. Number of studies per publisher 30 studies, in total).

5. ANALYSIS BASED ON THE RESEARCH QUESTIONS

This section provides answers to the RQs that were defined in Section 3. Table IV classifies the350

studies based on the research questions RQ1 to RQ3 (separate tables are shown in Section 5.5 to351

support the discussion regarding RQ4). We discuss each RQ in turn.352

In the first paragraphs of Sections 5.1 to 5.4 we present the characteristics that we considered to353

group the studies that helped us draw answers to the RQs. Beyond this, we discuss the studies in354

ascending chronological order, with a few exceptional cases which involve studies that are closely355

related (e.g. pieces of research that were evolved by the same research group) or studies that to a356

limited extent contributed to the RQ answers.357

5.1. Discussion Regarding RQ1: How are test suites that are developed at the model level mapped to358

the code level; code which may or may not be created by automatic transformation?359

For discussing RQ1, we grouped the 23 studies listed in the first line of Table IV as follows: studies360

that directly provided information regarding the transformation of test cases across the abstraction361

Copyright © 2023 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2023)
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P0003 
[9]

(Briand et al., 2016)

P0010 
[49]

(Shokry and Hinchey, 2009)

P0011 
[36]

(Matinnejad et al., 2015)

P0004 
[10]

(Camus et al., 2016)

P0005 
[18]

(Eriksson and 
Lindström, 2016)

P0056 
[25]

(Kirner, 2009)

P0045 
[20]

(Eriksson et al., 2013)

P0059 
[19]

(Eriksson et al., 2012)

P0064 
[52]

(Stürmer et al., 2005)

P0071 
[53]

(Tekcan et al., 2012)

P0086 
[29]

(Li et al., 2011) 

P0158 
[38]

(Mohalik et al., 2014)

P0223 
[7]

(Baresel et al., 2003)

P0234 
[31]

(Li and Offutt, 2015)

P0253 
[51]

 (Stürmer et al., 2007)P0259 
[12]

(Conrad, 2009)

P0374 
[32]

 (Li and Offutt, 2016)

P0375 
[30]

 (Li et al., 2016)

P0313 
[45]

(Pretschner et al., 2005)

P0321 
[13]

(Conrad et al., 2005)

P0362 
[2]

(Amalfitano et al., 2015)

P0237 
[1]

(Abade et al., 2015)

P0381 
[28]

(Lamancha et al., 2011)

P0383 
[21]

 (Fraternali and Tisi, 2010)

“Forward citation” = citation found in forward snowballing
“Backward reference” = reference followed in backward snowballing

Decreasing
Timeline

2019    2018    2017    2016    2015    2014    2013    2012    2011    2010    2009    2008    2007    2006    2005    2004    2003

P0411 
[5]

 (Aniculaesei et al., 2019)

P0443 
[16]

 (Durak et al., 2018)

P0448 
[27]

 (Koch et al., 2018)

P0451 
[3]

 (Amalfitano et al., 2019)

P0463 
[55]

 (Vanhecke et al., 2019)

P0474 
[23]

 (Kalaee and Rafe, 2019)

P0496 
[56]

(Veanes et al., 2008)

P0497 
[14]

(Drave et al., 2019)
P0498 

[15]
(Drave et al., 2018)

P0499 
[35]

(Markthaler et al., 2018)

Backward 
reference

Forward 
citation

Legend:

Original Seed
(3, in total)

Selected
(27, in total)

Secondary study
(1, in total)

Subsumed
(3, in total)

Figure 2. Citation map for studies that passed the inclusion criteria
with decreasing timeline (from left to right).

Table IV. Classification of studies with respect to our research questions.

RQ # of References
studies

RQ1 23 [2, 3, 5, 10, 14, 16, 18, 20, 21, 23, 25, 27, 28, 30, 31, 32, 36, 38, 45, 49, 51, 55, 56]
RQ1.1 17 [2, 3, 5, 10, 16, 18, 21, 25, 27, 28, 30, 31, 32, 45, 51, 55, 56]
RQ2 27 [2, 5, 7, 10, 12, 13, 14, 16, 18, 20, 21, 23, 25, 27, 28, 29, 30, 31, 32, 36, 38, 45, 49, 51, 53, 55, 56]
RQ3 13 [2, 5, 7, 14, 18, 20, 23, 32, 38, 45, 49, 53, 56]

levels by describing the tool that supports the transformation [2, 3, 5, 10, 16, 27, 38, 51, 56]; studies362

that described procedures for transforming test cases from models to code [14, 21, 25, 28, 30, 31, 32,363

45, 55]; and, studies that just reported that test cases developed at the model level are then applied to364

test the code [18, 20, 23, 36, 49]. Studies from the three groups are discussed in the sequence.365

With respect to studies that described tools, Stürmer et al. [51] developed tools to automatically366

transform test cases based on executable models. The study reported on test vectors generated for367

Simulink and Stateflow14 models that can be automatically executed on auto-generated C code368

with support of a tool called Mtest. Their approach allows the model elements to be traced to code,369

including changes performed by a model-to-code transformation optimizer. However, the authors did370

not give technical details on how Simulink and Stateflow models are turned into code, or how test371

vectors are transformed into code.372

14http://www.mathworks.com/products/stateflow.html – accessed in June, 2023.
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Veanes et al. [56] presented details of the Spec Explorer15 tool that uses a state model (specified in373

a language named Spec#) to derive abstract test cases. Spec Explorer employs algorithms similar to374

those of explicit state model checkers to explore the machine’s states and transitions; the automatically375

generated abstract tests are further converted into concrete tests. The authors defined a set of rules376

to map what they call action methods (at the model level) to concrete methods present in the actual377

system under test.378

Mohalik et al. [38], also in the context of Simulink and Stateflow models, developed the379

AutoMOTGen test generation tool. AutoMOTGen transforms Stateflow models into code written380

in the SAL language, which underlies the generation of test cases. Test coverage requirements are381

encoded as goals in SAL to establish traceability, and a model checking engine is utilized to generate382

test cases from counter-example traces. The tool generates test cases to satisfy block coverage,383

condition coverage, decision coverage, and MCDC. The generated test cases are directly used to test384

the code produced from the models.385

Camus et al. [10] employed the SCADE tool suite16 to automatically transform model-based test386

cases to be directly applied to source code. The Model Test Coverage17 (MTC) tool was employed to387

run tests and collect model coverage data. They also applied structural code coverage analysis on the388

code. When applying the resulting test cases to code, the code coverage can be used as a measure of389

conformance to standards such as DO-178C/DO-331.390

Amalfitano et al. [2] studied test cases that were automatically generated to provide “full coverage”391

(such as the coverage of all states, all transitions, and all paths) of UML state machines and then run392

on automatically generated Java code. They employed the Conformiq Designer tool18 to generate393

test cases at the model level, and then automatically transform model-level test cases into code. In394

another research initiative, Amalfitano et al. [3]395

reported on a relatively simple experiment to probe into the difference between model and code396

coverage for four different state machine models and eight test sets. They specified test cases in397

an ordinary spreadsheet that is automatically processed by a legacy, homemade, unnamed testing398

environment; the same test cases are executed at both model and code levels.399

Koch et al. [27] presented the Scilab/Xcos XTG19 tool. It supports the Durak et al.’s [16] X-400

in-the-loop testing pipeline for model-based development of parallel real-time software that runs401

on multicore processor architectures tailored to the avionics industry. Scilab/Xcos XTG enables402

back-to-back testing by injecting automatically generated code into the model elements, thus allowing403

enhanced simulations to be carried out at the model level. It also generates input test data and expected404

output that can be used to exercise the model and the code at various phases of the model-based405

testing workflow. In both studies, a single example was outlined, without any further empirical406

assessment.407

Aniculaesei et al. [5] compared the fault revealing capability of test sets automatically generated408

with a commercial tool (the SCADE tool suite16 and an academic, open-source tool (NuSMV) that409

applies the model checking approach. Both tools turn models and test cases generated at the model410

level into C code, and the study assessed the effectiveness of the test sets based on their mutation411

scores.412

Regarding studies that described procedures for transforming test sets from models to code, Pretschner413

et al. [45] provided clear information about model-to-code transformation of test sets. The study414

describes a compiler that transforms abstract, model-level test cases to concrete, code-level test cases.415

Model-level test cases are automatically generated based on program specifications written in a416

15https://marketplace.visualstudio.com/items?itemName=SpecExplorerTeam.
SpecExplorer2010VisualStudioPowerTool-5089 – accessed in June, 2023.

16http://www.ansys.com/products/embedded-software/ansys-scade-suite – accessed in
June, 2023.

17https://www.ansys.com/training-center/course-catalog/embedded-software/
introduction-to-ansys-scade-test-model-coverage-for-scade-suite – accessed in June,
2023.

18https://tinyurl.com/mr3bx8sv – accessed in June, 2023.
19https://www.scilab.org/software/xcos – accessed in June, 2023.
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constraint logic programming language. Some of their test cases were generated automatically, some417

from models and some from code, some randomly, some with functional testing criteria, and some418

by hand. They found that test cases generated from models found more faults, especially faults that419

resulted in changes to requirements.420

Kirner [25] theoretically addressed the problem of preserving structural code coverage after421

transformations that are applied by automatic code generators and compilers. The key idea is that422

program properties must be maintained when program P1 is transformed into program P2, so that the423

structural coverage on P1 is preserved in P2 with the same test data. The author defined formal rules424

based on coverage criteria (statement coverage, decision coverage, and MCDC), a set of coverage425

preservation rules, and a set of code optimizations. Kirner’s study presents examples on Simulink426

models.427

Fraternali and Tisi [21] developed an MDE approach that addresses a series of model-to-model428

and model-to-text transformations to automatically generate test cases at the model level, then429

transform them to the code level. At the highest abstraction level, the Computation Independent430

Model (BPMN20), models are handled in two transformation streams, system and test model. At the431

lowest abstraction level, the Platform Specific Model, their tool produces Java code and web test432

scripts for a tool called WebTest.21 The test scripts are updated by mappings that can be applied after433

changes take place in the system models.434

Similarly to Fraternali and Tisi’s MDE approach [21], Lamancha et al. [28] extended a previously435

implemented framework to automatically derive code-level test cases from model-level test cases.436

The framework first does a model-to-model transformation from UML to UML Testing Profile437

models, then uses the MofSCript22 tool to transform the abstract tests to JUnit23 or NUnit24 test438

cases.439

Li and Offutt [31] introduced the STALE25 framework to automatically transform test cases from440

the model level to the code level. Unlike approaches such as the one by Camus et al. [10], STALE441

handles non-executable models (statecharts) that are typically transformed into source code by hand.442

Li and Offutt created a language named STAL (Structured Test Automation Language), based on443

which testers created model-code-transformations for piecewise test components. These components444

were then assembled automatically to create JUnit23 test scripts. In a subsequent study, Li and Offutt445

[32] employed the STALE framework to investigate test oracle strategies, empirically evaluating446

how much of the program state should be evaluated in automated tests, and when the evaluation447

should be done. Li et al. [30] later presented the skyfire26 MBT tool to support automatic generation448

of Cucumber27 test scenarios. This approach included manual effort to define the Cucumber steps449

that are further automatically handled by skyfire to produce Cucumber test scenarios based on the450

abstract tests produced by STALE.451

Vanhecke et al. [55] described an approach that is embedded in the AbsCon (Abstract test case452

Concretizer) tool. The approach consists in generating executable test cases from abstract definitions.453

Abstract tests are initially defined in an XML file in which each test case is described as a sequence454

of actions and assertions regarding the system under test. Concrete tests are generated as Python455

scripts that execute the verification steps and sequences of assertions.456

Drave et al. [14] presented an approach to manage requirements, design, and test. The approach457

emphasizes the technical aspects of the models that appear in the different layers of the V-Model.458

According to the authors, by ensuring consistency among the models in these different layers it459

is possible to turn high-level test representations into lower level representations automatically.460

20http://www.bpmn.org/ – accessed in June, 2023.
21https://daveparillo.github.io/webtest/manual/WebTestHome.html – accessed in June,

2023.
22https://marketplace.eclipse.org/content/mofscript-model-transformation-tool –

accessed in February, 2022.
23http://junit.org – accessed in June, 2023.
24http://nunit.org/ – accessed in June, 2023.
25http://cs.gmu.edu/˜nli1/stale/ – accessed in June, 2023.
26http://github.com/mdsol/skyfire – accessed in June, 2023.
27http://cucumber.io/ – accessed in June, 2023.
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As a proof-of-concept, the authors described how their approach can be implemented in a461

modeling environment agnostic fashion through a configurable tool chain that can render functional462

requirements modeled using activity diagrams, state charts, and sequence diagrams into executable463

test cases for various outputs. Therefore, although Drave et al. emphasized the description of the464

proposed approach, they also provided some insights into how their approach can be realized.465

Regarding studies in which the authors stated that test cases developed at the model level are also466

applied to test the code, however without providing details of the test transformation, Shokry and467

Hinchey [49] concluded that test cases randomly generated at the model level provide low code468

coverage, but did not provide details. Matinnejad et al. [36] applied nine test cases generated at the469

model level in practice at the HIL stage, but did not provide details either. Eriksson and Lindström470

[18] proposed new model-based coverage criteria that are computed from executable xtUML28471

models. They continued the work of Eriksson et al. [19] by generating logic-based test cases at the472

platform-independent level using xtUML. Eriksson and Lindström’s approach comprises measuring473

coverage at the model level by first creating model-level predicates that capture the predicates that474

would appear during model transformation to code. This allows test coverage to be measured at the475

model level. In that study, for a single subject application from the avionics domain, the authors476

reported on the coverage achieved by a test set generated at the model level and re-executed at the477

code level. However, neither that study nor a prior study on the same project [20] provided details of478

how the test set is mapped across the abstraction levels. Finally, Kalaee and Rafe [23] mentioned that479

test cases generated at the model level, based on graphs and transformation rules, can be transformed480

into sequences of method invocations, but the authors did not elaborate on it.481

To summarize the RQ1-relevant studies, we identified the following two perspectives regarding the482

transformation, or reuse, of test cases generated at the model level to test, or evaluate, the code derived483

from models: fully-automated transformation and execution of test cases, and partially-automated484

or manual transformation of test cases with subsequent automated execution. Both perspectives are485

following summarized.486

• Test cases are fully automatically transformed from model into code by using specific industrial487

or tailor-made tools. Software specifications are automatically transformed into code, and test488

cases generated to cover the specification are automatically applied to code without manual489

intervention [2, 3, 5, 10, 16, 27, 38, 51, 56].490

• Abstract, model-level test cases are transformed into concrete, code-level test cases after491

stepwise model-to-model and model-to-code transformations that are performed either492

automatically or by hand. The concrete tests are then run directly on the code [14, 21, 25, 28,493

30, 31, 32, 45, 55].494

5.2. Discussion Regarding RQ1.1: What is required of the model-to-code transformation to support495

the transition from model level tests to code level tests?496

Transforming abstract tests that were created from the model into concrete tests on the code can497

be complicated and challenging. The extent to which the rules and process of turning models498

to code support the transformation of abstract tests to concrete tests varies. RQ1.1 asks what499

is required from these transformations. This was discussed in 17 studies that supported our500

answer to RQ1. While four studies [2, 21, 28, 45] followed the MDE approach, the other 13501

studies [3, 5, 10, 16, 18, 25, 27, 30, 31, 32, 51, 55, 56] used various approaches to transformations.502

These two groups of studies are next described and discussed.503

Regarding studies that addressed MDE, they all require model-to-model transformations to create test504

models that form the basis for test generation and transformation down to the code level. For example,505

Pretschner et al.’s approach [45] transforms extended finite state machines into specifications written506

28http://xtuml.org/ – accessed in June, 2023.
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in a constraint logic programming language from which the test cases are generated. Then, a compiler507

transforms abstract, model-level, test cases into concrete, code-level, test cases, which are executed508

on the software under test (written in C).509

The approach by Amalfitano et al. [2] requires executable system models, which allow testing510

models to be automatically generated. The testing models then underlie the generation of test cases511

at both the model and code levels. The authors work in a Model Driven Architecture29 development512

context and employ the Conformiq Designer tool30 to automatically generate and transform model-513

level test cases down to code.514

In the approach of Fraternali and Tisi [21], a series of model-to-model and model-to-text515

transformations is applied to automatically generate test cases for models and code. At the516

Computation Independent Model (CIM), or model level, they transform BPMN31 models into517

BPMN-Test metamodels. They utilized WebML32 at the Platform Independent Model (PIM) level518

and the WebML-Test metamodel for test cases. Finally, test cases are represented as scripts at the519

Platform Specific Model (PSM) or code level. Vertical transformations of test cases between the520

levels (CIM to PIM to PSM) are synchronized with the corresponding model transformations using521

horizontal mappings.522

Similarly to Fraternali and Tisi [21], Lamancha et al. [28] exploited a model-to-model523

transformation of UML models to UML Testing Profile models, from which test cases for the524

model level are generated. Subsequently, model-to-text transformations automatically produces test525

cases in a variety of languages; examples are test scripts that follow the JUnit33 style.526

Regarding studies that used various approaches to transformations, Stürmer et al. [51], for instance,527

addressed the issue of reusing test sets across abstraction levels, suggesting that the specifications528

of model-to-code optimizations should be available. This allows model elements to be traced to529

auto-generated code elements, including elements omitted from or inserted into the code through530

optimizations.531

The approach proposed by Veanes et al. [56] needs human intervention for transforming (i.e.532

binding) model elements (i.e. action methods in the model) into code elements (methods with533

matching signatures in the SUT).534

In a theoretical study, similarly to what was proposed by Stürmer et al. [51], Kirner [25] also535

considered optimizations, suggesting that the code generator must conform to a set of rules that are536

derived from a coverage profile. For that, the author initially defined formal rules based on some537

coverage criteria (statement coverage, decision coverage, and MCDC), a set of coverage preservation538

rules, and a set of code optimizations. Based on the formal rules, a coverage profile is created and539

integrated into a code transformer.540

Li and Offutt [31] assumed non-executable behavioral models such as UML state machines, which541

do not contain details such as objects, parameters, actions, and constraints. They employed the542

STALE34 framework to manually write code in the STAL language to define mappings between543

abstract (model-level) and concrete (code-level) elements, so that abstract and concrete execution544

paths can be automatically generated by STALE. Example mappings are a UML action mapped to a545

Java method call, and an initialization of a UML object mapped to a Java object creation. The authors546

extended that work to use the skyfire35 tool to generate Cucumber test scenarios for different types of547

applications [32] [30].548

In the context of code written in imperative languages (for instance, C) automatically generated549

from data-flow models (such as in SCADE36), while considering data-flow coverage at the model550

29http://www.omg.org/mda/ – accessed in June, 2023.
30https://tinyurl.com/mr3bx8sv – accessed in June, 2023.
31http://www.bpmn.org/ – accessed in June, 2023.
32https://www.ra.ethz.ch/cdstore/www9/177/177.html – accessed in June, 2023.
33http://junit.org – accessed in June, 2023.
34http://cs.gmu.edu/˜nli1/stale/ – accessed in June, 2023.
35http://github.com/mdsol/skyfire – accessed in June, 2023.
36http://www.ansys.com/products/embedded-software/ansys-scade-suite – accessed in

June, 2023.
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level, Camus et al. [10] stated that “it has been verified in practice for complex models that tests551

covering the model also cover the code generated from that model, except few [sic] systematic cases552

which are predictable and justifiable.” These systematic cases include refinements of the model553

coverage criteria such as addressing numeric aspects (which would allow performing analysis of554

singular points) and handling delays (which would allow assessment of sequential logic). With these555

refinements implemented, the authors state that one could provide formal evidence of model-to-code556

coverage being preserved in conformance with DO-331 FAQ#11, hence eliminating the need to557

double-check structural coverage at the code level.558

Eriksson and Lindström [18] found that software engineers need explicit model-to-model559

transformation rules that turn implicit predicates in the model into explicit predicates. Such rules560

ensure that structural coverage at the model level is preserved during transformation down to the561

code level. One example is an implicit loop structure at the model level, which is transformed into an562

explicit loop in the code, with a predicate being introduced. The new code level predicate must be563

covered, even though it did not exist at the model level.564

Durak et al.’s and Koch et al.’s approach [16, 27] relies on the called Scilab/Xcos37 tool chain to565

generate test cases for models and re-executing them to test the code. In their approach, the code must566

be automatically generated from the models by the Scilab/Xcos tool. Amalfitano et al. [3] utilized567

ordinary spreadsheets to specify test cases that can be executed at both levels. The spreadsheet is568

automatically processed by a legacy, homemade testing environment. To allow it, the code must be569

automatically generated from MATLAB/Simulink38 models, but the authors did not provide further570

details about how tests are handled in the legacy testing environment.571

In Aniculaesei et al.’s approach [5], system requirements must be formalized in the Linear Temporal572

Logic (LTL) language, which then underlies the generation of test cases. As long as the same set of573

requirements are used as a basis for modeling the system with the Scade39 language, both models are574

assumed to be consistent, and automatic system and test code generation allows for the execution of575

the test cases at the code level.576

Similarly to the approach proposed by Veanes et al. [56], For Vanhecke et al. [55], transforming577

test cases from model into code initially requires the definition of abstract test cases in XML by578

utilizing mappings for the interface, actions, and assertions of the system under test. The abstract579

tests are later transformed into concrete tests that encompass verification steps and sequences of580

operations that interact with the system under test.581

Drave et al. [14] proposed an approach that is modeling environment agnostic in the sense that the582

approach does not prescribe a modeling environment. To provide the software tooling that supports583

such approach, the authors used the MontiCore language workbench to develop a domain specific584

language tool, termed activity diagram (AD) for SMArDT40 (AD4S). Additionally, the authors585

developed a parser that can transform ADs in extensible markup language (XML) into AD4S. In586

this context, the output of a given modeling tool has to be transformed to XML before being parsed587

into AD4S. AD4S turns the XML representation of models into another textual representation (i.e.588

AD4S-representation), which in turn can be used to derive test cases that can be stored in a format589

that is executable by functional test execution tools.590

In summary, the following sources of information are required to map the test cases across the591

abstraction levels:592

• Formal model-to-model transformations are needed to produce executable test models, typically593

in the context of MDE development approaches. Such test models are aligned with the system594

models and underlie the generation of test cases that can be either executed on models as well595

as code, or exclusively on the code. When tests are executed on the code, the model-level test596

cases are abstract.597

37https://www.scilab.org/software/xcos – accessed in June, 2023.
38http://www.mathworks.com/products/simulink.html – accessed in June, 2023.
39http://www.ansys.com/products/embedded-software/ansys-scade-suite – accessed in

June, 2023.
40A more in-depth discussion of SMArDT is presented in Subsection 5.3.
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• The transformation rules performed by model-to-code generators must be explicit to clarify the598

correspondence between model and code elements. Such transformations include optimizations599

performed by compilers while transforming model elements into code elements, and the600

generation of code from model elements that have implicit predicates. The rules can be created601

either automatically or by hand.602

5.3. Discussion Regarding RQ2: How are tests generated from the model specifications (e.g. UML603

or Simulink)?604

Through our investigation of RQ2, we delved into the implications of transforming high-level test605

models into lower-level test code. We contend that the challenges of model-to-code transformation606

differ from conventional compiler design, as mentioned in Subsection 3.1. Unlike for traditional607

compilers for imperative programming languages, there are no established approaches to evaluating608

the correctness of artifacts generated by model-to-code transformers: transforming models into609

code requires a more nuanced approach than a straightforward, stepwise transformation from the610

model representation into code. To gain a better understanding of this transformation process,611

it is key to understand approaches to developing model-to-code transformers. We surmise that612

understanding how model-to-code transformers turn models into code can help testers focus on613

edge cases that are often neglected during model-based testing. With those concerns in mind, we614

hereafter discuss representative studies41 that helped us answer RQ2 in four groups, as follows:615

studies that explored stepwise model transformation but still require human intervention in the last616

transformation steps [30, 31, 32, 45, 55]; studies that automated test case generation all the way to617

code generation [2, 5, 7, 12, 13, 14, 18, 20, 21, 25, 28, 29, 38, 45, 49, 53]; studies that relied on618

executable model and code [10, 18, 28, 51]; and, finally, studies that dealt with test case generation619

from models in ways that differ from the others discussed in this section [16, 23, 27, 36, 56].620

Regarding studies that explored stepwise model transformation but still require human intervention621

in the last transformation steps, these approaches are semiautomatic given that human intervention is622

required in the final stage of transforming a lower-level model representation into code. For instance,623

Li and Offutt [32] generated test cases that cover all transitions (edge coverage) and all 2-transition624

sequences (edge-pair coverage [4]) on UML state machine diagrams. The STALE42 framework first625

turns UML state machines into general graphs (model to model). Abstract tests are generated to626

cover the graphs. The abstract tests include transitions and constraints (based on state invariants).627

Testers provide mapping rules, which are sequences of method calls to represent transitions in the628

statechart, which are assembled to transform abstract tests into concrete tests.629

Li et al. [30] improved on STALE by further automating the test case generation step. The resulting630

framework, named skyfire,43 is built on STALE, but generates concrete tests directly from the graphs631

in the form of Cucumber test scenarios. Skyfire generates test cases that satisfy graph coverage632

criteria and transforms test cases into Cucumber scenarios. Nevertheless, similarly to AbsCon [55],633

this approach is semiautomatic given that testers have to write the Cucumber mappings for the634

generated scenarios.635

In another research initiative, the AbsCon (Abstract test cases Concretizer), by Vanhecke et al. [55],636

was designed to turn abstract tests into concrete ones. The tool’s test case concretization process maps637

assertions and actions in abstract tests to verifications and sequences of operations (i.e. concrete tests),638

respectively, that exercise the SUT through the test API. However, the process of turning abstract639

tests into concrete test scripts is not fully automated, it requires tester intervention. Specifically,640

before turning assertions and actions, which are defined in XML, into concrete tests in Python, testers641

must provide the following additional information: the test API model for executing the SUT, the642

path to the Python files that implement the SUT model and the mapper for the chosen API, and a643

CSV file with input values (i.e. test case values).644

41We did not describe all studies to avoid too much overlap with the descriptions we did for the other RQs.
42http://cs.gmu.edu/˜nli1/stale/ – accessed in June, 2023.
43http://github.com/mdsol/skyfire – accessed in June, 2023.
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Regarding studies that automated test case generation all the way to code generation, some645

approaches, such as the one by Conrad [12], ensure that models are transformed into functionally646

equivalent code. Conrad, for example, exploited a testing-based approach to gauging the functional647

equivalence of the model and the resulting code. In a previous work, Conrad et al. [13] emphasized648

test case generation in the context of back-to-back testing of electronic control unit (ECU) software.649

This type of test emphasizes the equivalence between the test object (i.e. model) and its reference (i.e.650

generated code).651

Fraternali and Tisi [21] developed a multi-level test generation approach, and a transformation652

framework to align two streams of transformation, from computation independent models to code,653

and from computation independent test specifications to executable test scripts. The test scripts are654

updated by mappings that can be applied when model changes take place.655

The approach proposed by Lamancha et al. [28] is stepwise in the sense that it applies model-to-656

model transformations and then model-to-text transformations. The approach turns high-level UML657

2.0 representations (i.e. sequence diagrams) into test case scenarios that conform to the UML Testing658

Profile 2 (UTP2), and then model-to-text transformations are applied to the UTP2 models to render659

these models into text (i.e. code). According to the authors, the model-to-text transformation step660

allows for the generation of test cases in a variety of programming languages owing to the fact that it661

is implemented with MOFScript, which is an OMG standard.662

Tekcan et al. [53] also devised a twofold approach to turning a high-level representation into663

executable test code. Specifically, in the proposed user-driven test case generation approach test664

cases are first represented as states and state transitions in XML files, and then these XML files are665

transformed into Python scripts.666

Drave et al. [14] developed a method to manage requirements, design, and test in automotive667

industry. The specification method SMArDT leverages model-based software engineering techniques668

with the aim of mitigating the deficiencies of the established V-Model. The method is based on669

the premise that consistency checking between layers and test case generation (and regeneration)670

helps developers and testers cope with the bureaucracy imposed by the classical V-Model. The671

authors posited that consistency among specification artifacts between layers enables automatic672

transformation of test cases to lower levels. To realize the method in a modeling environment agnostic673

fashion, the authors put together a configurable tool chain that can turn functional requirements674

modeled using activity diagrams, state charts, sequence diagrams, and internal block diagrams from675

various formats into executable test cases for various output formats.676

Some researchers have also turned their attention to the formal verification technique of model677

checking to derive test cases automatically. Essentially, model checking hinges on the capability of678

model checkers to exhaustively probe into the state space of the SUT and generate test cases that are679

based on traces or counter-examples of properties specified by the SUT’s model. Therefore, model680

checking based test generation is built on the assumption that by thoroughly exploring the state681

space it is possible to achieve complete coverage and determine unreachability of model elements.682

AutoMOTGen, by Mohalik et al. [38], is an example of tool that has been developed to automatically683

generate tests from Simulink/Stateflow models using model checking. Aniculaesei et al. [5] sought684

to explore model checking for the automatic generation of test cases based on requirements for test685

cruise control systems for the automotive industry. Essentially, the authors devised an approach in686

which system requirements are formalized into Linear Temporal Logic (LTL) language requirements,687

which is then used to generate test cases. Additionally, if the same set of requirements underlies the688

modeling of the system with the Scade language, both models are assumed to be consistent, hence689

automatic system and test code generation allows for the execution of the test cases at the code level.690

Some studies rely on executable models and code; these studies assume that test cases can be691

generated and run on the models, and that the resulting test cases can be transformed into code or692

directly executed, depending on the syntax. The approaches investigated in such studies include test693

code generators whose inputs and outputs are executable models. Stürmer et al. [51], for instance,694

devised an approach in which test cases comprise a test model in Simulink/Stateflow and the input695

values are called test vectors. Input values are used to check the functional equivalence between the696

model under test and the auto-generated C code. As mentioned, the authors built a tool (i.e. Mtest) to697
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map model elements to code so test cases can be executed in both artifacts, allowing for optimizations698

during code generation, as long as the optimizations are clearly specified. This allows the model699

elements to be traced to code, including changes by the optimizer. The model and the code generated700

from it can be considered functionally equivalent if they both lead to compatible output data when701

executed with the same input data [51].702

Lamancha et al. [28], as another example (and previously described in this section), devised a703

framework that, after transforming UML models into UML Testing Profile44 models, can derive the704

source code of the test cases from the testing profile models.705

With respect to other studies that addressed research on test case generation from models, it is worth706

noting that some model representations used internally may not be readily executable. Nonetheless,707

integrated tool environments for model exploration and validation, test case generation, and test708

execution against an auto-generated implementation of the system under test can be developed. An709

example of such an integrated tool environment is Spec Explorer, by Veanes et al. [56], which is710

a tool for testing reactive, object-oriented software systems. In the context of Spec Explorer, the711

system’s behavior is described by models written in the language Spec# (an extension of C#) or712

AsmL. Fundamentally, a model in Spec# defines the state variables and update rules of an abstract713

state machine. Spec Explorer employs algorithms similar to those of explicit state model checkers to714

explore the machine’s states and transitions, which results in a finite graph containing a subset of715

model states and transitions. This graph-based representation is then used for test case generation.716

Spec Explorer allows for two test case execution modes: offline (i.e. when test generation and717

execution are seen as two independent phases) and online (i.e. which integrates test generation and718

test execution into a single phase). Online execution incorporates a sort of feedback loop in which719

immediate results from test execution are used to further guide the test generation process. Thus, as720

pointed out by the authors, executable models are not crucial to developing tools that can further721

refine test case generation.722

Search-based testing has also been explored in the context of MBT [23, 36]. Matinnejad et al.723

[36] investigated how a search-based technique based on random search, adaptive random search,724

hill climbing and simulated annealing algorithms can be used to identify worst-case test scenarios725

which are utilized to generate test cases for requirements that characterize the behavior of continuous726

controllers. Similarly to Matinnejad et al. [36], Kalaee and Rafe [23] examined how search algorithms727

can be applied to generate test sets from graphs. The proposed approach is tailored to systems that728

are specified as graph transformations.729

Koch et al. [27] and Durak et al. [16] designed tools to support the X-in-the-loop testing pipeline,730

and both tools generate test cases from Scilab/Xcos models. At the model level, test cases are731

automatically generated for individual and integrated components. The authors refer to test generation732

for integrated components as model-in-the-loop (MIL). These test cases hinge on what the authors733

termed “a number of plausible scenarios” which are derived from decision trees that formally734

represent the integrated models. The results of the tests performed at the model level are subsequently735

used as “reference” for software-in-the-loop (SIL) testing of auto-generated code.736

To summarize, we found that most of the selected studies deal with test case generation from737

models. However, there are important differences in the way high-level models are turned into738

lower-level test cases and how the resulting test cases are used:739

• Some test case generation approaches emphasize model-to-model transformations, thus the last740

step to transform to code has to be semiautomatic. Testers have to bridge the gap between the741

lowest model level and code by specifying how certain model elements should be transformed742

into code, for example, by mapping a graph to a sequence of method calls.743

• Some approaches automate test case generation all the way to code generation by performing744

stepwise model refinements until they reach a low-level model representation that is suitable745

for code generation.746

44https://www.omg.org/spec/UTP/1.2/About-UTP/ – accessed in June, 2023.
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• As long as both model and code are executable, another common approach entails deriving747

test cases from models and then applying these test cases to the auto-generated code. Some748

approaches utilize the model-level test cases to create low-level test cases that can be executed749

to test the auto-generated code.750

5.4. Discussion Regarding RQ3: How does the coverage of the model produced by abstract tests751

relate to the coverage of the code for the corresponding concrete tests?752

When models are transformed to code, whether automatically or by hand, it is imperative that the753

behavior defined in the model is preserved in the code. Likewise, even though computing the coverage754

of artifact-specific constructs with particular tools may result in diverging coverage results, it is755

important that we maintain high degree of coverage when transforming test cases from the model to756

the code level.757

Models and code use structural elements to represent the underlying logic, albeit at different levels758

of abstraction. Models, for example, use high-level structures such as activity diagrams to represent759

the steps and branching logic (i.e. decisions) involved in a specific behavior. Code represents the760

procedural logic that manipulates data and implements specific behavior using lower-level constructs.761

As a result, the similarity between models and code is found in their use of structures to represent the762

logic of the system. We believe that to answer RQ3, it is necessary to consider the following points.763

Firstly, can model-level decision coverage results be extrapolated to branch coverage at the code764

level? Secondly, are there any high-level constructs that represent behavior in an implicit fashion?765

Implicit behavior at the model level can interfere with model-to-code transformations, and as a result,766

implicit behavior at model level may not be included in the resulting code representation. This can767

impact coverage when models are transformed into code. Finally, while there is some overlap in how768

models and code represent decisions, is this overlap sufficient to result in the same number of test769

requirements? In order to answer RQ3, we have examined these subquestions in the context of the770

empirical research presented in the selected studies. We framed the aforementioned subquestions as771

follows:772

1. Given the structural similarities between code and models, can we expect correlation between773

model and code coverage?774

2. Models tend to have some implicit behaviors, for example, conditional behavior that does not775

appear as predicates. What are the implications with respect to coverage when we transform776

the models into code?777

3. What happens to the number of test requirements when we transform models to code? Does778

the code have more, fewer, or the same number of test requirements?779

We found that 13 of the selected studies address RQ3 [2, 5, 7, 14, 18, 20, 23, 32, 38, 45, 49, 53, 56].780

In what follows, we describe and discuss studies that elaborated on different aspects related to781

the implications of applying model-based tests to code automatically generated from models782

[2, 5, 7, 18, 20, 32, 38, 45], and studies that only briefly mentioned coverage at both abstraction levels783

(namely, model and code) [14, 23, 49, 53, 56]. Then we draw answers to the three aforementioned784

subquestions.785

Regarding studies that elaborated on different aspects related to the implications of applying model-786

based tests to code automatically generated from models, Baresel et al. [7] studied the relation787

between requirements and structural coverage at both the model and the code levels. The authors788

report on empirical coverage results for model (Simulink/Stateflow) and code (C) of three functional789

modules of an automotive system. They found a strong correlation between model and code coverage790

in terms of achieved percentages of coverage. Other studies we describe in the sequence, however,791

found a substantial difference in the number of test requirements when performing model-to-code792

transformations, particularly when models have implicit behaviors that are transformed into decisions793

and loops in code that have explicit predicates. The introduced predicates create new code-level test794

requirements.795
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Pretschner et al. [45] argued that it is key to make behavior explicit at model level (i.e. akin to796

the introduction of model-level predicates to make implicit semantic assumptions explicit). The797

results of their experiment would seem to suggest that, when behavior is made explicit at model level,798

automatically generated test sets are able to uncover as many faults as handcrafted model-based799

test sets with the same amount of test cases. In terms of test requirements, Pretschner et al. noted800

that the implementation (C code) contained 47% less decision/condition (C/D) required transitions801

when compared to the modeled system (System Structure Diagram and Extended Finite State802

Machines). Furthermore, the results show that there is a moderate positive correlation between model803

and implementation C/D coverage, a moderate positive correlation between C/D implementation804

coverage and fault detection, and a strong positive correlation between C/D model coverage and805

failure detection.806

Eriksson et al. [20] addressed the issue of implicit conditional behaviors at the model level. They807

devised model-to-model transformation rules that turn implicit predicates into explicit predicates at808

the model level, thereby ensuring that structural coverage achieved at model level is preserved at809

the code level. These transformation rules resulted in near 100% code-level MCDC coverage. Thus,810

although model-level test cases generated from the original model may not be enough to guarantee811

code-level coverage, they can be augmented in clearly defined ways to achieve coverage. Regarding812

the number of test requirements, for the original artefacts (i.e. without applying the devised rules)813

they found 67% additional logic-based test requirements from the code compared to the design814

model, whereas this percentage dropped to near 0% when the rules were applied.815

By building on previous work [19], Eriksson and Lindström [18] devised an approach that addresses816

test generation for executable UML (xtUML) models. It includes two new logic-based testing817

coverage criteria for models (namely, all navigation and all iteration). The new criteria aim at818

covering the implicit predicates that logic-based criteria miss. For example, by using only predicate-819

based criterion in one of the six applications addressed in their previous study [19], the number of820

test requirements increased 51% when xtUML models are transformed to code. In Eriksson and821

Lindström’s approach, coverage measurement at the model level is enabled by introducing model-822

level predicates that capture predicates that would appear during model-to-code transformations.823

The results from a single application demonstrated that coverage measured at the model level can824

accurately predict coverage at the code level. This is particularly important for logic-based testing,825

since coverage at the code level is often required.826

Mohalik et al. [38] shed some light on how AutoMOTGen compares to Reactis (which is a827

commercial tool that implements a combination of random input-based and guided simulation-828

based techniques for test case generation) in terms of test coverage. According to the results of829

industrial case studies, the test case generation techniques employed by both tools can be seen as830

complementary. Specifically, AutoMOTGen performs better (i.e. achieves higher coverage) for about831

one third of the cases, while Reactis shows higher coverage for about other third of the cases. As832

for the rest of the cases, the coverage obtained by both tools seems to be roughly equal. A closer833

inspection of the results indicates that when models have more logic (i.e. switches and delay types of834

blocks) AutoMOTGen performs better than Reactis. As for models with more blocks of mathematical835

operations, Reactis seems to perform better in comparison to AutoMOTGen. This indicates that the836

technique implemented by AutoMOTGen is more suitable for covering paths with logical constraints.837

Additionally, when approximations have to be applied in order to handle complex mathematical838

operators, the coverage achieved by the test cases generated by AutoMOTGen suffers. Therefore, the839

authors postulate that AutoMOTGen and Reactis should be used together to achieve better coverage840

and unreachability guarantees.841

Amalfitano et al. [2] compared the model coverage achieved by the test cases at the model level842

with the coverage obtained by the test cases when run against the generated code. They found843

differences between model coverage on state machines and code coverage. They ran two test sets844

on four state machine models and their code. The test sets reached 100% coverage on states and845

transitions, but statement coverage varied from 48% to 75% and branch coverage from 25% to 52%846

on the code. Amalfitano et al. gave three main reasons for these differences: (i) the code generator847

added extra code for exception handling and debugging; (ii) model coverage was not enough to848
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guarantee code coverage; and (iii) the design of the models play a major role in the quality of the849

generated test cases. Their results indicate the major source of differences was code that added850

behavior that was not included in the model, even without explicitly showing the absolute number of851

test requirements at both abstraction levels.852

The approach proposed by Li and Offutt [32] renders state machine diagrams into general graphs,853

which are then used to generate abstract tests. The abstract tests are generated so as to satisfy graph854

coverage criteria: edge and edge-pair coverage. According to the experiment results, edge-pair855

coverage tests were not significantly stronger than the edge coverage tests. The authors believe that856

this is the case because edge-pair coverage did not entail many more mappings (i.e. test inputs) than857

edge coverage.858

Aniculaesei et al. [5] evaluated the coverage in terms of a mutation score. In their experiment,859

which used a single subject, the test set generated by the SCADE toolchain was able to kill roughly860

21% of the mutants (a very low mutation score of 0.21). After analyzing the causes that might861

have contributed to this low mutation score, the authors concluded that the system targeted in the862

experiment was only partially represented through LTL specifications.863

Regarding studies that only briefly mentioned coverage at both the model and the code levels, Spec864

Explorer, by Veanes et al. [56], derives test cases from graph-based models (dubbed model automata).865

The resulting test cases are generated in hopes of either providing some sort of coverage of the state866

space, reaching a state (i.e. node) satisfying some property, or traversing the state space randomly,867

likewise the coverage of the corresponding implementation under test which may be a distributed868

system consisting of subsystems, a (multithreaded) API, a graphical user interface, etc.869

Shokry and Hinchey [49] simply reported that randomly generated model-level tests provide low870

code coverage (around 32%). These findings were based on their own experience with the X-in-the-871

loop testing process. In a similar level of details, in a study in which test cases were first represented872

as states and state transitions in XML files, and then transformed into Python scripts, Tekcan et al.873

[53] mentioned coverage-related results without defining what they mean by “coverage”.874

Drave et al. [14] reported on the results of an experiment in terms of the fault-finding effectiveness875

of the proposed MBT as opposed to structural coverage-related results. More specifically, the authors876

carried out a case study to compare model-based test cases derived in the context of the tool chain877

environment that realizes SMArDT and manually created test cases. According to their results, the878

MBT approach generated test cases had a higher fault coverage (i.e. detected more faults) than the879

traditional hand-crafted test cases. The MBT approach was especially effective at generating test880

cases that uncover faults caused by inconsistent requirements. Nevertheless, neither the traditional881

nor the model-based test cases uncovered all faults. The authors do not elaborate on the structural882

coverage achieved by neither test set.883

Kalaee and Rafe [23] proposed a test case generation approach for graph transformation systems884

(GTS) that utilizes model simulation and search-based techniques. In this context, coverage is885

analyzed in terms of the all def-use criterion: specifically, data flow coverage criteria is determined886

by data dependencies between nodes in the graph. Initially, the approach creates a model of the887

GTS using graph transformation rules. The model is then simulated to generate the first test cases.888

Following that, the initial test suite is optimized through search-based techniques. The authors889

conducted an experiment to evaluate the effectiveness of their test case generation approach (using890

different meta-heuristic algorithms). According to the results of the experiment, the generated test891

sets can cover a significant portion of the GTS while keeping test generation cost low: on average,892

the best algorithm achieved 98.25% coverage, and the second best achieved 96.50% coverage.893

By revisiting RQ3, we draw the following answers to its three subquestions, respectively:894

• Empirical studies have shown a strong correlation between decision coverage at the model895

level and branch coverage at the code level. This answer relies on the few studies that have896

shed light on the implications that arise from the similarities between models and code. Often,897

these implications are discussed either in the light of the problem of preserving structural898

code coverage when transforming model into code, or in terms of the correlation between a899

high-level (i.e. model-based) testing criteria and a lower-level criteria (i.e. based on notions900
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of structural code coverage). From a model-to-code transformation viewpoint, when looking901

at the effect of model to code transformations on the test artifacts and the number of test902

requirements, it would seem that as the number of test artifacts increases, the test requirements903

for logic-based coverage criteria also increase accordingly [19]. From a criteria comparison904

standpoint, a study suggests that there is a need to combine high-level testing criteria (which905

are based on test requirements) with logic-based criteria [18]; in that study the overlap between906

these criteria is not straightforward since the test requirements come from different sources.907

Another study that empirically investigates the relationship between structural model and code908

coverage [7] showed that there is a strong correlation between decision coverage on model909

level and branch coverage on code level.910

• We found that models can have implicit test requirements represented by implicit predicates911

at the model level and these predicates are not affected by logic-based criteria applied at the912

model level. Nevertheless, studies suggest that deterministic rules applied during model-to-code913

transformation can make these predicates explicit, resulting in better structural coverage at the914

model level with relatively low additional testing effort. More specifically, some studies posit915

that models tend to have implicit test requirements [19, 20]. Specifically, implicit predicates at916

model level represent hidden controls and loops, which account for most of the implicit behavior917

in models. Therefore, the main implication with respect to model-to-code transformations and918

test coverage is that these implicit predicates are not affected by logic-based criteria, so they919

do not contribute any test requirements when such criteria are applied at model level. However,920

studies show that the hidden behavior in models can be made explicit by deterministic rules921

that can be applied by a model-to-code compiler during transformation. The results of these922

studies suggest that by making implicit behavior explicit it is possible to achieve structural923

coverage at model level that is closer to the coverage obtained at code level. Additionally, most924

implicit behavior when turned explicit tend to result in single-clause predicates, thus few extra925

test cases are needed and the ensuing test design activity is cheap.926

• Few studies reported on the increase in test requirements when implicit behavior in modeling927

structures is made explicit during model-to-code transformation. In particular, only three928

studies [18, 20, 45] provided details about the number of test requirements when models are929

transformed to code. The three studies addressed turning implicit behavior present in modeling930

structures (e.g. predicates) into explicit behavior at the code level, and how this leads to an931

increase in the number of test requirements in the code when compared to the corresponding932

model. Overall, these studies introduced approaches for making behavior explicit either through933

transformation rules to be applied to the model before it is transformed to code [20], coverage934

criteria for models [18], or by forgoing modeling structures that omit logic at the model935

level [45].936

5.5. Discussion Regarding RQ4: Which are the applied technologies and which are the software937

development tasks focused by studies that address mapping of tests across model and code938

levels?939

The discussion and conclusion for RQ4 are based on study classifications that rely on the MBT940

technology (e.g. , modeling language and tools) and software development tasks (e.g. , modeling and941

test coverage calculation). Note that even though the elements of the taxonomy (e.g. , the input and942

output languages) were defined in advance (as detailed in Section 3.4), the list of elements inside943

each category was constructed during the analysis of the selected studies. In other words, the list944

of elements grew over the course of our systematic review of the literature. At the end of the study945

analysis and data extraction, we revised the resulting categories to avoid ambiguity and remove946

duplicates.947

The results discussed in this section encompass (i) the modeling language, herein referred to948

as input language (Figure 3 and Table V), (ii) the source code or test specification language – i.e.949

the output language – used to encode artifacts that are generated with either automatic or manual950
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Figure 3. Input languages (for modeling).

model-to-code or model-to-model transformations (Figure 4 and Table VI), and (iii) the goal of the951

tools and frameworks used in the studies (Figure 5 and Table VII). Note that there is some overlapping952

in the results shown in the charts and tables, given that some studies used combined technologies953

and used tools for varying purposes. For instance, Baresel et al. [7] and Mohalik et al. [38] adopted954

Simulink and Stateflow as languages for creating models. As another example, Aniculaesei et al. [5]955

employed tools for modeling, test generation at the model level, and computing test coverage at the956

code level.957

Figure 3 shows the number of studies in which a given language was used for modeling purposes.958

Table V lists the respective studies. Simulink45 was the most used (nine studies), followed by Finite959

State Machines (FSMs) and Stateflow46 (four studies each). These three languages are more mature960

and have more automated support, so we were not surprised that they are widely addressed.961

Figure 4 summarizes the classification of studies with respect to the output language. The respective962

studies are listed in Table VI. The results for this study classification reflect the numbers presented963

in Figure 3. For instance, the toolkits that support Simulink- and Stateflow-based modeling usually964

support automatic generation of C code, which was the case of seven studies. FSMs are commonly965

employed to represent states of objects in object-oriented (OO) systems that are further implemented966

in C++ (three studies), Java (two studies), and Python (two studies) languages.967

Figure 5 displays the number of studies that utilized tools and frameworks for specific tasks in the968

MBT process. Table VII lists the respective studies. Examples are modeling (with 13 occurrences969

in our selected studies), test generation at the model level (twelve occurrences), and test coverage970

calculation at the code level (five occurrences).971

In summary, for studies that address, to varying degrees, the mapping of abstract tests to concrete972

tests:973

• Simulink and Stateflow, either individually or in combination, are by far the most commonly974

used input languages for system modeling.975

• C and C++ are the most explored output languages for model-to-code transformation, thus976

corroborating the findings regarding the input language.977

• Tools are mostly used for the modeling activity, generation of abstract tests, and test coverage978

computation (either at code or model level).979

45http://www.mathworks.com/products/simulink.html – accessed in June, 2023.
46http://www.mathworks.com/products/stateflow.html – accessed in June, 2023.
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Table V. List of studies with respect to the input languages.

Input Language # of studies References
Simulink 9 [3, 7, 12, 25, 29, 36, 38, 49, 51]
FSM 4 [2, 30, 32, 45]
Stateflow 4 [7, 12, 38, 51]
UML class diagrams 3 [14, 28, 55]
xtUML 3 [18, 19, 20]
custom (tailor-made) 2 [9, 55]
Scade 2 [5, 10]
Scilab/Xcos 2 [16, 27]
State machines 2 [31, 53]
UML sequence diagrams 2 [14, 28]
AsmL 1 [56]
BPMN models 1 [21]
Graph Transformation Specification 1 [23]
Labview 1 [49]
Linear Temporal Logic 1 [5]
SDF 1 [29]
Spec# 1 [56]
System Structure Diagram 1 [45]
Time-dependent signal 1 [13]
WebML 1 [21]

Figure 4. Output languages (for source code).

Table VI. List of studies with respect to output languages.

Output Language # of studies References
C 11 [3, 5, 7, 10, 12, 16, 25, 27, 29, 36, 51]
(General) Graphs 3 [30, 32, 56]
C++ 3 [18, 19, 20]
Java 2 [28, 31]
Python 2 [53, 55]
Scilab/Xcos 2 [16, 27]
XML 2 [14, 55]
BPMN-Test metamodel 1 [21]
C# 1 [56]
Constraint Logic Programming (CLP) language 1 [45]
Cucumber Scenarios 1 [30]
SAL 1 [38]
WebML-Test metamodel 1 [21]

Copyright © 2023 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2023)
Prepared using stvrauth.cls DOI: 10.1002/stvr



28 FERRARI ET AL.

Figure 5. Goal of used tools and frameworks.

Table VII. List of studies with respect to the goal of used tools and frameworks.

Goal of used tools and frameworks # of studies References
Modeling 13 [5, 10, 16, 18, 20, 21, 23, 27, 28, 28, 29, 45, 56]
Test generation (model) 12 [5, 7, 12, 14, 30, 31, 32, 38, 51, 53, 55, 56]
Test coverage (code) 5 [2, 5, 7, 18, 20]
Code generation (M2C) 4 [2, 12, 29, 51]
Others 3 [12, 13, 51]
Test execution (model) 3 [3, 12, 36]
Test transformation (M2C) 3 [2, 28, 51]
Test coverage (model) 2 [10, 12]
Test execution (code) 2 [53, 55]
Test generation (code) 2 [7, 51]

5.6. Summary of Findings980

A summary of the main findings of our study is provided in Table VIII. Regarding the established981

RQs, they complement each other given that the focus of our research is on investigating the982

consequences of transforming higher-level test models into lower-level test code. The RQs emphasize983

transformation details because we believe that by having a more complete understanding of associated984

nuances testers can have a better idea of how to improve test cases at both model and code levels. On985

the one hand, RQ1 and RQ1.1 are concerned with shedding some light on how high level test cases986

are rendered into lower-level test cases (i.e. code level). On the other hand, given that it is important987

to understand current approaches for developing model-to-code transformers and how the approaches988

turn models into code, RQ2 helped us summarize current knowledge regarding how model-level tests989

are derived from models. Furthermore, when models are transformed to code, whether automatically990

or by hand, it is important to maintain a high degree of coverage across the software abstraction991

levels, and this is addressed in our analysis concerning RQ3. Finally, the results for RQ4 establish a992

connection between the studies that corroborated the discussion and conclusions regarding the other993

RQs and the technologies employed in those studies.994

6. THREATS TO VALIDITY

We identify three types of threats to the validity of our study: (i) researcher bias during study selection,995

(ii) inaccurate data extraction, and (iii) researcher-induced bias during data synthesis. Data from a996

decade of SLRs in Software Engineering [59] indicates that threats to validity are usually described997
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Table VIII. Overview of the results and findings for each RQ.

RQ Summary of Key Findings

#1

• Test cases are transformed from a model representation into code using specialized tools.
Moreover, software specifications undergo transformation into code. The test cases to
cover the specifications are then applied to the code without the need for any manual
intervention.

• Transforming model-level test cases into code-level test cases involves stepwise model-to-
model and model-to-code conversions, which can be performed either automatically or
manually.

#1.1

• Model-to-model transformations are employed to generate executable test models. The
resulting test models are closely aligned with system models and serve as the foundation
for generating test cases that can be run on models and code.

• It is imperative that the transformation rules realized by model-to-code generators be
explicit, allowing for the identification of the relationship between model and code
elements.

#2

• Most of the studies focus on test case generation from models. There are differences in
how models are transformed into lower-level test cases and their subsequent utilization:

– Some approaches prioritize model-to-model transformations, requiring a
semiautomatic step to convert the model into code.

– Some approaches automate test case generation through stepwise model refinements,
gradually achieving a representation that aligns with the code’s abstraction level.

– When both the model and code can be easily executed, the prevalent approach
involves deriving test cases from models and subsequently executing these test cases
on the auto-generated code.

#3

• Studies have provided evidence of a strong correlation between decision coverage at the
model level and branch coverage at the code level.

• Models contain implicit test requirements represented by implicit predicates. These
predicates are not covered by logic-based criteria applied at the model level.

• Few studies reported on the increase in test requirements when implicit behavior in
modeling structures is made explicit during model-to-code transformation.

#4

• Simulink and Stateflow are by far the most commonly used input languages for system
modeling.

• C and C++ stand out as the two most extensively explored output languages for model-to-
code transformation.

in four major categories: construct validity, conclusion validity, internal validity, and external validity.998

We organize this section according to these four categories.999
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6.1. Construct Validity1000

Our main concepts are model-based testing and different approaches to transforming model-level test1001

cases into code. To determine the correct interpretation of these concepts, we checked their definitions1002

within the context of our study and discussed them among the authors to reach a consensus. As a1003

result, the categorization schemes we generated during data analysis stem from how we interpreted1004

the concepts involved in our study. However, we cannot completely rule out the possibility that some1005

primary studies might have been misclassified. To cope with this issue, the proposed categorization1006

schemes underwent several reviews by the authors to maximize confidence. We also provide all1007

details in our companion spreadsheet.471008

6.2. Conclusion Validity1009

Conclusion validity is primarily concerned with the degree to which the conclusions we reached are1010

reasonable. In our study, we answered our RQs and drew conclusions based mostly on information1011

extracted from the primary studies. Thus, the conclusion validity issue lies in whether there is a1012

relationship between the number of studies we selected and current research trends in the subject area.1013

We cannot fully rule out this threat because the broad nature of our study makes data identification,1014

extraction, and synthesis susceptible to bias.1015

Particularly regarding data identification, the snowballing process should end when no new studies1016

are found in the search iterations [58]. For the original search, executed in 2018, we performed the1017

search in three depth levels for both backward and forward snowballing variants. We considered this1018

number of rounds as a stopping criterion to make the study feasible in terms of effort and number of1019

studies needed to draw conclusions regarding our research questions. In the search update performed1020

in 2020, we intended to identify new citations to the already selected studies. Moreover, the most1021

recent update encompassed the analysis of studies suggested by experts. In both cases, we did not1022

restart the snowballing process in several depth levels. These different search procedures may be1023

seen as a possible threat to the results.1024

6.3. Internal Validity1025

The main threat to the internal validity of our study is missing relevant studies. Naturally, systematic1026

studies of the literate can be carried out in different ways. In practice, different strategies for searching1027

the literature achieve different coverages. We applied snowballing to mitigate this threat and achieve1028

a good coverage. According to Wohlin [58], snowballing is an effective alternative to the utilization1029

of database searches.1030

Another potential threat to the internal validity of our study is researcher bias during study selection.1031

We took a sequence of steps to prevent research bias during data extraction. First, information1032

extracted from the primary studies was discussed among the researchers. Second, in hopes of1033

ensuring that the three researchers in charge of data extraction had a clear understanding of the1034

extracted information, we pilot-tested many aspects of the data extraction spreadsheet among all the1035

authors. The results of the pilot were then discussed to reach a consensus.1036

6.4. External Validity1037

A potential threat to the external validity of our study stems from determining whether the selected1038

primary studies are representative of all the relevant efforts that have been carried out in the subject1039

area. We mitigated this issue by following a rigorous search process. Despite the fact that we only1040

selected studies written in English, we believe the set of primary studies we selected include enough1041

valuable information to provide researchers with an extensive overview of the subject area.1042

It is also worth mentioning that several primary studies did not include the information we needed1043

to fill out the extraction spreadsheet, and, consequently, we often had to infer the missing information1044

47https://doi.org/10.5281/zenodo.8113394
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during data synthesis. For instance, some studies do not mention the degree of traceability from1045

model to code provided by their proposed approaches.1046

Another potential external threat to the validity of this study is the time frame of the data utilized1047

in this investigation. Specifically, the study selection process was completed (i.e. last updated) in1048

2020, thereby potentially limiting the generalizability of our findings. Since then, the field of research1049

may have evolved slightly as a result of new studies and evolving perspectives, potentially altering1050

the overall landscape of the research area. As a result, it is important to acknowledge that our1051

findings may not fully capture the most current advancements in the field, thus warranting caution in1052

interpreting them.1053

7. RELATED WORK

As described in Section 3, a secondary study is a study that surveys or otherwise aggregates results,1054

such as a survey or SLR. We have identified several secondary studies that are related to ours,1055

but that have a different scope or different goals. We have categorized these into four topics:1056

(1) testing at the model level [17, 43], (2) testing of model transformations [1], (3) model-based1057

testing [8, 22, 33, 44, 47], and (4) testing non-testable systems [42].1058

For topic 1, testing at the model level, Elberzhager et al. [17] focused on MATLAB48 and1059

Simulink49 models, while Paul and Lau [43] investigated the MCDC coverage criterion.1060

Elberzhager et al. [17] reported results from studies about quality assurance, specifically, analysis1061

and testing techniques, for MATLAB48 and Simulink49 models. Their research questions also1062

addressed supporting tools and how the techniques are assessed. Elberzhager et al. retrieved their1063

primary studies through an automatic search on two indexed databases (ACM Digital Library50 and1064

IEEE Xplore51) and one search engine (Elsevier Scopus52). In total, the authors selected 44 studies1065

published starting from 1990. Their main finding was that some of the identified techniques have1066

been applied in a combined manner, but more research is necessary to allow for a deeper integration1067

and effective quality assurance of MATLAB and Simulink models.1068

Paul and Lau [43] performed an SLR to examine how the different forms of MCDC [11] have1069

been studied in literature. MCDC is applied to certify the implementation of safety critical parts1070

of avionics software [46], patient monitoring systems in hospitals, and power control systems for1071

nuclear power plants. They found studies in six digital libraries and one indexing service: ACM1072

Digital Library,50 Citeseer,53 Elsevier Online Library, IEEE Xplore,51 Springer Online Library,541073

Wiley InterScience,55 and Web of Science.56 Among the 70 selected studies, 54 discussed a variant1074

of MCDC, with a total of seven MCDC variants being identified. Apart from presenting a discussion1075

of the state-of-the-art of MCDC according to previous studies, Paul and Lau also identified a new1076

form of MCDC, which they termed Unique-Cause and Restricted Masking (UCRM) MCDC. UCRM1077

is a formalism of Ammann and Offutt’s [4] advice to strive for RACC, but settle for CACC when1078

RACC is infeasible. They also carried out an empirical study to compare the fault detecting ability of1079

UCRM to existing MCDC variants. Their results suggested that UCRM outperforms other MCDC1080

variants in terms of fault detection. Neither Elberzhager et al. [17] nor Paul and Lau [43] considered1081

issues related to test mapping and coverage across software abstraction levels like this article.1082

For topic 2, testing of model transformations, Abade et al. [1] presented an SLR to characterize1083

structural testing approaches for testing model-to-text transformations. Abade et al.’s main goal was1084

48http://www.mathworks.com/products/matlab.html – accessed in June, 2023.
49http://www.mathworks.com/products/simulink.html – accessed in June, 2023.
50http://dl.acm.org/ – accessed in June, 2023.
51http://ieeexplore.ieee.org/Xplore/home.jsp – accessed in June, 2023.
52http://www.scopus.com/home.uri – accessed in June, 2023.
53http://citeseerx.ist.psu.edu – accessed in June, 2023.
54http://link.springer.com/ – accessed in June, 2023.
55http://onlinelibrary.wiley.com/ – accessed in June, 2023.
56http://www.webofknowledge.com/ – accessed in June, 2023.
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to characterize how complex data has been defined and utilized in that context, as opposed to our1085

goal of evaluating the implications of transforming model-level test cases into code. They selected1086

nine primary studies selected from an automatic search performed in two indexed databases (ACM1087

Digital Library50 and IEEE Xplore51), and one search engine (Elsevier Scopus52). Additionally, the1088

authors analyzed a set of journals and conference proceedings related to model-driven development,1089

published between 2008 and 2013. Their main findings were that two behavior patterns, the Visitor1090

Pattern and the Template Method, were the most common, and that the characterization of complex1091

data was usually neglected.1092

Li et al. [33] carried out a survey of MBT tools. Differently from our study, the discussion presented1093

in their study is centered mainly on test case generation. Specifically, the authors discuss test data1094

and script generation, without addressing how the propagation of test generation decisions made at1095

model level might have an impact on the resulting test code.1096

Four reviews addressed topic 3, model-based testing (MBT): one SLR [47] and three systematic1097

mapping studies (SMS) [8, 22, 44]. Their goals differed from ours in that they did not examine issues1098

related to test coverage and mapping across abstraction levels. Saeed et al. [47] published an SLR1099

that analyzed the state-of-the-art of experimental applications of search-based techniques (SBTs)1100

for MBT. They presented a taxonomy to classify the various techniques. The authors searched for1101

journal and conference studies from 2001 to 2013 in six sources: IEEE XPlore,57 Springer,58 Google1102

Scholar,59 ACM Digital Library,60 ScienceDirect,61 and Wiley Interscience.62 Saeed et al. selected 721103

studies, finding that most applications of SBTs for MBT consider functional and structural coverage.1104

Additionally, the authors highlight research gaps in the techniques, including multi-objective SBTs,1105

devising hybrid techniques, and applying constraint handling.1106

Bernardino et al. [8] presented an SMS to summarize MBT research. Primary studies were1107

retrieved through automatic searches on five indexed databases (ACM Digital Library,60 IEEE1108

Xplore,57 Elsevier ScienceDirect,61 Springer SpringerLink,58 and Elsevier Engineering Village63)1109

and one search engine (Elsevier Scopus64). They selected 87 primary studies published from 2006 to1110

2016, which included conference papers, journal papers, books, and PhD dissertations. The authors1111

classified these studies based on five factors: (1) whether they employed model representations or1112

specifications, (2) the application domains, (3) the tools, (4) whether they exploited test modeling1113

or test case generation, and (5) by the research groups. The SMS presented four main results. First,1114

the representations varied widely, and were grouped as UML-based models (UML65, SysML66, and1115

MARTE67), whether the models were formal or semi-formal models (Finite State Machines, Markov1116

Chains, Petri Nets, and Simulink), and others. Second, they identified 70 tools, which they classified1117

as academic, commercial, or open-source. Third, they found 20 application domains, including1118

desktop applications, critical systems, health care, and web services. Fourth, they found seven1119

activities related to MBT, with most of the studies focusing on test case generation, test modeling,1120

and model transformation.1121

In another SMS, Gurbuz and Tekinerdogan [22] examined the state-of-the-art of MBT for software1122

safety. Specifically, they identified the domains in which MBT has been applied and the contemporary1123

research trends within MBT as applied to software safety. Additionally, Gurbuz and Tekinerdogan1124

explored whether the current approaches have been empirically evaluated. The authors searched1125

for primary studies in the following sources: ACM Digital Library,60 IEEE Xplore,57 ISI Web of1126

57http://ieeexplore.ieee.org/Xplore/home.jsp – accessed in June, 2023.
58http://link.springer.com/ – accessed in June, 2023.
59http://scholar.google.com/ – accessed in June, 2023.
60http://dl.acm.org/ – accessed in June, 2023.
61http://www.sciencedirect.com/ – accessed in June, 2023.
62http://onlinelibrary.wiley.com/ – accessed in June, 2023.
63http://www.engineeringvillage.com/ – accessed in June, 2023.
64http://www.scopus.com/home.uri – accessed in June, 2023.
65http://www.uml.org/ – accessed in June, 2023.
66http://sysml.org/ – accessed in June, 2023.
67https://www.omg.org/omgmarte/ – accessed in June, 2023.
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Knowledge,68 Elsevier ScienceDirect,61 Elsevier Scopus,52 Springer SpringerLink,58 and Wiley1127

Interscience.62 They selected 36 of the 751 studies found during the search. According to their results,1128

MBT has the potential to positively impact software safety testing. However, the field needs further1129

advances to apply MBT for software safety testing.1130

Petry et al. [44] also conducted an SMS on MBT, but they investigated how MBT has been applied1131

to software product lines (SPLs). Petry et al. answered RQs about approaches, artifacts, domains,1132

evaluation, solution types, test case automation, traceability, and variability. After searching for1133

primary studies in seven sources (ACM Digital Library, Google Scholar, IEEE Xplore, IET Digtial1134

Library, Science Direct, Scopus, and Springer), the authors selected 44 primary studies. They found1135

that black-box testing has been widely adopted, most studies described fully-automated applications1136

of MBT to SPLs, and the most widely employed model to test SPLs is state machines. Additionally,1137

the most recurring empirical evaluation strategies are case studies and experiments, which are often1138

performed in industrial settings. Most studies did not address traceability or variability management.1139

Petry et al. stated that variability management was briefly mentioned in most of the selected studies,1140

but none of the selected studies go into detail about how variability is dealt with. Traceability was not1141

mentioned in any of the selected studies. According to Petry et al. the main implication of overlooking1142

traceability is that it is challenging to trace defects from MBT artifacts to the corresponding models.1143

The authors also presented a roadmap that may guide researchers and practitioners interested in1144

applying MBT to SPLs.1145

We found one paper on topic 4, testing non-testable systems. Patel and Hierons [42] gave results1146

from an SMS that identified and compared automated testing techniques that attempted to detect1147

functional faults. This is closely related to the oracle problem [34]. The authors ran an automatic1148

search on six repositories, Brunel University Library,69 Elservier ScienceDirect,70 ACM Digital1149

Library,71 IEEE Xplore,72 Google,73 and Citeseerx,74 including studies that are either peer- or non-1150

peer-reviewed (technical reports, book chapters, and magazine papers), upon which they performed1151

one round of backward snowballing. They also analyzed the publications of every author of the1152

selected studies, and double-checked the completeness of the study selection with those authors.1153

Their final set comprised 137 studies. Their main result was a comparison, in terms of efficiency and1154

cost, of five umbrella testing techniques that address the oracle problem.1155

8. CONCLUDING REMARKS AND IMPLICATIONS FOR FUTURE RESEARCH

This article reports on an SLR that characterized how source code coverage can be computed from1156

test sets generated through the application of MBT approaches. We analyzed and drew conclusions1157

from 30 primary studies that we selected via a snowballing process. We identified some common1158

characteristics and limitations, termed issues in what follows, that may impact on research and1159

practice of MBT. Next we list each issue and discuss implications for future research related to them.1160

Issue: Automatic tools obscure details of how are transformed from model down to code.1161

Implications: In some studies, industrial or custom-tailored tools were employed to fully transform1162

test sets from model to code. Then the test cases were automatically applied to code without manual1163

intervention. These studies did not provide details about how model-level test cases are transformed1164

to the code level. Without details of how abstract tests are transformed to concrete tests, testers1165

are unable to predict how changing test cases at one level would affect the other, making it all but1166

impossible to effectively update or evolve the test cases. To bridge this gap, future work should focus1167

68http://www.webofknowledge.com/ – accessed in June, 2023.
69http://www.brunel.ac.uk/life/library – accessed in June, 2023.
70http://www.sciencedirect.com/ – accessed in June, 2023.
71http://dl.acm.org/ – accessed in June, 2023.
72http://ieeexplore.ieee.org/Xplore/home.jsp – accessed in June, 2023.
73http://www.google.com/ – accessed in June, 2023.
74http://citeseerx.ist.psu.edu – accessed in June, 2023.

Copyright © 2023 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2023)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://www.webofknowledge.com/
http://www.brunel.ac.uk/life/library
http://www.sciencedirect.com/
http://dl.acm.org/
http://ieeexplore.ieee.org/Xplore/home.jsp
http://www.google.com/
http://citeseerx.ist.psu.edu


34 FERRARI ET AL.

on reporting the inner workings of the techniques and strategies employed for the transformation of1168

abstract tests into concrete test cases, enabling testers to make informed decisions regarding test case1169

modifications and enhancements.1170

Issue: Model checking-based techniques often do not present their computational cost.1171

Implications: Some primary studies that applied model checking-based techniques for test case1172

generation did not characterize the computational cost of exploring the state space of non-trivial1173

models. This cost is often high, and sometimes prohibitively so. Even medium-sized models might1174

lead to large state spaces, thus transforming high-level models to lower-level models (including code)1175

requires a trade-off between exploring the entire search space and the approximation of examining1176

only the most promising parts of the search space. We suggest that future studies need to quantify1177

computational costs and quantify what degree of precision, in terms of test case quality, is sacrificed1178

to reduce computational cost to address that trade-off.1179

Issue: The relationship between model coverage by abstract tests and code coverage by concrete1180

tests has not been sufficiently studied.1181

Implications: We found that few studies addressed how coverage of models by abstract tests relates1182

to the coverage of low-level representations of the models (including code) for concrete and almost-1183

concrete tests. Most studies that addressed this topic applied structural model coverage criteria such1184

as node or edge coverage. These rely on some sort of graph, such as finite-state machines at the model1185

level and control-flow graphs at the code level. We found that to properly convey model coverage1186

information to lower level representations, some extra transformations are needed at the model level1187

by, for example, turning behavior into explicit predicates. Some studies found that coverage is lower1188

at the code level when the code includes statements that were not explicitly modeled. We also found1189

that only one study employed mutation to evaluate coverage, a very rich area for future research1190

development.1191

Issue: Lack of traceability throughout the testing process1192

Implications: Although traceability from model to code has the potential to be an added value1193

of MBT, many primary studies do not mention how their approaches track these links. Most of1194

the examined primary studies emphasize specific parts of the MBT process without detailing how1195

the proposed approaches help testers track coverage information at both model and code levels.1196

Significantly more research is needed to develop this important type of traceability.1197

Issue: Portability among models is an afterthought1198

Implications: Many modeling languages, both formal and informal, are in use and more have1199

been developed. Although they have similarities, they are sufficiently different to complicate the1200

application of model-to-code transformation approaches developed for one model to others. It1201

appears that, for most researchers, portability of models between MBT tools is an afterthought. This1202

hampers the creation of tools that build upon infrastructure provided by existing tools. Even tools1203

that utilize similar model representations tend to employ different subsets of the modeling notations.1204

We conjecture that this may gradually improve as notations and tools achieve wider market success,1205

and maybe as more robust commercial tools are developed, the number of languages will go down.1206

Issue: Incomplete reporting1207

Implications: We found that most primary studies did not completely report experimental and1208

analytical details of their evaluation methodology. This was also reported in previous studies [24].1209

This lack challenges the assessment of the strength and suitability of MBT techniques for industrial1210

adoption. Although there are a few industrial-strength MBT tools, our study provides evidence that it1211

is still a challenge for both practitioners and researchers to evaluate MBT tools and techniques in real-1212

world, industrial settings. According to our results, empirical evidence on mainstream use, including1213

the transformation of model-level test cases into code-level test cases, is somewhat limited. Several1214
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studies [12, 16, 27] described a contrived usage example, failing to provide empirical evidence1215

supporting the effectiveness of the proposed approach. Therefore, we argue that technology transfer1216

has been negatively affected by a lack of data to inform the evolution of MBT tools. It is imperative1217

that future studies improve the transparency of reporting their experimental designs to support better1218

comprehension of the methodology and reproducibility of results. We also hope that reviewers and1219

editors will be more diligent about noting missing information in studies, and insist that authors1220

correct the oversights in revision.1221

In our study, we found increasing adoption of MBT in industry, increasing application of model-to-1222

code transformations, and a complementary increasing need to understand how test cases designed1223

for models achieve coverage on the code. Although these studies document significant progress on1224

this topic, these issues document significant gaps in our intellectual knowledge on the topic. We hope1225

that practitioners can benefit from our study to better test their software and to better understand how1226

well their software has been tested. We also hope that researchers can use this study as a reference to1227

learn about the current state of knowledge and to identify future research directions, both theoretical1228

and empirical.1229

Finally, as with any SLR and despite our best efforts over a few years of work, it is unlikely that we1230

found all primary studies. Although we applied several search strategies, the limitations of research1231

repositories (and our own abilities) mean that no search can be exhaustive. Thus, we hope this SLR1232

will be further updated in the future.1233
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