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Impact of daily artificial gravity on
autonomic cardiovascular control
following 60-day head-down tilt
bed rest
J.-N. Hoenemann1,2, S. Moestl1, A. Diedrich3, E. Mulder1, T. Frett1,
G. Petrat1, W. Pustowalow1, M. Arz1, M.-T. Schmitz4, K. Heusser1,
S. M. C. Lee5, J. Jordan1,6, J. Tank1* and F. Hoffmann1,2

1Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany, 2Department of Internal
Medicine III, Division of Cardiology, Pneumology, Angiology, and Intensive Care, University of Cologne,
Cologne, Germany, 3Department of Medicine, Division of Clinical Pharmacology, Autonomic Dysfunction
Service, Vanderbilt University, Nashville, TN, United States, 4Institute of Medical Biometry, Informatics and
Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany, 5Wyle Laboratories, Life Sciences and
Systems Division, Houston, TX, United States, 6Head of Aerospace Medicine, University of Cologne,
Germany, Cologne

Impaired cardiovascular autonomic control following space flight or
immobilization may limit the ability to cope with additional hemodynamic
stimuli. Head-down tilt bedrest is an established terrestrial analog for space
flight and offers the opportunity to test potential countermeasures for
autonomic cardiovascular deconditioning. Previous studies revealed a possible
benefit of daily artificial gravity on cardiovascular autonomic control following
head-down tilt bedrest, but there is a need for efficiency in a long-term study
before an artificial gravity facility would be brought to space. We hypothesized
that artificial gravity through short-arm centrifugation attenuates functional
adaptions of autonomic function during head-down tilt bed rest. 24 healthy
persons (8 women, 33.4 ± 9.3 years, 24.3 ± 2.1 kg/m2) participated in the 60-day
head-down tilt bed rest (AGBRESA) study. They were assigned to three groups,
30 min/day continuous, or 6(5 min intermittent short-arm centrifugation, or a
control group. We assessed autonomic cardiovascular control in the supine
position and in 5 minutes 80° head-up tilt position before and immediately after
bed rest. We computed heart rate variability (HRV) in the time (rmssd) and
frequency domain, blood pressure variability, and baroreflex sensitivity (BRS). RR
interval corrected rmssd was reduced supine (p= 0.0358) and during HUT
(p=0.0161). Heart rate variability in the high-frequency band (hf-RRI; p=
0.0004) and BRS (p < 0.0001) decreased, whereas blood pressure variability in
the low-frequency band (lf-SBP, p= 0.0008) increased following bedrest in all
groups. We did not detect significant interactions between bedrest and
interventions. We conclude that up to daily 30 min of artificial gravity on a
short-arm centrifuge with 1Gz at the center of mass do not suffice to prevent
changes in autonomic cardiovascular control following 60-day of 6° head-down
tilt bed rest.

Clinical Trial Registration: https://drks.de/search/en/trial/DRKS00015677, identifier,
DRKS00015677
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Introduction

The autonomic nervous system regulates the cardiovascular

system, which enables human beings to maintain blood

pressure and organ perfusion in the face of environmental

challenges including those experienced during and following

spaceflight (1, 2). Indeed, hemodynamic stresses imposed by

extravehicular activities in space or by standing on Earth or

another celestial body could not be sustained without counter-

regulatory autonomic nervous system adjustments (3). When

autonomic nerves are completely disabled, the human

cardiovascular systems cannot respond to gravitational stress,

physical exertion (4), or other environmental challenges. Space

conditions may negatively affect the autonomic nervous system

(5), which could limit the resilience of the cardiovascular

system. Moreover, the autonomic nervous system is engaged

by weightlessness-related changes in cardiovascular structure

or function, such as cardiovascular deconditioning or volume

changes, which further limit the capacity to respond to

environmental challenges (6).

Non-invasive measurements of heart rate variability, blood

pressure variability, and baroreflex sensitivity are considered to

reflect autonomic influences on the sinus node and on vascular

tone and can be utilized to track changes in cardiovascular

autonomic control (7–9). Such measurements could have utility in

identifying astronauts with limited autonomic counterregulatory

capacity, in guiding countermeasure development, and, ultimately,

in individualizing countermeasure deployment (10–12).

Therefore, we assessed heart rate variability, blood pressure

variability, and baroreflex sensitivity in the supine position and

during hemodynamic stress through head-up tilt testing before

and after 60-day of six-degree head-down tilt bed rest, which is

an established terrestrial spaceflight analog with or without

daily artificial gravity (13). Daily artificial gravity elicited

through short arm centrifugation had a beneficial effect on

cardiovascular function in studies lasting from 5 to 21 days

(14, 15). Given the limited number of exposes persons in these

studies and the longer duration of many space missions,

there is a need for additional longer-term head-down bed rest

studies.

The study was part of the artificial gravity bed rest ESA study

(AGBRESA, German Clinical Trials Register DRKS00015677),

which tested the efficacy of daily artificial gravity through short-

arm centrifugation as a multipurpose countermeasure. Hereby,

we focused on adjustments in autonomic function leading to

changes in the balance between sympathetic and parasympathetic

cardiovascular modulation following head-down tilt bedrest.

Therefore, typical changes following space flight and bed rest,

namely reductions in baroreflex-mediated parasympathetic heart

rate control and enhanced sympathetic modulation of the heart

and the vasculature should be attenuated through daily artificial

gravity (16–18). We hypothesized that cardiovascular

deconditioning during bed rest would affect cardiovascular

autonomic control at rest and more so during orthostatic stress

and that artificial gravity attenuates these changes.
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Material and methods

Participants

Our study is part of the NASA/ESA/DLR 60-day −6° head-down-
tilt bed rest study AGBRESA, which was conducted at the DLR:

envihab research facility. The methodology and study design were

discussed and determined by the advisory boards of these

international space agencies. Detailed criteria including a consort

flow sheet regarding inclusion, exclusion, psychological, and

medical screening procedures have been recently published (19).

Participants who were physically and psychologically healthy, aged

between 24 and 55 years, owing a body mass index between 19 and

30 kg/m², and were non-smokers were potentially eligible. Criteria

for non-inclusion comprised requirement for prescription

medications such as contraceptives and health conditions that

would preclude participation, such as history of cardiovascular

disorders including syncope, musculoskeletal, neurological,

metabolic, or endocrine disorders. Women had to have a 26–32

days menstrual cycle. We enrolled 24 healthy persons (8 women/

16 men, mean age 33.4 ± 9.3 years, mean BMI 24.3 ± 2.1 kg/m2;

mean ± standard deviation), All subjects provided written informed

consent prior to study entry. The North Rhine Medical Association

Ethics Committee approved the study.
Study design and protocol

Study design and standardization measures have been described

elsewhere (19). Briefly, following a 14-day ambulatory baseline

period at the DLR:envihab facility, participants underwent 60-day

of head-down tilt bed rest followed by a 14-day recovery period.

To exclude possible confounders, every participant was on a

highly standardized diet tailored to individual resting metabolic

rates with the goal to maintain body weight within 3% of that

measured at first day of bed rest over the whole study phase. Daily

fluid intake from food and beverages was maintained at 50 ml/kg

body weight per day at baseline and during bed rest. Daily sodium

intake was 1.76 ± 0.26 mmol/kg body weight/day. Throughout the

study, participants were awakened at 06:30 a.m. and lights were

turned off at 11:00 p.m.

During the bed rest period, participants were assigned to a

control group without countermeasure, or two different artificial

gravity interventions. One artificial gravity group underwent

30 min continuous centrifugation. The other group underwent

6 × 5 min daily artificial gravity with 3 min breaks. Centrifugation

elicited gravitational forces of 1Gz at the center of mass. For safety

reasons, heart rate was measured continuously by 3-lead

electrocardiogram and blood pressure was assessed intermittently

with an oscillometric brachial cuff during centrifugation (Figure 1).
Head up tilt test

We conducted tilt table testing 5 days before entering bed rest

and immediately following 60-day bed rest in the morning hours
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FIGURE 1

Centrifugation withn the short-arm human centrifuge was conducted in the DLR:envihab research facility. Participants were placed in the centrifuge with
their heads facing the center. One Gz was to be achieved at the center of mass. An electrocardiogram with three leads, an oscillometric blood pressure
cuff, finger blood pressure, and video telemetry were used in the study for safety reasons.
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after a light breakfast. We recorded heart rate through a three-lead

electrocardiogram and finger blood pressure (Finapres, Ohmeda

Medical Instruments, Netherlands) continuously, and

oscillometric brachial blood pressure in intervals of two minutes.

We adjusted for body position-related hydrostatic pressure

influences on finger blood pressure (Finapres corrector).

Following instrumentation, which required 10–15 min,

participants remained in the supine position for additional

15 min followed by 5 min baseline recordings. Then, we tilted

participants up to 80°. For upright heart rate and blood pressure

variability as well as baroreflex sensitivity measurements, we

analyzed the first five minutes during 80° head-up tilt after

excluding the initial dynamic response in the first minute based

on the inspection of a trained scientist. In participants unable to

stand long enough, a minimum of three minutes stable recording

after the initial dynamic phase was required for spectral analysis

(Figure 2A).
Heart rate variability

Rmssd based on international standard recommendations

was used to describe HRV in the time domain, which

reflects respiratory sinus arrhythmia and baroreflex mediated
Frontiers in Cardiovascular Medicine 03
parasympathetic heart rate control (20). Moreover, we corrected

rmssd values by the mean RR-Interval to account for influences

of increased supine and upright heart rates after bed rest (21).

We utilized spectral analysis to assess heart rate variability

considering the current guidelines on heart rate variability for

short-term signal acquisition (22). Details of HRV analysis were

described elsewhere (23). In short, beat-to-beat time series were

interpolated and resampled at 4 Hz, and the power spectra

density was estimated using the Welsh method with zero

padding, linear trend elimination. and a 50% overlapped

Hanning window. The five minutes intervals were analyzed using

overlapped segments of 128 s (512 samples). Overlapping was

used in order to reduce the Hanning window effects and the

variation of the power spectral density. We calculated the low-

frequency power (lf-RRI, 0.04–0.15 Hz), high-frequency power

(hf-RRI, 0.15–0.4 Hz), and the lf-to-hf ratio (lf/hf). Hf-RRI is

also a marker for parasympathetic HR control, while lf-RRI

reflects both sympathetic and parasympathetic heart rate control.

The lf/hf ratio or so called sympathovagal balance describes,

which frequency band prevails in autonomic heart rate control.

We used natural logarithmic values of HRV parameters for

statistical analysis to reduce scatter and to reach a more normal

distribution of the usually exponentially distributed HRV

parameters (24).
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FIGURE 2

Example of heart rate and systolic blood pressure variability analysis before and after bedrest supine and during 80° head-up tilt table testing (HUT) in one
subject of the intermittent artificial gravity group. (A) RR-intervals (RRI in ms) supine and upright early after tilting before (top left) and after bedrest (top
right) are shown together with the mean heart rate (HR) and root mean squared of successive differences (rmssd) are shown. Spectral power of HRV is
shown for supine (black, solid line) and upright (grey, dashed line) measurements before (bottom left) and after bedrest (bottom middle and right panel).
Maximum power in the low- (lf) and high frequency range (hf) are marked. (B) Systolic finger blood pressure values (FBP-sys in mmHg) supine and upright
early after tilting before (top left) and after bedrest (top right) are shown together with the mean values of systolic blood pressure variability in the low
frequency range (lf-SBP) are shown. Spectral power of FBP-sys is shown for supine (black, solid line) and upright (grey, dashed line) measurements before
(bottom left) and after bedrest (bottom middle and right panel). Maximum power in the low- (lf) and high frequency range (hf) are marked.
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Baroreflex sensitivity

We calculated spontaneous baroreflex sensitivity by determining

the slope of the linear regression line between systolic blood pressures

and subsequent RR intervals, utilizing the sequence technique (23,

25). We analyzed sequences containing at least three intervals, with

0.5 mm Hg blood pressure changes and 5 ms RR interval changes,
Frontiers in Cardiovascular Medicine 04
only if the correlation coefficients were greater than 0.85. We also

determined baroreflex sensitivity using cross-spectral analysis

between RR intervals and systolic blood pressure variability in the

low-frequency band if the coherence in the frequency band

exceeded 0.5 (26). For emphasizing vascular sympathetic efferent

modulation, mean power of systolic blood pressure variability in

the low frequency band was also determined (lf-SBP) (27).
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Statistical analysis

We report results as mean ± standard deviation. We

logarithmically transformed HRV parameters as indicated. Based

on the prospective study design and to account for few missing

values, we applied linear mixed-effects models to assess changes

in autonomic function following head-down tilt bed rest. For

each parameter, we fitted a random intercept model with fixed

effects for bed rest, body position in tilt table testing, and

intervention group. Adjustments for age and sex were included.

P < 0.05 indicated statistical significance. Respecting the

explorative character of the analysis, we did adjust p-values for

multiple tests. The data supporting our results are available from

the corresponding author upon reasonable request.
Results

Representative heart rate and blood
pressure variability responses

Representative heart rate and systolic blood pressure variability

analyses before and after bedrest are shown in Figure 2. The

participant was a healthy, 26-years-old women who was assigned

to the intermittent artificial gravity group. Compared with baseline

measurements, supine RRI had decreased by 213 ms after bedrest.

After bedrest, supine HRV in the time domain after bedrest was

less than half the value before bedrest. Indeed, rmssd decreased

from 44 ms at baseline to 20 ms following head down tilt bedrest.

Respiratory sinus arrhythmia was high at baseline before bedrest

with peak spectral power in the high frequency band of about

15,000 ms²/Hz, (Figure 2A). Supine blood pressure variability (lf-

SBP), which is mediated through sympathetic modulation of

vascular tone, was lower before than after bedrest, (Figure 2B).

The participant tolerated 17 min head-up tilt before bedrest and

only 6 min of passive upright tilt following bedrest as described

previously (28). The orthostatic decrease of RRI was 273 ms before

and 335 ms bpm after bedrest consistent with increases in

sympathetic efferent activity and post bedrest postural tachycardia.

Low frequency power of HRV increased during head up tilt, which

led to an increase of the lf/hf ratio indicating a shift from primarily

vagal heart rate control to a dominant sympathetic heart rate

control. HRV in the low and high frequency bands was almost

abolished at the heart rate of 137 bpm during the first minutes of

head-up tilt after bedrest. In contrast, blood pressure variability was

low before bedrest, (Figure 2B). Mean and peak lf-SBP variability

increased briskly with head up tilt but more so after bedrest.
Autonomic heart rate control and
baroreflex sensitivity

The RR-interval was reduced in all groups following bed rest

in supine position and showed an even steeper decrease during

head up tilt (Table 4). Rmssd was significantly reduced

following bed rest even after correction for the mean RR-
Frontiers in Cardiovascular Medicine 05
interval (Table 3 upper row). HRV in the respiratory frequency

band was significantly reduced following bed rest in supine and

80° HUT, but revealed a stronger decrease in artificial gravity

groups. However, logarithmic representation (Figure 3 middle

row) and normalization revealed no group differences.

Baroreflex mediated heart rate control measured as reduction of

heart rate following increases in blood pressure tended to be

less affected in artificial gravity groups (Figure 3 lower row).

The intervention groups show a larger scatter during passive

standing compared to a more pronounced and homogenous

drop in BRS in the control group. HRV in the low frequency

range (lf-RRI) did not change significantly at baseline supine

after 60-day of head-down tilt bed rest. However, lf-RRI was

significantly lower upright at 80° HUT after bedrest compared

to values before bedrest (Figure 4, upper row). Lf/hf ratio

following 60-day head-down tilt bed rest increased at baseline

after bed rest but was similar during passive standing before

and after bedrest (Figure 4, middle row).
Blood pressure and low frequency blood
pressure variability

Mean arterial pressure was elevated following bedrest and in

HUT, whereas there was no evidence for a group difference.

Supine blood pressure variability in the low frequency range

increased following 60-day of head-down tilt bed rest in the

supine and in an upright position at 80° HUT (Figure 4, lower

row).
Influences of artificial gravity

We did not observe significant interactions between bedrest

and the intervention for sympathetic and parasympathetic heart

rate variability and baroreflex sensitivity. Tables 1–3 summarizes

the group mean values on heart rate variability, blood pressure

variability, and baroreflex sensitivity indices before and after bed

rest for the three groups (control, continuous and intermittent

centrifugation) supine and upright at 80° HUT. In addition,

Table 4 summarizes the results of the mixed-effects models.
Discussion

The important finding of our study is that daily 30 min

artificial gravity on a short-arm centrifuge with 1Gz at the center

of mass do not suffice to prevent changes in autonomic

cardiovascular control following 60-day of 6° head-down tilt bed

rest. Our findings are consistent with changes in autonomic

control with a shift from parasympathetic to sympathetic

modulation (29–32). Possibly, the response helped maintaining

cardiovascular control in the face of deconditioning through

simulated weightlessness. However, this adaptation may have

limited the capacity of the cardiovascular system to cope with
frontiersin.org
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FIGURE 3

Individual values of transformed parameters of heart rate variability (crmssd = RR-interval corrected root mean square of successive differences;
ln hf-RRI = logarithmic high frequency power of RR-interval variability) and baroreflex sensitivity (BRS-up = baroreflex sensitivity calculated with the
sequence technique for increasing systolic blood pressure) reflecting parasympathetic heart rate control while supine (left) and during 80° head-up-
tilt (HUT, right) before and after bed rest shown as scatterplots. The horizontal bars indicate the mean value plus/minus standard deviation (circle:
control group, square: continuous artificial gravity group, triangle: intermittent artificial gravity group).
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additional environmental stresses, such as standing in terrestrial

gravity (33).

Head-down tilt bed rest is an established model to mimic the

impact of microgravity on the human body (34). The model

enables research on potential countermeasures for
Frontiers in Cardiovascular Medicine 06
cardiovascular deconditioning or other weightlessness-induced

health challenges before these techniques are tested or applied

in space (35). Autonomic cardiovascular control is strongly

affected by sodium intake and fluid levels, changed body

weight, and altered circadian rhythms (36–39). The fact that all
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FIGURE 4

Individual values of transformed and proportional parameters heart rate- and blood pressure variability parameters in the low frequency range reflecting
at least in part sympathetic heart rate control (ln lf-RRI = logarithmic low frequency power of RR-interval variability; lf/hf ratio = sympathovagal balance)
and vascular efferent control (lf-SBP = systolic blood pressure variability power in the low-frequency range) while supine and during 80° head-up-tilt
before and after bed rest. The horizontal bars indicate the mean value plus/minus standard deviation (circle: control group, square: continuous
artificial gravity group, triangle: intermittent artificial gravity group).
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these potential confounding variables were rigorously

standardized throughout the study is a particular strength.

Because tight control of everyday routines and confinement to

a research ward could result in psychological stress, all study

participants underwent a rigorous psychological screening
Frontiers in Cardiovascular Medicine 07
before inclusion (19) and trained psychologists were available

for counseling throughout the study. We assessed autonomic

cardiovascular control during tilt table testing before and after

bed rest, to test interactions between cardiovascular

deconditioning and a sufficiently strong acute environmental
frontiersin.org
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TABLE 1 Mean values and standard deviation of heart rate variability and baroreflex sensitivity parameters for the control group before and after 60-day
of head-down tilt bedrest in supine and passive upright position (HUT).

Supine before Supine after HUT before HUT after
RRI (ms) 898.27 ± 138.27 701.9 ± 113.64 672.33 ± 68.82 446.31 ± 28.7

rmssd (ms) 39.81 ± 15.2 22.71 ± 14.16 18.87 ± 7.41 5.72 ± 5.58

ln rmssd (ms) 3.61 ± 0.45 2.96 ± 0.61 2.85 ± 0.49 0.97 ± 0.83

crmssd (%) 4.43 ± 1.6 3.07 ± 1.44 2.83 ± 1.09 1.25 ± 1.16

lf-RRI (ms²) 1,131.95 ± 668.05 821.2 ± 837.75 1,040.14 ± 903.55 133.66 ± 194.68

hf-RRI (ms²) 454.81 ± 304.77 173.51 ± 151.25 204.57 ± 162.03 12.07 ± 11.22

ln lf-RRI (ms²) 6.89 ± 0.6 6.31 ± 0.96 6.59 ± 1.04 3.78 ± 1.73

ln hf-RRI (ms²) 5.79 ± 1.01 4.8 ± 0.9 4.78 ± 1.38 1.86 ± 1.4

lf-RRI (nu) 72.37 ± 15.04 80.62 ± 8.18 81.22 ± 12.88 85.99 ± 6.4

hf-RRI (nu) 27.63 ± 15.04 19.38 ± 8.18 18.78 ± 12.88 14.01 ± 6.4

lf/hf-ratio (nu) 4.14 ± 3.87 5.29 ± 3.17 12.82 ± 18.6 7.99 ± 5.24

MAP (mmHg) 95.1 ± 9.62 102.67 ± 12.18 100.24 ± 14.16 112.29 ± 21.49

lf-SBP (mmHg²) 4.76 ± 3.08 9.14 ± 5.12 16.54 ± 13.09 27.41 ± 21.17

BRS-up (ms/mmHg) 19.81 ± 7.6 8.17 ± 2.87 7.17 ± 3.38 2.51 ± 0.62

BRS-down (ms/mmHg) 15.24 ± 4.01 7.74 ± 3.09 6.88 ± 3.6 1.82 ± 0.81

lf-BRS (ms/mmHg) 17.08 ± 5.98 9.55 ± 3.82 8.03 ± 2.9 1.73 ± 1

RRI, RR-Interval; Rmmsd, root mean square of successive differences; ln rmmsd, logarithmic rmssd; lf-RRI: 0.05–0.15 Hz band power of RRI variability; hf-RRI: 0.15–0.4 Hz

band power of RRI variability; ln lf-RRI: logarithmic lf-RRI; ln hf-RRI: logarithmic hf-RRI; lf/hf-ratio, sympathovagal balance; MAP, mean arterial pressure; lf-SBP: 0.05–

0.15 Hz band power of systolic blood pressure variability; BRS-up, Baroreflex sensitivity to an increase in systolic blood pressure; BRS-down: Baroreflex sensitivity to a

decrease in systolic blood pressure; lf-BRS: baroreflex sensitivity in the low frequency band calculated by cross spectral analysis; nu, normalized units.

TABLE 2 Mean values and standard deviation of heart rate variability and baroreflex sensitivity parameters for the continuous artificial gravity group
before (pre) and after (post) 60-day of head-down tilt bedrest in supine and passive upright position (HUT).

Supine before Supine after HUT before HUT after
RRI (ms) 903.69 ± 137.07 726.61 ± 120.55 676.77 ± 146.52 492.89 ± 127.13

rmssd (ms) 28.4 ± 7.4 23.37 ± 12.95 16.94 ± 10.18 10.81 ± 17.51

ln rmssd (ms) 3.32 ± 0.25 3.02 ± 0.55 2.61 ± 0.79 1.6 ± 1.24

crmssd (%) 3.15 ± 0.65 3.18 ± 1.65 2.48 ± 1.58 1.75 ± 2.32

lf-RRI (ms²) 543.75 ± 412.51 1,098.02 ± 1,216.46 548.96 ± 487.7 178.65 ± 214.07

hf-RRI (ms²) 189.68 ± 82.59 157.48 ± 101.14 101.21 ± 96.48 36.77 ± 60.21

ln lf-RRI (ms²) 6.07 ± 0.72 6.36 ± 1.25 5.9 ± 1.07 3.79 ± 2.7

ln hf-RRI (ms²) 5.13 ± 0.56 4.87 ± 0.68 4.1 ± 1.32 1.82 ± 2.65

lf-RRI (nu) 70.63 ± 11.24 77.7 ± 19.65 84.13 ± 8.58 83.03 ± 15.89

hf-RRI (nu) 29.37 ± 11.24 22.3 ± 19.65 15.87 ± 8.58 16.97 ± 15.89

lf/hf-ratio (nu) 3.03 ± 1.93 6.46 ± 4.87 7.4 ± 4.97 11.13 ± 8.33

MAP (mmHg) 95.86 ± 15.47 94.94 ± 11.33 101.82 ± 18.56 106.34 ± 17.17

lf-SBP (mmHg²) 5.74 ± 4.77 14.34 ± 10.79 21.29 ± 12.98 22.88 ± 20.72

BRS-up (ms/mmHg) 10.87 ± 5.62 8.2 ± 2.24 5.91 ± 4.59 7.2 ± 11.84

BRS-down (ms/mmHg) 13.33 ± 6.18 9.25 ± 4.04 6.28 ± 5.04 2.14 ± 0.91

lf-BRS (ms/mmHg) 12.24 ± 6.46 9.8 ± 3.61 5.2 ± 3.26 2.57 ± 2.2

RRI, RR-Interval; Rmmsd, root mean square of successive differences; ln rmmsd, logarithmic rmssd; lf-RRI: 0.05–0.15 Hz band power of RRI variability; hf-RRI: 0.15–0.4 Hz

band power of RRI variability; ln lf-RRI: logarithmic lf-RRI; ln hf-RRI: logarithmic hf-RRI; lf/hf-ratio, sympathovagal balance; MAP, mean arterial pressure; lf-SBP: 0.05–

0.15 Hz band power of systolic blood pressure variability; BRS-up, Baroreflex sensitivity to an increase in systolic blood pressure; BRS-down: Baroreflex sensitivity to a

decrease in systolic blood pressure; lf-BRS: baroreflex sensitivity in the low frequency band calculated by cross spectral analysis; nu, normalized units.
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hemodynamic challenge on autonomic cardiovascular control

(40).

Participants in the control group and in the artificial gravity

groups exhibited significant heart rate increases following head

down bedrest, particularly when standing. All three groups

showed significant HRV reductions with a relative increase in

the low frequency range following bedrest. Uncorrected and

corrected rmssd and high frequency power of HRV (hf-RRI),

which are established measures of parasympathetic heart rate

modulation, were substantially reduced with bedrest particularly

when standing (20). Low frequency power of HRV (lf-RRI),
Frontiers in Cardiovascular Medicine 08
which is affected by parasympathetic and sympathetic

influences on the sinus node, also decreased with bedrest albeit

to a lesser degree such that the lf/hf ratio in the supine position

increased (41). While the concept that the lf/hf ratio is a

measure of sympathovagal balance is controversial, the findings

likely suggest that autonomic heart rate control was shifted

towards increased sympathetic modulation following head-down

tilt bedrest (42). Baroreflex sensitivity also tended to decrease

during head-down tilt bedrest, possibly less pronounced with

artificial gravity. In contrast, low frequency blood pressure

oscillations increased following head-down tilt bedrest in all
frontiersin.org
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TABLE 3 Mean values and standard deviation of heart rate variability and baroreflex sensitivity parameters for the intermittend artificial gravity group
before and after 60-day of head-down tilt bedrest in supine and passive upright position (HUT).

Supine before Supine after HUT before HUT after
RRI (ms) 929.07 ± 183.18 776.8 ± 152.58 699.89 ± 148.83 487.93 ± 104.33

rmssd (ms) 31.91 ± 16.22 18.2 ± 7.98 11.79 ± 7.12 4.44 ± 3,09

ln rmssd (ms) 3.33 ± 0.59 2.81 ± 0.49 2.3 ± 0.62 1.31 ± 0.62

crmssd (%) 3.35 ± 1.55 2.28 ± 0.76 1.63 ± 0.82 0.86 ± 0.43

lf-RRI (ms²) 588.45 ± 485.4 458.47 ± 265.67 376.82 ± 330.73 100.71 ± 154.9

hf-RRI (ms²) 245.68 ± 231 85.66 ± 47.25 45.6 ± 41.70 13.35 ± 22.25

ln lf-RRI (ms²) 6.02 ± 0.95 5.96 ± 0.65 5.44 ± 1.22 3.43 ± 1.62

ln hf-RRI (ms²) 5.11 ± 0.98 4.25 ± 0.78 3.41 ± 0.99 1.33 ± 1.68

lf-RRI (nu) 69.62 ± 19.43 83.2 ± 7.63 87.2 ± 6.69 86.87 ± 8.68

hf-RRI (nu) 30.38 ± 19.43 16.8 ± 7.63 12.8 ± 6.69 13.13 ± 8.68

lf/hf-ratio (nu) 3.14 ± 1.68 6.56 ± 4.19 8.69 ± 4.78 11.19 ± 10.43

MAP (mmHg) 92.48 ± 10.14 88.46 ± 17.6 97.83 ± 15.66 96.6 ± 22.96

lf-SBP (mmHg²) 3.34 ± 2.32 9.82 ± 9.28 11.14 ± 9.97 19.94 ± 12.06

BRS-up (ms/mmHg) 17.39 ± 9.93 8.56 ± 3.77 5.50 ± 4.02 2.54 ± 2.69

BRS-down (ms/mmHg) 16.33 ± 9.08 8.55 ± 4.87 4.92 ± 3.1 2.28 ± 1.98

lf-BRS (ms/mmHg) 16.87 ± 11.25 8.84 ± 4.37 6.1 ± 3.79 1.86 ± 2.51

RRI, RR-Interval; Rmmsd, root mean square of successive differences; ln rmmsd, logarithmic rmssd; lf-RRI: 0.05–0.15 Hz band power of RRI variability; hf-RRI: 0.15–0.4 Hz

band power of RRI variability; ln lf-RRI: logarithmic lf-RRI; ln hf-RRI: logarithmic hf-RRI; lf/hf-ratio, sympathovagal balance; MAP, mean arterial pressure; lf-SBP: 0.05–

0.15 Hz band power of systolic blood pressure variability; BRS-up, Baroreflex sensitivity to an increase in systolic blood pressure; BRS-down: Baroreflex sensitivity to a

decrease in systolic blood pressure; lf-BRS: baroreflex sensitivity in the low frequency band calculated by cross spectral analysis; nu, normalized units.
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groups. The findings further support the idea that living in

microgravity be it real or simulated through head-down tilt

bedrest alters autonomic cardiovascular balance towards

sympathetic predominance, at least in the absence of fully

effective countermeasures (43, 44).

In our study, changes in autonomic cardiovascular control

towards sympathetic predominance may have contributed to an

increase in mean arterial blood pressure. In contrast, a recent

study employing direct sympathetic nerve recordings through

microneurography showed sympathetic activation with stable

blood pressure following 30-day head-down tilt bedrest (17).

We dare to speculate that sympathetic activation serves as

compensatory mechanism to maintain hemodynamic

homeostasis and that this response may overshoot in susceptible

individuals. On a shorter time scale, reflex adjustments in

sympathetic activity to standing can overshoot such that blood

pressure increases excessively, a phenomenon referred to as

orthostatic hypertension (45). Yet, our study cannot discern

whether baroreflex-mediated changes in autonomic control

result from altered volume status and cardiovascular

deconditioning or from direct effects of simulated

weightlessness on the autonomic nervous system. The

observation that autonomic dysregulation following head down

tilt bed rest is attenuated with acute volume loading stresses the

importance of volume status and cardiac loading conditions

(46). An alternative explanation is that altered rhythmicity of

sympathetic nerve discharges may change coupling between

sympathetic activity and vascular responses (47, 48). Regardless

of the mechanism driving the relative increase in sympathetic

activity, be it secondary to reduced cardiac preload or to

impaired vascular sympathetic transduction, the reserve of the

autonomic nervous system to respond to additional

hemodynamic stresses could be reduced. Indeed, while daily
Frontiers in Cardiovascular Medicine 09
artificial gravity at least partly preserved orthostatic tolerance,

time to presyncope was numerically reduced in all three

groups (28).
Limitations

The relatively low number of study participants explained by

the complexity and costs of head-down tilt bed rest studies is an

important limitation given the substantial interindividual

variability in short-term autonomic heart rate and blood pressure

control. However, our study included more participants than

previous investigations (14). Moreover, we applied indirect

measures of sympathetic and parasympathetic cardiovascular

regulation. Invasive measurements such muscle sympathetic

nerve activity may provide more direct insight on heart rate

variability and autonomic activity (49). In addition, we did not

measure respiratory rate or volume, which could confound our

results. Finally, newer methods of time series analysis being able

to analyze shorter periods especially during standing might

provide deeper insight, like cross wavelet analysis (50). Possibly,

longer artificial gravity duration or intensity are required to

achieve advantages in autonomic cardiovascular control by

further prevention of cardiovascular deconditioning.
Conclusion and outlook

In the absence of sufficient countermeasures, the extreme

environmental conditions in space and simulated weightlessness

through head-down tilt bed rest decrease the ability of the

cardiovascular system to cope with acute hemodynamic challenges.

In our study, daily artificial gravity up to 30 min a day elicited
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TABLE 4 Results of the linear mixed-effects models with fixed effects for timepoint, position, group, age and sex.

Intercept Timepoint
R0

(ref. BDC-5)

Position
HUT

(ref. supine)

group (ref. ctrl) Age Sex female (ref.
male)

cAG iAG

RRI (ms) Estimate
[95%-CI]

787.91
[624.50–951.33]

−193.65
[−226.53–−160.76]

−245.75
[−278.63–−212.86]

36.55
[−64.81–137.90]

50.78
[−49.87–151.44]

3.9 3
[−0.61–8.46]

−84.03
[−171.38–3.32]

p-value <0.001 <0.001 0.563 0.086 0.059

Rmssd (ms) Estimate
[95%-CI]

43.96
[31.93–56.00]

−10.39
[−14.49–−6.28]

−16.0
[−20.05–−11.85]

−2.18
[−9.55–5.19]

−4.62
[−11.92–2.68]

−0.23
[−0.56–0.09]

−3.92
[−10.24–2.40]

p-value <0.001 <0.001 0.432 0.152 0.210

ln rmssd (ms) Estimate
[95%-CI]

4.23 [3.40–5.05] −0.73
[0.99 –−0.81]

−1.07
[−1.33 – −0.91]

−0.18
[−0.69–0.33]

−0.35
[−0.85 –0.15]

−0.01
[−0.04 –0.01]

−0.24
[−0.04–0.01]

p-value <0.0001 <0.0001 0.3689 0.2473 0.2550

crmssd (%) Estimate
[95%-CI]

5.55
[4.16–6.93]

−0.90
[−1.39–−0.42]

−1.44
[−1.92–−0.95]

−0.32
[−1.17–0.52]

−0.8
[−1.64–0.04]

−0.04
[−0.08–0.00]

−0.26
[−0.99–0.47]

p-value 0.0004 <0.0001 0.1583 0.0319 0.4610

lf-RRI (ms²) Estimate
[95%-CI]

1,642.12
[953.18–2,331.08]

−236.42
[−449.43–−23.4]

−373.67
[−586.69–−160.66]

−169.01
[−591.20–253.18]

−341.14
[−759.5–253.18]

−13.64
[−32.52–5.24]

−380.44
[−743.84–−17.03]

p-value 0.0301 0.0008 0.2579 0.1471 0.0411

hf-RRI (ms²) Estimate
[95%-CI]

483.39
[347.15–619.63]

−127.74
[−183.55–−71.93]

−149.49
[−205.30–−93.68]

−99.00
[−181.11–−16.9]

−109.15
[−190.30–−28.00]

−3.89
[−8.94–−0.22]

−8.94
[−79.51–61.53

p-value <0.0001 <0.0001 0.0205 0.0387 0.7937

ln lf-RRI (ms²) Estimate
[95%-CI]

7.97
[6.61–9.33]

−0.11
[−0.74–0.52]

−0.35
[−0.98–0.28]

−0.35
[−1.17–0.46]

−0.57
[−1.38–0.24]

−0.03
[−0.07–0.00]

−0.65
[−1.35–0.05]

p-value <0.0001 <0.0001 0.3542 0.0683 0.0680

ln hf-RRI
(ms²)

Estimate
[95%-CI]

7.44
[6.13–8.76]

−0.70
[−1.32–−0.08]

−1.25
[−1.87–−0.63]

−0.44
[−1.23–0.35]

−0.73
[−1.52–0.05]

−0.05
[−0.09

0.01
[−0.67–0.69]

p-value <0.0001 0.0001 0.1679 0.0065 0.9669

lf-RRI (nu) Estimate
[95%-CI]

66.79
[54,60–78.98]

5.46
[1.36–9.57]

9.14
[5.03–13.25]

0.95
[−6.49–8.38]

2.82
[−4.55–10.19]

0.26
[−0.07–0.59]

−11.00
[−17.40–−4.60]

p-value 0.0099 <0.0001 0.7209 0.1208 0.0019

hf-RRI (nu) Estimate
[95%-CI]

33.21
[21.02–45.40]

−5.46
[−9.57–−1.36]

−9.14
[−13.25–−5.03]

−0.95
[−8.38–6.49]

−2.82
[−10.19–4.55]

−0.26
[−0.59–0.07]

11.0
[4.6–17.40]

p-value 0.0099 <0.0001 0.7209 0.1208 0.0019

lf/hf-ratio (nu) Estimate
[95%-CI]

1.05
[−7.43–9.53]

1.53
[−1.05–4.11]

5.06
[2.48–7.64]

0.04
[−5.16–5.24]

0.11
[−5.04–5.27]

0.12
[−0.11–0.35]

−3.07
[−7.55–1.40]

p-value 0.2419 0.0002 0.9989 0.3014 0.1670

MAP (mmHg) Estimate
[95%-CI]

105.25
[83.56–126.94]

2.78
[−1.19–6.76]

7.39
[3.42–11.37]

−5.33
[−18.80–8.14]

−9.89
[−23.27–8.14]

−0.21
[−0.92–0,29]

11.44
[−0.17–23.06]

p-value 0.1668 0.0004 0.3238 0.2885 0.0531

lf-SBP
(mmHg²)

Estimate
[95%-CI]

8.57
[−4.99–22.14]

6.83
[2.62–11.05]

12.06
[7.84–16.27]

1.3
[−7.01–9.61]

−3.41
[−11.65–4.83]

−0.11
[−0.48–0.26]

0.86
[−6.29–8.02]

p-value 0.0019 <0.0001 0.4824 0.5367 0.8038

BRS-up (ms/
mmHg)

Estimate
[95%-CI]

20.86
[15.41–26.32]

−5.09
[−7.5–−2.09]

−7.19
[−9.59–−4.79]

−1.70
[−5.03–1.64]

−0.51
[−3.76–2.74]

−0.14
[−0.29–0.01]

−2.39
[−5.23–0.46]

p-value 0.0001 <0.0001 0.5620 0.0608 0.0952

BRS-down
(ms/mmHg)

Estimate
[95%-CI]

20.84
[15.83–25.85]

−5.45
[−6.86–−4.03]

−7.74
[−9.14–−6.34]

0.54
[−3.65–2.57]

0.63
[−2.42–3.68]

−0.16
[−0.30–−0.03]

−3.11
[−5.79–−0.44]

p-value <0.0001 <0.0001 0.7339 0.0217 0.0250

lf-BRS (ms/
mmHg)

Estimate
[95%-CI]

22.61
[18.14–27.09]

−5.11
[−6.81–−3.41]

−8.06
[−9.75–−6.36]

−1.55
[−4.26–1.17]

0.05
[−2.65–2.75]

−0.18
[−0.30–−0.06]

−3.85
[−6.19–−1.51]

p-value <0.0001 <0.0001 0.3955 0.0065 0.0027

RRI, RR-Interval; Rmmsd, root mean square of successive differences; ln rmmsd, logarithmic rmssd; lf-RRI: 0.05–0.15 Hz band power of RRI variability; hf-RRI: 0.15–0.4 Hz

band power of RRI variability; ln lf-RRI: logarithmic lf-RRI; ln hf-RRI: logarithmic hf-RRI; lf/hf-ratio, sympathovagal balance; MAP, mean arterial pressure; lf-SBP:

0.05–0.15 Hz band power of systolic blood pressure variability; BRS-up, Baroreflex sensitivity to an increase in systolic blood pressure; BRS-down: Baroreflex sensitivity

to a decrease in systolic blood pressure; lf-BRS: baroreflex sensitivity in the low frequency band calculated by cross spectral analysis; nu, normalized units.
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through short arm centrifugation did not prevent changes in

autonomic cardiovascular control during 60-day of head-down tilt

bed rest. Moreover, while artificial gravity attenuated reductions in

orthostatic tolerance with head-down tilt bed rest, orthostatic

tolerance was not fully maintained (28). Perhaps, artificial gravity

dosing has to be increased or combination with other
Frontiers in Cardiovascular Medicine 10
countermeasures is required to increase efficacy in maintaining

autonomic cardiovascular control. Alternative approaches

simulating orthostatic challenges in weightlessness, such as lower

body negative pressure (51), are explored in current head-down tilt

bed rest studies. Severe orthostatic intolerance was common during

early space missions, however, severely symptomatic orthostatic
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intolerance seems to be uncommon nowadays even after prolonged

space missions (52). Given the changing face of human spaceflight in

the near future, the question whether autonomic cardiovascular

control is sufficiently preserved with current countermeasures

should be scrutinized. On missions to the Moon or to Mars,

human beings will be exposed to orthostatic stress on another

celestial body following deconditioning in space. While

gravitational stress is lower than on Earth, the cardiovascular

system will also be burdened by psychological and physiological

stresses imposed by altered circadian rhythms, suboptimal

nutrition, and frequent extravehicular activities (34). Reductions in

orthostatic tolerance or physical performance may not be

acceptable. According to recently published reference values for

RRI-corrected rmssd, changes in this measurement in our study

correspond to those observed with ten years aging in men and 15

years aging in women (53). Fortunately, changes in autonomic

cardiovascular control after bedrest are rapidly reversible within

days following reconditioning (54). Finally, our study suggests that

non-invasive cardiovascular autonomic measurements, which can

be applied in space using lightweight and easy-to-use wearables,

are remarkably sensitive in detecting changes in autonomic control

(55). We propose that such measurements could have utility in

individualizing countermeasure application and in planning

stressful activities such as extravehicular activities, which may have

to be avoided when cardiovascular autonomic control is challenged

even at rest.
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