

MATHEMATICAL MODELING OF INFECTIOUS DISEASE DYNAMICS: AN OVERVIEW

Martin J. Kühn Gandalf - Graduiertenschule Statusmeeting Lampoldshausen

Martin J. Kühn, Institute for Software Technology, Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview, 2023/02/22

Predictive Simulation Software

- 4 PhD Theses on models:
- Hybrid Graph-ODE
- Integro-DE
- Agent-based
- hybrid AB-EB

Other topics: HPC, Data science, Surrogate models, ...

GEFÖRDERT VOM

Gefördert durch:

Predictive Simulation Software

Image by rawpixel.com on Freepik

Outline

Introduction

- Mathematical modeling process
- Simple generation-based models
- Equation-based models
 - Ordinary differential equations
 - Integro differential equations
- Agent-based models
- Digression: Data Science
- Hybrid models / Spatial resolution
- Numerical assessment of the NoCovid strategy

Martin J. Kühn. Institute for Software Technology. Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview. 2023/02/22

+ □ > < = > + = > + 9 < (>

Introduction

Some recent epi- and pandemics

- 2019: SARS-CoV-2 (≥6.8m deaths^[1])
- 2012: MERS-CoV (≈1k deaths^[2])
- 2009: Influenza A (150-575k deaths^[2])
- 2002: SARS-CoV (≈1k deaths^[2])
- 1968: Influenza A (≈1m deaths^[2])

[1] Johns Hopkins University (accessed 02/2023), [2] Abdelrahman et al., Front. Immunol. (2021).

Daszak et al. (2020), doi:10.5281/zenodo.4147317

- "Without predictive and preventative strategies, pandemics will emerge more often, spread more rapidly, kill more people [...] with more devastating impact than ever"
- Estimation: More than 600 000 "undiscovered viruses" in "mammal and avian hosts [...] could have the ability to infect humans"
- The costs for prevention of pandemics are "trivial in comparison to the trillions of dollars of impact due to COVID-19, let alone the rising tide of future diseases."
- "Reducing pandemic risks [...] would cost 1-2 orders of magnitude less than estimates of the economic damages caused by global pandemics"

Motivation for infectious disease research

- Epidemics and pandemics are no "once in every 100 years" event
- The frequency of epidemics and pandemics could increase
- Endemic infectious diseases can still cause a large number of deaths and people suffering from the disease (with or without dying from it)
 - HIV, Malaria, and Tuberculosis account for 9k deaths eachs day^[3]

[3] Brauer, Castillo-Chavez, Feng (2019)

Motivation for infectious disease modeling

If one (or several) persons in a population get infected (by a particular pathogen)

- does this cause an epidemic / increase?
- What is the rate of the increase?
- What will be the total number of infected (final size)?
- What is the effect of interventions?

Infectious disease dynamics: Approaches

- Real life experiments not feasible
- Knowledge from other situations might be difficult to transfer directly
- Theoretical or mathematical models can help to gain insight
- Use of modern computers allows to consider detailed models and a lot of scenarios, e.g.,
 - home-office ratio of 10 %,
 - vs home-office ratio of 30 %,
 - closure of X,
 - vs closure of Y,

• ...

The mathematical modeling process on an example

Schematic view of mathematical modeling process

Schematic view of modeling process: Problem, Data, Situation

Martin J. Kühn, Institute for Software Technology, Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview, 2023/02/22

Examples of Problem, Data, Situation

Sars-CoV-2 in Europe in beginning of 2020:

- A new pathogen appeared on scene
- Some confirmed cases in some regions

ID_County			
1001			

Some knowledge about the transmission as they appeared

Schematic view of modeling process: Problem formulation

- A "contact" leads to transmission with some probability p
 - \rightarrow Needs a definition (simple physical, exposure through air, sexual, waterborne, ...)
- all people are equally susceptible
 - \rightarrow neglect that (cross-)immunity could reduce risk

Schematic view of modeling process: Math. / Computer model

Martin J. Kühn, Institute for Software Technology, Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview, 2023/02/22

<

ロ><</p><</p>

Mathematical model and examples of mathematization, programming

- A person is described as an *agent*
 - It has features such as age or infection state
 - We can set and ask if the person is in quarantine
 - ...
- For every infection state, we need to estimate the time a person is in this state and translate this into a parameter
- Let $X \sim \mathcal{U}[0, 1]$ be uniformly distributed. For every contact of a person *P* with an infected person, we draw a sample x_i from *X*. If $x_i \leq \rho$, the virus gets transmitted.

Schematic view of mathematical modeling process: Results

Martin J. Kühn, Institute for Software Technology, Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview, 2023/02/22

Results and examples of simulation

- Given a set of parameters, one can compute the outcome of the model
- Outcomes are often computed as approximations using a computer and not by an analytical solution (which may be difficult or impossible to obtain)
- Input parameters are uncertain and uncertainty in the input leads to uncertainty in the output (although often with different quantification)
- Simulations with multiple sets of parameters can assess uncertainty in the prediction

Results and examples of simulation

Martin J. Kühn, Institute for Software Technology, Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview, 2023/02/22

Schematic view of mathematical modeling process: Validation

Examples of comparison, validation

Scenario A:

Scenario B:

Examples of comparison, validation

- Problems of underdetection, delayed reporting, week-end effects etc. in real data
- Changed real world behavior has to be reflected in model runs

ightarrow start anew and adapt simplifications, assumptions, model, parameters, ...

• ...

Classications for infectious disease dynamics models

Introduction to infectious disease dynamics: Basic notation

- For all models, we introduce discrete infection states or compartments
- Notation: "Infection states" can be states free of any infection (e.g., susceptible to the virus or recovered from the virus)!
- All individuals (or shares of the population) will get assigned a unique infection state.
- The (research) question defines which model states need to be considered.
- Minimal set of infection states
 - Susceptible: Persons that are susceptible to get the virus if they "get in contact"
 - Infected (Infectious): Persons that have the virus and can transmit it to susceptibles

Introduction to infectious disease dynamics: Model classifications

- Many models can be classified according to different "dimensions"
 - Epidemic and endemic
 - generation-based and real-time
 - deterministic and stochastic
 - population-based and individual-based
 - ...
- Also hybrid, combined models are possible, then model parts might be classified accordingly

Epidemic and endemic: A brief motivation

Epidemic

Endemic

Epidemic and endemic: A brief motivation

Epidemic

- "short" time horizons
- immigration, births and non-disease-related deaths less influential
 → closed population
- single steady state: disease free

Endemic

- "large" time horizons
- immigration, births and non-disease-related deaths can become important
- multiple steady states possible

Population-based and individual-based: A brief motivation

Martin J. Kühn, Institute for Software Technology, Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview, 2023/02/22

Population-based and individual-based: A brief motivation

Population-based

- averaging effects over (sub)populations
- homogeneous mixing inside (sub)populations
- established methods for analysis
- Iow computational effort

Individual-based

- easy modeling of individuals effects
- modeling micro granularity such as particular households
- tracing of transmission possible
- high computational effort

Generation-based and real-time: A brief motivation

Generation-based

Real-time

Deterministic and stochastic: A brief motivation

Deterministic

Stochastic

Deterministic and stochastic: A brief motivation

Deterministic

explores average effect

Stochastic

 can explore full set of potential outcomes (if/if not, best/worst case)

- For investigating infectious disease spread, we introduce the *primary cases* as the infected individuals related to the current outbreak
- The questions is how many secondary cases, i.e., new infections are induced by the primary cases
- We define the *basic reproduction number* as

 $R_0 := {expected number of secondary cases per primary case} if all individuals are "immune-naive"$

(1)

Simple generation-based models

Assumptions and basic parameters

- Assume a homogeneous population
 - \rightarrow All parameters are <u>averaged</u> parameters (if not stated differently).
- assume that the number of susceptibles is so large that we can neglect the effect of non-susceptible persons in the population $\sum S \simeq N/S$; guagantible persons N; total population
 - \rightarrow *S* \approx *N* (*S*: susceptible persons, *N*: total population)
- ϕ : contact rate: the number contacts per generation
- ρ : the transmission risk when "having a contact" with an infected person

Example of a tree of infections

For $\phi = 3$ and $\rho = 2/3$, we have the following transmission chain from one infected person *P*0 (only visualizing contacts where transmission occurs here)

Deterministic generation-based reproduction

New infections for deterministic generation-based approach

 \rightarrow Model is too simple if $S \ll N$

Example of a tree of infections

For $\phi = 3$ and $\rho = 2/3$, one transmission chain from one infected person *P*0 (only visualizing contacts where transmission occurs here) could look like this.

Stochastic generation-based reproduction: $I_0 = 1$

42

Stochastic generation-based reproduction: $l_0 = 100$

43

Stochastic generation-based reproduction: Extinction probability

< □>

- Both models neglected the importance of S

 « N
- The previous stochastic model was also very simple in its stochastic process
- Stochastic processes can be used to describe the generation of new cases on a more complex level
- We will not detail this here and only look at more advanced stochastic models when considering agent-based models

A generation-based difference equations SIR model

• For any primary case, the chance of meeting a susceptible when a contact takes place is

 $\frac{S}{N}$

• With contact rate ϕ and transmission probability per contact ρ , a deterministic model gives

$$\phi \rho \frac{l}{N} S \tag{2}$$

new infections per unit time.

A generation-based difference equations SIR model

Consider the following set of difference equations for generation i = 0, 1, ...

$$S_{i+1} = S_i - \rho \phi \frac{I_i}{N} S_i$$

$$I_{i+1} = \rho \phi \frac{I_i}{N} S_i$$

$$R_{i+1} = \sum_{k=0}^{i} I_k$$
(3)

- We assume ϕ to be given per generation and that individuals recover in one generation.
- Note that the previous system is not correct if $\rho \phi \frac{l_i}{N} > 1$.

A generation-based difference equations SIR model

Martin J. Kühn, Institute for Software Technology, Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview, 2023/02/22

Equation-based models (EBM)

49

From primary to secondary case in real time

Infection from a primary to a secondary case can happen at any $\hat{\tau}$ with $0 < \hat{\tau} < T_l$.

- Broadly used models for real-time transmission are sets of
 - Ordinary Differential Equations (ODE)
 - Integro Differential Equations (IDE)
 - Stochastic Differential Equations (SDE)

From discrete to continuous models: An equation for S(t)

- Take the difference equation from the previous chapter (with unit time in day(s)!)
- Consider a "small" time step Δt , a fraction of the unit time
- Then, the number of new infections from *t* to $t + \Delta t$ is

$$S(t + \Delta t) - S(t) = -\rho \phi \frac{I(t)}{N} S(t) \Delta t$$
(4)

• By considering the limit $\Delta t \to 0$, we have for $S : \mathbb{R}_0^+ \to \mathbb{R}$,

$$S'(t) = \lim_{\Delta t \to 0} \frac{S(t + \Delta t) - S(t)}{\Delta t} = -\rho \phi \frac{I(t)}{N} S(t).$$
(5)

From discrete to continuous models: A simple ODE-SIR model

Waiving the assumption of recovery in unit time, we consider the system

$$S'(t) = -\rho \phi \frac{I(t)}{N} S(t),$$

$$I'(t) = \rho \phi \frac{I(t)}{N} S(t) - \frac{1}{T_I} I(t),$$

$$R'(t) = \frac{1}{T_I} I(t).$$
(6)

- This is a (nonlinear) system of ordinary differential equations (ODEs)
- We denote this an ODE-SIR model

• We present the system (6) by the following flow chart:

The basic reproduction number is

$$\boldsymbol{R}_0 = \rho \boldsymbol{\phi} \boldsymbol{T}_{l}. \tag{7}$$

Interventions

- Transmission of communicable diseases can be prevented by
 - avoiding situation where transmission can take place (e.g., human contacts)
 - taking protective measures in these situations (e.g., face masks)
 - better protecting susceptible individuals (e.g., by vaccination)
- The above actions classify in pharmaceutical (e.g., vaccination) and nonpharmaceutical (e.g., contact restrictions) interventions
- Nonpharmaceutical interventions will often be denoted NPIs
- For allowing contact restrictions, we define a time dependent contact rate

$$\phi(t) \in [0, \phi]. \tag{8}$$

Remark 1

Numerical solution of a simple ODE-SIR model with NPIs

Extensions of the ODE-SIR model

- (ODE)-SIR models can be extended in many "dimensions"
- The (research) question defines the model
- If the question is about containment or mitigation of the virus, we need to describe the transmission process more properly.
- If the question was about mortality from the virus, we need to introduce an infection state Dead

Extensions of the ODE-SIR model: An ODE-SEIR model

- Direct retransmission of a pathogen after catching it may be unrealistic
- "ignoring the latent period results in underestimating the basic reproductive ratio of an infection from outbreak data";

see Keeling, Rohani, Keeling: Appropriate Models for the Management of Infectious Diseases (2006).

 We introduce a state E (Exposed) and T_E, the time a person remains in a latent non-infectious (or exposed) state after transmission

An ODE-SEIR model: Visualization

59

- We assume that the outflow of *E* is proportional to *E*
- Now, the "outflow" of S goes to E instead of I, i.e., the extended system writes

$$S'(t) = -\rho \phi \frac{I(t)}{N} S(t),$$

$$E'(t) = \rho \phi \frac{I(t)}{N} S(t) - \frac{1}{T_E} E(t),$$

$$I'(t) = \frac{1}{T_E} E(t) - \frac{1}{T_I} I(t),$$

$$R'(t) = \frac{1}{T_I} I(t).$$

(9)

An ODE-SEIR model with explicit Test-Trace-Isolate effects

Extensions of the ODE-SIR model: An ODE-SEIHRD model

62

<

ロ><</p><</p>

Simple ODE-based modeling: Advantages and limitations

- cheap to compute
- well established methods to analyze for, e.g., equilibria
- homogeneous mixing assumption may be wrong
 - \rightarrow introducing age-resolution (ODE)
 - \rightarrow introducing different subpopulations (ODE)
 - \rightarrow introducing spatial heterogeneity (hybrid or coupled ODEs)
- compartment stays are exponential and, e.g., viral load constant
 - \rightarrow considering integral terms (IDE)
- stochastic effects not reflected
 - \rightarrow ... (SDE/ABM)

Simple example of age-resolved models for two age groups

64

IDE-based models as generalization of ODE-based models: Part I

 $S'(t) = o \phi(t) \frac{S(t)}{S(t)} \int_{-\infty}^{t} \gamma_{t}^{R}(t-x) S'(x) dx.$

Theorem 1

Consider the system of integro-differential equations

$$I(t) = -\int_{t_0}^{t} \gamma_I^R(t-x) S'(x) \, dx,$$

$$R(t) = -\int_{t_0}^{t} (1 - \gamma_I^R(t-x)) S'(x) \, dx.$$
Let $\gamma_I^R(\tau) = \exp(-\frac{\tau}{T_I}).$ Then (10) reduces to
$$S'(t) = -\rho \phi(t) I(t) \frac{S(t)}{N}$$

$$I'(t) = \rho \phi(t) I(t) \frac{S(t)}{N} - \frac{1}{T_I} I(t)$$

$$R'(t) = \frac{1}{T_I} I(t)$$

(10)

IDE-based models as generalization of ODE-based models: Part I

• $\gamma_I^R(\tau)$ is the fraction of infected individuals that will still recover from infection after time τ (i.e., that is still infected at time τ).

We need

$$\gamma_l^R(0) = 1, \quad \gamma_l^R(\tau) \ge 0 \quad \text{for all } \tau \ge 0,$$

 $\gamma_l^R(x) \text{ monotonously decreasing}, \quad \int_0^\infty \gamma_l^R(\tau) d\tau < \infty.$ (11)

 Theorem 1 shows that our ODE-SIR model implicitly assumed that compartment stays were exponential. IDE-based models as generalization of ODE-based models: Part II

- Infectiousness depends on age of infection: ho
 ightarrow
 ho(au)
- Contacts depend on age of infection: $\phi(t) \rightarrow \phi(t, \tau)$

More details: Keimer/Pflug (2020), Plötzke (2020).

IDE-based models as generalization of ODE-based models II Theorem 2

Consider the system of integro-differential equations

$$S'(t) = \frac{S(t)}{N} \int_{t_0}^{t} \phi(t, t - x)\rho(t - x) \gamma_I^R(t - x) S'(x) dx,$$

$$I(t) = -\int_{t_0}^{t} \gamma_I^R(t - x) S'(x) dx,$$

$$R(t) = -\int_{t_0}^{t} (1 - \gamma_I^R(t - x)) S'(x) dx.$$

$$\gamma_I^R(\tau) = \exp(-\frac{\tau}{T_I}), \rho(\tau) = \rho, \text{ and } \phi(t, \tau) = \phi(t). \text{ Then (12) reduces to:}$$

$$S'(t) = -\rho \phi(t) I(t) \frac{S(t)}{N}$$

$$I'(t) = \rho \phi(t) I(t) \frac{S(t)}{N} - \frac{1}{T_I} I(t)$$

$$R'(t) = \frac{1}{T_I} I(t)$$
(12)

68

Let

Agent-based models (ABM)

ロ>

Agent-based modeling

Agents

Object which holds information, e.g., infection status, current location or age

Locations

Multiple locations which can be visited, e.g., individual homes, schools, workplaces

Rules / Interactions

Interactions of different Agents at a current location, or rules for traveling between locations

\rightarrow micro granularity & stochastic effects !

Agent-based modeling

/1

Agent-based modeling: Testing Scheme

72

Digression: Data science

/3

Data science is essential part of the process

Data science is essential part of the process

< □> < 四> < 三> < 三> の Q ()

Hybrid models / Spatial resolution for EBMs

76

Spatial resolution for EBMs: Hybrid Graph-ODE model

Highest commuter connections in Germany

Extracted from Federal Agency of Work: Registered home and work places

Martin J. Kühn, Institute for Software Technology, Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview, 2023/02/22

Inter-regional contacts: Official sources and social network

North Rhine-Westfalia:

80

Commuter testing in hybrid graph-ODE model

- NoCovid ≠ ZeroCovid
- NoCovid: "Controlling the Covid-19 pandemic through Green Zones"

Four different initial scenarios. Random initial incidence (weekly cases per 100 000 individuals) of 75-150 for 2-20% of the counties and incidence below 10 otherwise (top).

- Test of commuters coming from red zones
- 75 % detection ratio (averaged value for mix of massive deployment of antigen tests plus PCR, RTD-PCR and pool tests)
- Considering different frequencies (daily, twice per week, ...)

Simulated spread of SARS-CoV-2 cases for one initial scenario of about 18 % red zones and 8 different strategies. Median result after 30 days of simulation time.

Further reading: M. J. Kühn, D. Abele, S. Binder, K. Rack, M. Klitz, J. Kleinert, J. Gilg, L. Spataro, W. Koslow, M. Siggel, M. Meyer-Hermann, A. Basermann. Regional opening strategies with commuter testing and containment of new SARS-CoV-2 variants. BMC Infectious Diseases 22, no. 1 (2022): 333 https://doi.org/10.1186/s12879-022-07302-9

Martin J. Kühn, Institute for Software Technology, Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview, 2023/02/22

- Models necessary where classical experiments not possible or too costly
- A lot of models exist
- Only presented a non-exhaustive list
- All models come with advantages and disadvantages
- Hybrid models try to combine the "best out of two worlds"
- Data science is essential part of the process

Thank you

"Predictive simulation software" at Institute for Software Technology:

- \rightarrow Infectious Diseases Dynamics not the only topic
- \rightarrow We are highly interested in future collaborations!

Further reading: W. Koslow, M. J. Kühn, S. Binder, M. Klitz, D. Abele, A. Basermann, M. Meyer-Hermann, Appropriate relaxation of non-pharmaceutical interventions minimizes the risk of a resurgence in SARS-CoV-2 infections in spite of the Delta variant. PLoS Computational Biology 18, no. 5 (2022): e1010054.

https://github.com/SciCompMod/memilio

Thank you for your kind attention!