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Predictive Simulation Software

4 PhD Theses on models:

Hybrid Graph-ODE

Integro-DE

Agent-based

hybrid AB-EB

Other topics:

HPC, Data science,
Surrogate models, ...
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Predictive Simulation Software

Deformation of heterogeneous materials Plasma fusion

Infectious disease modeling

High performance computing
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Introduction
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Some recent epi- and pandemics

2019: SARS-CoV-2 (�6.8m deaths[1])

2012: MERS-CoV (�1k deaths[2])

2009: Influenza A (150-575k deaths[2])

2002: SARS-CoV (�1k deaths[2])

1968: Influenza A (�1m deaths[2])

[1] Johns Hopkins University (accessed 02/2023), [2] Abdelrahman et al., Front. Immunol. (2021).
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IPBES Workshop Report on Biodiversity and Pandemics

Daszak et al. (2020), doi:10.5281/zenodo.4147317

“Without predictive and preventative strategies, pandemics will emerge more often, spread
more rapidly, kill more people [...] with more devastating impact than ever”

Estimation: More than 600 000 “undiscovered viruses” in “mammal and avian hosts [...]
could have the ability to infect humans”

The costs for prevention of pandemics are “trivial in comparison to the trillions of dollars of
impact due to COVID-19, let alone the rising tide of future diseases.”

“Reducing pandemic risks [...] would cost 1-2 orders of magnitude less than estimates of
the economic damages caused by global pandemics”
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Motivation for infectious disease research

Epidemics and pandemics are no “once in every 100 years” event

The frequency of epidemics and pandemics could increase

Endemic infectious diseases can still cause a large number of deaths and people suffering
from the disease (with or without dying from it)

HIV, Malaria, and Tuberculosis account for 9k deaths eachs day[3]

[3] Brauer, Castillo-Chavez, Feng (2019)
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Motivation for infectious disease modeling

?
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Infectious disease dynamics: Questions

If one (or several) persons in a population get infected (by a particular pathogen)

does this cause an epidemic / increase?

What is the rate of the increase?

What will be the total number of infected (final size)?

What is the effect of interventions?
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Infectious disease dynamics: Approaches

Real life experiments not feasible

Knowledge from other situations might be difficult to transfer directly

Theoretical or mathematical models can help to gain insight

Use of modern computers allows to consider detailed models and a lot of scenarios, e.g.,
home-office ratio of 10 %,

vs home-office ratio of 30 %,

closure of X,

vs closure of Y,

...
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The mathematical modeling process on an example
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Schematic view of mathematical modeling process
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Schematic view of modeling process: Problem, Data, Situation
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Examples of Problem, Data, Situation

Sars-CoV-2 in Europe in beginning of 2020:

A new pathogen appeared on scene

Some confirmed cases in some regions

Some knowledge about the transmission as they appeared

DLR
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Schematic view of modeling process: Problem formulation
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Problem formulation and examples of assumption and simplification

A “contact” leads to transmission with some probability �
! Needs a definition (simple physical, exposure through air, sexual, waterborne, ...)

all people are equally susceptible
! neglect that (cross-)immunity could reduce risk

...
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Schematic view of modeling process: Math. / Computer model
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Mathematical model and examples of mathematization, programming

A person is described as an agent
It has features such as age or infection state

We can set and ask if the person is in quarantine

...

For every infection state, we need to estimate the time a person is in this state and translate
this into a parameter

Let X � U [0; 1] be uniformly distributed. For every contact of a person P with an infected
person, we draw a sample xi from X . If xi � �, the virus gets transmitted.

...
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Schematic view of mathematical modeling process: Results
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Results and examples of simulation

Given a set of parameters, one can compute the outcome of the model

Outcomes are often computed as approximations using a computer and not by an
analytical solution (which may be difficult or impossible to obtain)

Input parameters are uncertain and uncertainty in the input leads to uncertainty in the
output (although often with different quantification)

Simulations with multiple sets of parameters can assess uncertainty in the prediction
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Results and examples of simulation
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Schematic view of mathematical modeling process: Validation
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Examples of comparison, validation

Scenario A: Scenario B:
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Martin J. Kühn, Institute for Software Technology, Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview, 2023/02/22
24



Examples of comparison, validation

Problems of underdetection, delayed reporting, week-end effects etc. in real data

Changed real world behavior has to be reflected in model runs

...

! start anew and adapt simplifications, assumptions, model, parameters, ...
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Classications for infectious disease dynamics models
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Introduction to infectious disease dynamics: Basic notation

For all models, we introduce discrete infection states or compartments

Notation: ”Infection states“ can be states free of any infection (e.g., susceptible to the virus
or recovered from the virus)!

All individuals (or shares of the population) will get assigned a unique infection state.

The (research) question defines which model states need to be considered.

Minimal set of infection states
Susceptible: Persons that are susceptible to get the virus if they ”get in contact”

Infected (Infectious): Persons that have the virus and can transmit it to susceptibles
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Introduction to infectious disease dynamics: Model classifications

Many models can be classified according to different ”dimensions“
Epidemic and endemic

generation-based and real-time

deterministic and stochastic

population-based and individual-based

...

Also hybrid, combined models are possible, then model parts might be classified
accordingly
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Epidemic and endemic: A brief motivation

Epidemic Endemic
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Epidemic and endemic: A brief motivation

Epidemic

”short“ time horizons

immigration, births and
non-disease-related deaths less influential
! closed population

single steady state: disease free

Endemic

”large“ time horizons

immigration, births and
non-disease-related deaths can become
important

multiple steady states possible
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Population-based and individual-based: A brief motivation
DLR
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Population-based and individual-based: A brief motivation

Population-based

averaging effects over (sub)populations

homogeneous mixing inside
(sub)populations

established methods for analysis

low computational effort

Individual-based

easy modeling of individuals effects

modeling micro granularity such as
particular households

tracing of transmission possible

high computational effort
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Generation-based and real-time: A brief motivation

Generation-based

P0

P2P1

P4P3 P6P5

P8P7 P9 P10 P11 P12 P13 P14

Real-time

P0

P2

P1

P4
P3

P6
P5

P8

P7

P9

P10

P11 P12

P13
P14
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Deterministic and stochastic: A brief motivation

Deterministic

P0

P2P1

P4P3 P6P5

P8P7 P9 P10 P11 P12 P13 P14

Stochastic

P0

P2P1

P4P3 P6P5

P7 P8 P9 P10
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Deterministic and stochastic: A brief motivation

Deterministic

explores average effect

Stochastic

can explore full set of potential outcomes
(if/if not, best/worst case)
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Martin J. Kühn, Institute for Software Technology, Department of High-Performance Computing: Mathematical Modeling of Infectious Disease Dynamics: An Overview, 2023/02/22
35



Primary and secondary cases

For investigating infectious disease spread, we introduce the primary cases as the infected
individuals related to the current outbreak

The questions is how many secondary cases, i.e., new infections are induced by the
primary cases

We define the basic reproduction number as

R0 :=
expected number of secondary cases per primary case

if all individuals are ”immune-naive“ (1)
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Simple generation-based models
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Assumptions and basic parameters

Assume a homogeneous population
! All parameters are averaged parameters (if not stated differently).

assume that the number of susceptibles is so large that we can neglect the effect of
non-susceptible persons in the population
! S � N (S: susceptible persons, N: total population)

�: contact rate: the number contacts per generation

�: the transmission risk when ”having a contact“ with an infected person
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Deterministic generation-based reproduction

Example of a tree of infections
For � = 3 and � = 2=3, we have the following transmission chain from one infected person
P0 (only visualizing contacts where transmission occurs here)

P0

P2P1

1st generation

P4P3

2nd generation

P6P53rd generation

P8P7 P9 P10 P11 P12 P13 P144th generation

...
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Deterministic generation-based reproduction

! Model is too simple if S � N
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Stochastic generation-based reproduction

Example of a tree of infections
For � = 3 and � = 2=3, one transmission chain from one infected person P0 (only visualizing
contacts where transmission occurs here) could look like this.

P0

P2P1

1st generation

P4P3

2nd generation

P6P53rd generation

P7 P8 P9 P104th generation

...
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Stochastic generation-based reproduction: I0 = 1
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Stochastic generation-based reproduction: I0 = 100
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Stochastic generation-based reproduction: Extinction probability
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Summary

Both models neglected the importance of S � N

The previous stochastic model was also very simple in its stochastic process

Stochastic processes can be used to describe the generation of new cases on a more
complex level

We will not detail this here and only look at more advanced stochastic models when
considering agent-based models
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A generation-based difference equations SIR model

For any primary case, the chance of meeting a susceptible when a contact takes place is

S
N

With contact rate � and transmission probability per contact �, a deterministic model gives

��
I
N

S (2)

new infections per unit time.
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A generation-based difference equations SIR model

Consider the following set of difference equations for generation i = 0; 1; : : :

Si+1 = Si � ��
Ii
N

Si

Ii+1 = ��
Ii
N

Si

Ri+1 =

i

Σ
k=0

Ik

(3)

We assume � to be given per generation and that individuals recover in one generation.

Note that the previous system is not correct if �� Ii
N > 1.
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A generation-based difference equations SIR model
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Equation-based models (EBM)
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From primary to secondary case in real time

Infection from a primary to a secondary case can happen at any �̂ with 0 < �̂ < TI .

Infectious period

Infectious period

Transmission

0 Ƹ𝜏 𝑇𝐼 𝑇𝐼 + Ƹ𝜏

Broadly used models for real-time transmission are sets of
Ordinary Differential Equations (ODE)

Integro Differential Equations (IDE)

Stochastic Differential Equations (SDE)
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From discrete to continuous models: An equation for S(t)

Take the difference equation from the previous chapter (with unit time in day(s)!)

Consider a ”small“ time step ∆t , a fraction of the unit time

Then, the number of new infections from t to t +∆t is

S(t +∆t)� S(t) = ���
I(t)
N

S(t)∆t (4)

By considering the limit ∆t ! 0, we have for S : R+
0 ! R,

S0(t) = lim
∆t!0

S(t +∆t)� S(t)
∆t

= ���
I(t)
N

S(t): (5)
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From discrete to continuous models: A simple ODE-SIR model

Waiving the assumption of recovery in unit time, we consider the system

S0(t) = ���
I(t)
N

S(t);

I0(t) = ��
I(t)
N

S(t)�
1
TI

I(t);

R0(t) =
1
TI

I(t):

(6)

This is a (nonlinear) system of ordinary differential equations (ODEs)

We denote this an ODE-SIR model
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A simple ODE-SIR model: Visualization

We present the system (6) by the following flow chart:

Susceptible
S

Infected
I

Recovered
R

� � I
N

1
TI

The basic reproduction number is

R0 = ��TI : (7)
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Interventions

Transmission of communicable diseases can be prevented by
avoiding situation where transmission can take place (e.g., human contacts)

taking protective measures in these situations (e.g., face masks)

better protecting susceptible individuals (e.g., by vaccination)

The above actions classify in pharmaceutical (e.g., vaccination) and nonpharmaceutical
(e.g., contact restrictions) interventions

Nonpharmaceutical interventions will often be denoted NPIs

For allowing contact restrictions, we define a time dependent contact rate

�(t) 2 [0; �]: (8)
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Numerical solution of a simple ODE-SIR model with NPIs

Remark 1
Discrete parameter changes are a problem for the analytical definition of the differential
equation as well as for the numerical solution scheme. In order to avoid these situations, we
can either restart the scheme from each discrete change point or use C1 functions to express
time dependent parameters.

discrete contact rate changes

C
on

ta
ct

ra
te

Simulation day

C1 contact rate changes

C
on

ta
ct

ra
te

Simulation day
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Numerical solution of a simple ODE-SIR model with NPIs
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Extensions of the ODE-SIR model

(ODE)-SIR models can be extended in many “dimensions”

The (research) question defines the model

If the question is about containment or mitigation of the virus, we need to describe the
transmission process more properly.

If the question was about mortality from the virus, we need to introduce an infection state
Dead

...
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Extensions of the ODE-SIR model: An ODE-SEIR model

Direct retransmission of a pathogen after catching it may be unrealistic

“ignoring the latent period results in underestimating the basic reproductive ratio of an
infection from outbreak data”;
see Keeling, Rohani, Keeling: Appropriate Models for the Management of Infectious Diseases (2006).

We introduce a state E (Exposed) and TE , the time a person remains in a latent
non-infectious (or exposed) state after transmission

Latent period Infectious period

Latent period Infectious period

Transmission

0 𝑇𝐸 𝑇𝐸+Δt 𝑇𝐸+𝑇𝐼

2𝑇𝐸+Δt

DLR
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An ODE-SEIR model: Visualization

Susceptible
S

Exposed
E

Infected
I

Recovered
R

� � I
N

1
TE

1
TI
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An ODE-SEIR model: Equations

We assume that the outflow of E is proportional to E

Now, the “outflow” of S goes to E instead of I, i.e., the extended system writes

S0(t) = ���
I(t)
N

S(t);

E 0(t) = ��
I(t)
N

S(t)�
1

TE
E(t);

I0(t) =
1

TE
E(t)�

1
TI

I(t);

R0(t) =
1
TI

I(t):

(9)
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An ODE-SEIR model with explicit Test-Trace-Isolate effects

Susceptible
S

Exposed
E

Infected
Detected

ID

Infected
Undetected

IU

Recovered
R

� � IU
N

�
ID
E

TE

1��
ID
E

TE

1
TID

1
TIU
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Extensions of the ODE-SIR model: An ODE-SEIHRD model

Susceptible
S

Exposed
E

Infected
I

Hospitalized
H

Dead
D

Recovered
R

� � �I I
N

1
TE

1��H
I

TI

�H
I

TI

1��D
H

TH �D
H

TH
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Simple ODE-based modeling: Advantages and limitations

cheap to compute

well established methods to analyze for, e.g., equilibria

homogeneous mixing assumption may be wrong
! introducing age-resolution (ODE)
! introducing different subpopulations (ODE)
! introducing spatial heterogeneity (hybrid or coupled ODEs)

compartment stays are exponential and, e.g., viral load constant
! considering integral terms (IDE)

stochastic effects not reflected
! ... (SDE/ABM)
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Simple example of age-resolved models for two age groups

Susceptible
S1

Infected
I1

Recovered
R1

�1

(
�1;1

I1
N1

+ �1;2
I2
N2

)
1

TI1

Susceptible
S2

Infected
I2

Recovered
R2

�2

(
�2;1

I1
N1

+ �2;2
I2
N2

)
1

TI2
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IDE-based models as generalization of ODE-based models: Part I

Theorem 1
Consider the system of integro-differential equations

S0(t) = � �(t)
S(t)
N

∫ t

t0
R

I (t � x)S0(x) dx ;

I(t) = �
∫ t

t0
R

I (t � x)S0(x) dx ;

R(t) = �
∫ t

t0

(
1� R

I (t � x)
)

S0(x) dx :

(10)

Let R
I (�) = exp(� �

TI
). Then (10) reduces to

S0(t) = �� �(t) I(t)
S(t)
N

I0(t) = � �(t) I(t)
S(t)
N

�
1
TI

I(t)

R0(t) =
1
TI

I(t)
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IDE-based models as generalization of ODE-based models: Part I

R
I (�) is the fraction of infected individuals that will still recover from infection after time �

(i.e., that is still infected at time � ).

We need

R
I (0) = 1; R

I (�) � 0 for all � � 0;

R
I (x) monotonously decreasing;

∫
1

0
R

I (�)d� <1:
(11)

Theorem 1 shows that our ODE-SIR model implicitly assumed that compartment stays
were exponential.
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IDE-based models as generalization of ODE-based models: Part II

Infectiousness depends on age of infection: �! �(�)

Contacts depend on age of infection: �(t)! �(t; �)

“Infectiousness” over time

More details: Keimer/Pflug (2020), Plötzke (2020).
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IDE-based models as generalization of ODE-based models II
Theorem 2
Consider the system of integro-differential equations

S0(t) =
S(t)
N

∫ t

t0
�(t; t � x)�(t � x) R

I (t � x)S0(x) dx ;

I(t) = �
∫ t

t0
R

I (t � x)S0(x) dx ;

R(t) = �
∫ t

t0

(
1� R

I (t � x)
)

S0(x) dx :

(12)

Let R
I (�) = exp(� �

TI
), �(�) = �, and �(t; �) = �(t).Then (12) reduces to:

S0(t) = �� �(t) I(t)
S(t)
N

I0(t) = � �(t) I(t)
S(t)
N

�
1
TI

I(t)

R0(t) =
1
TI

I(t)
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Agent-based models (ABM)
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Agent-based modeling

Agents
Object which holds information, e.g., infection status, current location or age

Locations
Multiple locations which can be visited, e.g., individual homes, schools, workplaces

Rules / Interactions
Interactions of different Agents at a current location, or rules for traveling between locations

! micro granularity & stochastic effects !
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Agent-based modeling
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Agent-based modeling: Testing Scheme
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Digression: Data science

DLR
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Data science is essential part of the process
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Data science is essential part of the process
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Hybrid models / Spatial resolution for EBMs
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Spatial resolution for EBMs: Hybrid Graph-ODE model
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Highest commuter connections in Germany

Extracted from Federal Agency of Work: Registered home and work places
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Inter-regional contacts: Official sources and social network

North Rhine-Westfalia:
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Numerical assessment of the NoCovid strategy
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Commuter testing in hybrid graph-ODE model
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Numerical assessment of the NoCovid strategy

NoCovid 6= ZeroCovid

NoCovid: “Controlling the Covid-19 pandemic through Green Zones”

Four different initial scenarios. Random initial incidence (weekly cases per 100 000 individuals) of 75-150 for 2-20% of the counties and incidence below 10 otherwise (top).
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Numerical assessment of the NoCovid strategy

Test of commuters coming from red zones

75 % detection ratio (averaged value for mix of massive deployment of antigen tests plus
PCR, RTD-PCR and pool tests)

Considering different frequencies (daily, twice per week, ...)
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L, T5, D1W L, T5, D3W L, T2, D1W L, T2, D3W

L, T1, D1W L, T1, D3W L, T0, D1W L, T0, D3W

Simulated spread of SARS-CoV-2 cases for one initial scenario of about 18 % red zones and 8 different strategies. Median result after 30 days of simulation time.
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Numerical assessment of the NoCovid strategy

Further reading: M. J. Kühn, D. Abele, S. Binder, K. Rack, M. Klitz, J. Kleinert, J. Gilg, L.
Spataro, W. Koslow, M. Siggel, M. Meyer-Hermann, A. Basermann. Regional opening
strategies with commuter testing and containment of new SARS-CoV-2 variants. BMC
Infectious Diseases 22, no. 1 (2022): 333
https://doi.org/10.1186/s12879-022-07302-9
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Summary

Models necessary where classical experiments not possible or too costly

A lot of models exist

Only presented a non-exhaustive list

All models come with advantages and disadvantages

Hybrid models try to combine the “best out of two worlds”

Data science is essential part of the process
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Thank you

“Predictive simulation software” at Institute for Software Technology:
! Infectious Diseases Dynamics not the only topic
! We are highly interested in future collaborations!

Further reading: W. Koslow, M. J. Kühn, S. Binder, M. Klitz, D. Abele, A. Basermann, M.
Meyer-Hermann, Appropriate relaxation of non-pharmaceutical interventions minimizes the
risk of a resurgence in SARS-CoV-2 infections in spite of the Delta variant. PLoS
Computational Biology 18, no. 5 (2022): e1010054.

https://github.com/SciCompMod/memilio

Thank you for your kind attention!
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