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Abstract: Accurate detection and delineation of individual trees and their crowns in dense forest
environments are essential for forest management and ecological applications. This study explores
the potential of combining leaf-off and leaf-on structure from motion (SfM) data products from
unoccupied aerial vehicles (UAVs) equipped with RGB cameras. The main objective was to develop a
reliable method for precise tree stem detection and crown delineation in dense deciduous forests,
demonstrated at a structurally diverse old-growth forest in the Hainich National Park, Germany.
Stem positions were extracted from the leaf-off point cloud by a clustering algorithm. The accuracy
of the derived stem co-ordinates and the overall UAV-SfM point cloud were assessed separately,
considering different tree types. Extracted tree stems were used as markers for individual tree crown
delineation (ITCD) through a region growing algorithm on the leaf-on data. Stem positioning showed
high precision values (0.867). Including leaf-off stem positions enhanced the crown delineation, but
crown delineations in dense forest canopies remain challenging. Both the number of stems and
crowns were underestimated, suggesting that the number of overstory trees in dense forests tends
to be higher than commonly estimated in remote sensing approaches. In general, UAV-SfM point
clouds prove to be a cost-effective and accurate alternative to LiDAR data for tree stem detection. The
combined datasets provide valuable insights into forest structure, enabling a more comprehensive
understanding of the canopy, stems, and forest floor, thus facilitating more reliable forest parameter
extraction.

Keywords: unoccupied aerial vehicle (UAV); RGB; structure from motion (SfM); individual tree
crown delineation (ITCD); stem detection; tree position; point cloud; leaf-off; leaf-on; deciduous forest

1. Introduction

Precise forest parameters play a pivotal role in facilitating efficient forest management
and conservation [1]. Understanding the structure, health, and composition of a forest
stand not only improves its management but also enables effective forecasting of future
trends. This becomes especially crucial due to the increasing stressors on forest ecosystems
induced by the effects of climate change and human-driven land use conversions, which
lead to a decline in forest health and coverage in several parts of the world [2,3]. In
particular, managing at the individual tree level is gaining increasing importance for
conducting targeted interventions, guiding forest development, and ensuring sustainable
forest management under the intensifying impacts of climate change and usage pressure [4].
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With the growing availability of earth observation data and techniques, forest moni-
toring from local to global scales is becoming feasible. Satellite remote sensing data, with
their respective spectral and temporal resolution, can be utilized for a wide range of forest
applications [5]. However, their coarser pixel size limits their use for forest monitoring
analysis on an individual tree level. Light Detection and Ranging (LiDAR) techniques,
such as mobile laser scanning (MLS), have been shown to provide high-resolution data
with detailed information on the structure of individual trees (please refer to the Abbrevia-
tions) [6,7]. Nonetheless, the use of MLS is impractical for large areas, and its cost-intensive
equipment makes it inaccessible to many users. Although LiDAR tools mounted on un-
occupied aerial vehicles (UAV) can overcome some of the spatial limitations of MLS and
generate high-density forest point clouds [8,9], their accessibility within the forestry sector
is still limited due to cost constraints.

For local forest monitoring, UAVs equipped with continuously improving optical
camera systems have demonstrated their potential as a cost-effective and user-friendly tool
for deriving various forest parameters [10,11]. Operating at low flight altitudes, they pro-
vide images with very high geometrical resolution of a few centimeters, enabling analysis
on individual tree level and even capturing within-variability of single tree crowns [12].
UAV data have, therefore, been used to derive a range of forest parameters quantifying
the vertical and horizontal forest structure—such as tree height, breast height diameter,
crown shapes, and canopy gaps—categorizing tree species, estimating tree health and
above-ground biomass, or detecting diseases [13–15].

1.1. UAV Imagery Processing Using Structure from Motion

One of the great advantages of UAV data is their ability to generate 3D information,
such as 3D point clouds, from 2D drone imagery applying photogrammetric processing
steps, commonly known as structure from motion (SfM) [16]. During data acquisition,
highly overlapping images are captured, providing different perspectives on the same
ground spots. Prominent feature points are extracted from each image, and features
corresponding to the same 3D point are matched in the overlapping regions of different
images. Aerial triangulation, such as bundle adjustment, is then applied to define camera
positions and orientations, as well as to obtain 3D geometry, creating tracks from a set of
matched features. Based on these estimated camera and image positions, densification
algorithms (dense stereo matching) can be used to generate dense 3D point clouds. From
the point cloud, a digital surface model (DSM) can be derived and, by projecting the single
images using the DSM, an orthomosaic can be generated [16,17]. These data products
can be further used to extract specific forest parameters. The UAV-SfM approach has the
potential to provide both geometric and spectral datasets, serving as input data for various
forest parameter extraction algorithms. While methods integrating geometrical point and
spectral image data are increasingly used in the field of forestry, most studies rely on LiDAR
data rather than on UAV-SfM point clouds [18,19].

1.2. UAV-Data-Based Products for Tree Crown Delineation

In order to analyze tree parameters on an individual tree level within a forest stand, it
is necessary to first segment single trees. This involves delineating the projected tree crown,
which can be identified in the orthomosaic or height models, as separate objects. This
individual tree crown delineation (ITCD) serves as the foundation for various subsequent
analysis steps, including tree species classification, environmental and forest monitoring at
the tree level, and the extraction of individual tree parameters directly from remote sensing
data [20–23]. Over the past few decades, numerous ITCD methods have developed, based
on generalized characteristics of trees or forests. Most of these methods can be applied to
either 2D raster such as orthomosaic, 2.5D raster such as canopy height models (CHMs), or
3D data products such as point clouds. However, there are certain methods that specifically
rely on 3D data and cannot be used when only 2D data are available. These methods often
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originate from the field of laser scanning and are increasingly being tested for point clouds
derived from SfM as well [24].

Most methods typically assume a similar—hemispherical to conical—tree shape, with
one tree top located at the center of the crown. Due to its exposed position, the top of the
tree receives the highest solar radiation, resulting in the highest intensity and brightness val-
ues [20,22]. Algorithms are expected to yield better results for forests with a sparse canopy,
lower species diversity, and similar age structure. These characteristics are more commonly
found in managed forests and in coniferous, savannas, or tundra forest systems [22].

The analysis is often divided into two parts: tree detection, which involves iden-
tifying the position of a tree trunk, and delineating the (entire) tree crown [20]. In the
following, some of the more commonly used methods for tree detection and delineation
will be presented.

Local maxima and region growing: This method builds upon the previously mentioned
canopy characteristics. Initially, individual trees are detected by identifying local maxima,
which ideally represent tree midpoints. These maxima can be based on both CHM values
and brightness values [20,22]. Difficulties may arise when defining the search radius for local
maxima, which is derived from pixel size and average crown diameter and due to the fact
that, in reality, tree crowns are not symmetrically aligned around a central point. Smoothing
filters can reduce unwanted noise within the maxima [23,25–27]. Wulder et al. [28] propose
using varying local maxima search radii, each based on the semivariance of the pixel.

Starting from these initial seed points, neighboring pixels or objects that exhibit
similarity are added to the crown objects until a termination criterion is met, indicating that
the crown has been delineated. This process is known as region growing [20].

Valley-following approach: The valley-following approach, initially introduced by
Gougeon [29], consists of two parts. The first part involves classifying the areas between
the individual tree canopies, while the second part utilizes a rule-based method to refine
these classified areas [29]. These intermediate areas are referred to as valleys. They
are characterized by higher shading, resulting in lower intensity and brightness values
compared to the surrounding areas or represent local minima values [25,30]. According to
Ke and Quackenbush [20] and Workie [23], relying solely on this shade-following approach
often leads to incomplete separation of individual trees because, depending on tree density,
not all crowns are adequately separated from each other by “valleys”.

Watershed segmentation: The watershed segmentation, first described by Beucher
and Lantuéjoul [31], is a form of image processing segmentation. It also draws upon
the topological analogy of the canopy described earlier. In this method, the values of a
gray-scale layer are inverted and “flooded”, starting from local minima (tree tops). The
resulting individual watersheds are separated from each other by dams, creating distinct
segments [21,22,32]. Markers can be used in this process, representing the local minima
from which the “flooding” originates, ideally representing tree tops. The resulting segments
are supposed to delimit the individual tree tops [23]. According to Derivaux et al. [32], a
common challenge in this method is over-segmentation, which can be mitigated through
targeted marker placement, application of smoothing filters, or through the combined use
with region-merging techniques and other methods.

Template matching: Template matching is a method that can be employed to detect
individual tree crowns when the tree crowns exhibit similar shapes and comparable spectral
values. Templates are created based on a gray value layer, representing patterns of typical
tree shapes and values, mostly averaged. Both radiometric and geometric properties of
the crown are utilized, and different viewing angles can be considered. The template is
compared to all possible tree points, with high correlation values above a defined threshold
representing individual trees [21,22,25,33].

Deep learning methods: Deep learning methods, such as instance segmentation, are
increasingly being utilized for the detection and delineation of single tree crowns [34].
Commonly used model architectures are Mask R-CNN [35], artificial neural networks [15],
or U-nets [36]. These methods offer advantages such as the ability to use multi-band images
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as input, instead of relying solely on a single band, and a focus on textural features, which
is beneficial as adjacent trees might have very similar spectral properties. However, a
disadvantage is the need for training data, which are typically obtained through time-
consuming manual crown delineation and/or field work.

Point cloud-based methods: Terrestrial/airborne laser scanning and UAV-SfM provide
3D point cloud data that can be directly used for the single crown delineation. Most
studies focusing on 3D methods utilize LiDAR data, as UAV-SfM does not penetrate dense
crown structures well, especially during leaf-on season. As a result, UAV-SfM leaf-on
point clouds tend to be less dense for lower canopy and forest floor areas. Various point-
cloud-based approaches have been applied for ITCD, including K-means clustering [37],
template matching [38], voxel space approaches [39], and mean-shift segmentation [40].
Deep learning models are trained using reference point clouds and have been used to
segment single trees [39], employing frameworks such as PointNet [41].

Several recent studies applied one or multiple of the above-mentioned methods to de-
tect tree positions and perform crown delineation using UAV-based imagery data products.
A selection of relevant studies is presented in Table 1.

Table 1. Selection of recent studies on tree detection and crown delineation in forest ecosystems using
UAV optical data.

Paper Forest
Characteristics

UAV Imagery
Type

Camera
Angle

Tree Detection
Algorithm

Crown Delineation
Algorithm Description

[42]
Dry conifer
forest, low
tree density

DJI Phantom
4 Pro (RGB)

Nadir &
oblique

Local maxima on
CHM -

Various flight altitudes, patterns, and
camera angles were tested, and better
accuracy values were achieved by
combining crosshatch flight patterns
with nadir camera angles. The
maximum F-score values ranged
between 0.429 and 0.771.

[43]

Broadleaf
forest, test
sites with
different
stand
densities

DJI Phantom
4 Pro (RGB) Nadir Local maxima on

CHM

Region growing +
inverse watershed
segmentation

The highest overall accuracy
(F-score = 0.79) was obtained for the
low-density stand by applying a region
growing algorithm on the CHM.
Accuracy also varied among different
tree species, with the best results
obtained for Caspian poplar and the
lowest for Persian ironwood. In
high-density stands, the crown
delineation results could be improved
by applying weak gaussian filtering to
the CHM.

[44]
Mixed conifer
forest, open
canopy

DJI Phantom
3 (RGB) Nadir Local maxima on

CHM -

Fixed window sizes were used in the
local maxima filter, and it was observed
that accuracy decreased as the filter
sizes exceeded 1 × 1 m. Challenges in
tree detection were specifically noted in
steep areas and regions with high
canopy closure. DTMs obtained
through SfM tended to overestimate
height in dense vegetation in
comparison to DTMs derived from
airborne laser scanning.

[45]
Mixed-conifer
forest,
moderate
density

DJI Phantom
4 (RGB)

Nadir, oblique
& composite

Variable window
filter (VWF),
3D point
cloud-based
algorithms

-

Different flight parameters (altitude,
camera angle, and image overlap), SfM
processing settings (depth filtering,
alignment, and dense cloud quality),
and tree detection algorithms (CHM
smoothing, VWF parameters, and
point-cloud-based methods) were
investigated. Higher accuracies were
achieved at high flight altitudes (120 m)
and with high image overlap (90%). The
combination of nadir and oblique
imagery resulted in detection rates
worse than using only nadir data.
CHM-based VWF methods produced
the most accurate results, with F-scores
up to 0.664 (trees > 10 m) and 0.826
(trees > 20 m).
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Table 1. Cont.

Paper Forest
Characteristics

UAV Imagery
Type

Camera
Angle

Tree Detection
Algorithm

Crown Delineation
Algorithm Description

[46] Pine tree
plantations

DJI Mavic Pro
(RGB) Oblique Local maxima on

CHM -

Prior to tree detection using local
maxima, the CHM was mean-filtered
with a user-defined filter size. Accuracy
of up to 0.78 (F-score) was achieved.

[47] Spruce-pine
forest

DJI Phantom
4 Pro, Parrot
Disco-Pro Ag &
DJI Matrice
210 (RGB &
multispectral)

Nadir Local maxima on
CHM

Watershed
segmentation

Using consumer-grade cameras yielded
higher tree detection rates and more
accurate crown diameters compared to
multispectral cameras. Cameras with
higher spatial resolution performed
better at higher flight altitudes, whereas
the opposite was observed for cameras
with lower resolution. The best results
were achieved with the DJI Phantom
4 RGB drone, detecting 84% of the trees
correctly. The mean absolute error of
crown diameters derived was
0.79–0.99 m (Phantom 4, RGB) and
0.88–1.16 m (Zenmuse X5S).

[48]
Mixed conifer
forest, open
canopy

DJI Phantom
3 (RGB) Nadir Local maxima on

CHM -

Different window sizes for local
maxima detection were tested, and the
performance of smoothed and
non-smoothed CHM was compared.
Lower window sizes for local maxima
and smoothing proved to be more
successful in detecting trees. The overall
F-score value was 0.86.

[49]

Forest
plantations,
high canopy
density

DJI M600 Pro
(5-lens oblique) Oblique

Adaptive-/fixed-
kernel bandwidth
mean-shift
(AMS/FMS), region
growing on CHM

AMS, FMS, region
growing on CHM

Kernel bandwidth was defined based
on canopy properties and applied to the
mean-shift tree detection and
delineation algorithm. The AMS
method outperformed FMS and
seed-based region growing methods,
achieving an overall accuracy of ≥0.72
for tree detection and a relative RMSE
of ≤0.13 for crown width.

[50]

Orchard
yard/naturally
wooded pas-
ture/urban
trees, low tree
density

DJI Phantom
4 (RGB)

Single shot detector (SSD) deep learning
model on raster data (returning bounding
boxes around tree position)

Several additional datasets were
derived from the RGB and DSM and
were used for training purpose. SSD
was used for tree detection and species
classification. Ensembled models with
different input datasets generally
demonstrated higher performance
compared to models based on only
one type of input data.

[51]

Conifer and
mixed
regenerating
forest stands,
low tree
density

DJI Phantom
4 Pro (RGB) Nadir - Mask R-CNN on

raster data

Mask R-CNN were trained using
manually delineated crowns; pretrained
networks were also incorporated. An
average F1-score of 0.91 was achieved.
ITCD remained more challenging for
heterogeneous and denser forest stands,
as well as for smaller crowns.

[35]

Conifer
plantation,
moderate tree
densities

DJI Phantom
4 (multispectral)

Local maxima on
RGB and CHM

Marker-controlled
watershed
segmentation,
Mask R-CNN on
raster data

The performance of local maxima,
marker-controlled watershed
segmentation and Mask R-CNN were
compared. Local maxima and
watershed algorithms scored the best
results when applied to the CHM.
Overall, Mask R-CNN outperformed
the classic algorithms.

[52]

Subtropical
broadleaf
forest,
moderate tree
density

DJI Matrice
600 (RGB &
hyperspectral)

-

Watershed-
spectral-texture-
controlled
normalized cut

An extension was made to the
CHM-based watershed segmentation to
reduce over-segmentation. Objects
segmented by the watershed algorithm
were clustered based on the normalized
cut criterion, considering both spectral
and textural information.

As emphasized by several of these studies, detection and delineation of tree crowns in
complex forest structures with dense canopy closure and overlapping tree crowns remains
challenging [35,51]. Some studies focus on ITCD in forest with low to moderate canopy
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closure or open forest stands [42,48,53], as well as on forest plantations characterized by a
more regular tree spacing and structure [44,46]. These types of forest tend to facilitate the
detection of crown boundaries and the number of trees, as most algorithms perform better
in homogeneous forest stands with lower canopy closure [19].

The objective of this study was to develop a method that focuses on the utilization
and combination of leaf-on and leaf-off UAV-SfM data to derive stand parameters such as
stem positions and crown delineation of individual trees within dense, structurally diverse
deciduous forest environments. An approach was devised to extract stem positions using
the leaf-off point cloud. These stem co-ordinates were subsequently combined with leaf-on
datasets to derive crown delineations. Furthermore, a systematic accuracy assessment has
been implemented to distinguish error sources in stem detection. This assessment involves
comparing the extracted stem positions, a manually digitized UAV stem position dataset,
and an independent MLS-based reference dataset.

2. Materials and Methods

Figure 1 illustrates the overall workflow that was developed and applied in this study.
UAV RGB imagery of the forest was acquired twice: once on 4 August 2021 during leaf-on
conditions (May–October) and once on 29 March 2022 during leaf-off conditions (November–
April). Using an SfM approach, point clouds, orthomosaic, and a DSM were computed.
A ground classification from the leaf-off data was used to normalize the point cloud and
generate a digital terrain model (DTM). From the DTM and DSM, a CHM was extracted. A
slice of the normalized leaf-off point cloud is used as input data for the tree stem detection
method. Different reference datasets have been acquired for accuracy assessment. The ability
of the UAV data and the proposed algorithm to detect stems has also been analyzed based
on the respective tree type, such as overstory, understory, or tilted trees. In a second step, the
extracted stem co-ordinates, leaf-on orthomosaic, and CHM are used as markers to derive
individual crown delineation through a region growing algorithm.
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In the following paragraphs, the workflow will be described in detail, outlining the
steps taken to acquire and process the UAV imagery, collect reference data, derive stem
positions and ITCD, and validate the obtained results.

2.1. Study Site Hainich National Park

The present analysis was conducted within the Hainich National Park in Thuringia,
central Germany (Figure 2). The study area, known as “Huss site”, is located within the
forest stand of the national park and has an area of 28.2 ha with an average tree cover
density of 91% [54]. The center of the area is located at 10◦26′5′′E and 51◦4′47′′N. Within
the test side Huss, a wide range of ecological investigations are conducted and several
instruments for long-term forest monitoring have been established [55]. Surrounding
the national park is the Hainich forest hill chain, which spans an area of approximately
20,000 ha. To the south, the mountain range borders the Thuringian Forest. To the east,
it slopes towards the Thuringian Basin, while, to the west, it slopes relatively steeply to
the valley of the Werra River. The elevations in the area range between 225 and 493 m
a.s.l. [55–57].
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Figure 2. Overview of the study site “Huss” within the Hainich National Park located in the state
of Thuringia in central Germany. The co-ordinate system used for all figures is ETRS89/UTM 32N
(EPSG: 25832).

The Hainich National Park covers an area of 7520 ha and includes the southern part
of the natural area. It was established in December 1997 [58] and has been a UNESCO
World Heritage Site of ancient and primeval beech forests of the Carpathians and other
regions of Europe since June 2011. The national park area has been used for military
purposes since 1935, leading to large-scale clearing in some areas. Due to military use,
there were almost no other human factors of influence. Following the withdrawal of the
Soviet army in 1991, the area became a succession area where reforestation is taking place
without human regulation [59]. The current objective of the national park is to allow the
natural dynamics to shape these forest areas and to study them. As a result, 90% of the
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national park is free from anthropogenic use and subject to natural processes [56,59]. The
majority of the Huss site is covered by deciduous forests; based on an inventory by the
Hainich National Park administration from 2013, it is primarily composed of beech trees
(Fagus sylvatica) accounting for 78% of the trees. Other tree species interspersed in the
forest include sycamore (Acer pseudoplatanus) with 12% share, ash (Fraxinus excelsior) with
5% share, hornbeam (Carpinus betulus) with 2% share, Norway maple (Acer platanoides)
with 2% share, wych elm (Ulmus glabra), and oak (Quercus spec.). As per the inventory, the
mean diameter at breast height (DBH) of the predominant and dominant stock is 56.77 cm,
while the mean diameter of all trees (with a DBH greater than 7 cm) is 32.20 cm. Since 2018,
the area has experienced severe drought events, particularly during the vegetation periods,
that have caused water stress and widespread tree damage events on localized scales [60].
The impact extends not only to the forest structure but also to the diverse fauna, which
includes approximately 10,000 species dependent on the forest habitat. Notable examples
include the European wildcat, roe deer, wild boar, and various bat species [56].

2.2. Acquisition and Preprocessing of UAV Imagery

UAV images were acquired for the study area at two time points: 4 August 2021
(leaf-on) and 29 March 2022 (leaf-off). Both datasets were captured using a DJI (Da-Jiang
Innovations Science and Technology Co., Ltd., Shenzhen, China) Phantom 4 Pro equipped
with a real-time kinematic (RTK) receiver and an RGB camera. The camera features a
1-inch CMOS sensor with 20 MP. It utilizes a wide-angle lens with a focal length of 24 mm
(equivalent to 35 mm) and a field of view spanning 84◦. The mechanical shutter speed
ranges from 8 to 1/2000 s, and the supported data format is JPEG [61]. Throughout
the entire flight period, a correction signal from a reference station was received via
mobile internet connection using the German satellite positioning service (SAPOS). This
enabled highly accurate real-time positioning with errors in the range of a few centimeters,
eliminating the need for ground control points [11].

The acquisition and camera parameters for the two UAV missions are summarized in
Table 2. The leaf-on data consist of a single overflight of the area, capturing images from a
nadir perspective. The leaf-off dataset comprises three overflights of the area: one from
a nadir perspective and two using an oblique camera perspective (70◦ or 20◦ off-nadir),
each taken from an opposite flight direction. Oblique flights were included as they provide
additional viewing angles on tree stems and forest floor, and ensure a more complete
point cloud. For all flights, a standard parallel-flight line pattern was chosen. These flight
parameters were selected with the aim of obtaining comprehensive information about the
forest stand and its components (canopy, stems, and forest floor) during the respective
acquisition date. The flux tower within the Hainich National Park [62] was selected as
take-off and landing spot to ensure a direct line of sight throughout the flights.

The UAV images were preprocessed using an SfM workflow in the software Agisoft
Metashape (version 1.8.0). An overview of the applied parameters can be found in Table 3.
The RGB images from both flight campaigns were processed without prior modification,
resulting in 3D point clouds and orthomosaics (raster) for both the leaf-off and the leaf-on
season. All images of the leaf-off flights (nadir and oblique) were processed together within
a single SfM workflow. The orthomosaics were resampled to a geometric resolution of
0.05 m. The ETRS89/UTM 32N co-ordinate system (EPSG: 25832) was employed for the
entire study and all associated data. The geometric accuracy of the processing data products
was assessed through visual inspection to ensure they do not contain any unwanted
artifacts. Additionally, calculated errors, such as the average error of camera positions and
the reprojection error, were examined. The results indicate good geometric accuracy and a
very high alignment of the bitemporal data products (Table 3).
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Table 2. UAV mission and acquisition parameters (in bold). Wind speed was measured at the weather
station Weberstedt/Hainich located 5 km to the NE of the test site. The mission footprint (i.e., the
entire area covered by the UAV campaign) is noticeably larger than the Huss site because the flight
planning accounted for a buffer surrounding the site. Abbreviation: ISO = International Organization
for Standardization.

Parameter 4 August 2021 29 March 2022

Time (UTC + 1) Of First Shot 12:53 a.m. 12:34 a.m.
Wind Speed 5.0–6.1 km/h 3.2–6.5 km/h

Clouds overcast (8/8) overcast (8/8)
Mission Duration 40 min 120 min

No. Images 573 1842
Image Overlap (Front/Side) 85%/80% 85%/80%

Flight Speed 5.9 m/s 5.0–6.0 m/s
Shutter Speed 1/320 s

(shutter speed priority)
1/320 s

(shutter speed priority)
Distortion Correction yes yes

Gimbal Angle −90◦ (nadir) 1 × −90◦ (nadir)
2 × −70◦ (oblique)

Flight Altitude Over Tower 110 m 110 m
ISO Sensitivity ISO200 ISO400

Aperture F/5.0
(exposure value −0.66)

F6.3–F/7.1
(exposure value 0)

Geometric Resolution (Ground) 3.56 cm 4.29 cm
Area Covered 0.518 km2 0.533 km2

Table 3. Parameters of the Structure from Motion (SfM) processing steps (Agisoft Metashape) (in
bold) using the UAV RGB imagery as input.

Parameter 4 August 2021 29 March 2022

Photo alignment accuracy High
(original image resolution)

High
(original image resolution)

Image preselection Generic/Reference Generic/Reference
Key/tie point limit 40,000/10,000 40,000/4000
Detected tie points 1,261,536 415,144
Aligned cameras 573/573 1839/1842

Adaptive camera model fitting Off Off
Optimize camera alignment No No

Average error of camera position (x, y, z) 0.98, 1.10, 2.37 cm 0.16, 0.06, 1.62 cm
Effective reprojection error 0.893 pix 1.25 pix

Dense cloud quality High Ultra-high
(original image resolution)

Depth filtering Mild Mild
Number of points (dense cloud) approx. 158 million approx. 174 million

The leaf-off point cloud was used to perform a ground classification, detecting points
belonging to the forest floor. Out of the 174 million points of the leaf-off point cloud,
28 million were classified as ground points. Using these ground points, the leaf-off point
cloud was terrain normalized. For accuracy assessment, the ground classification was
compared to the elevation of the airborne lidar dataset from the Thuringian State Office
of Land Management and Geological Information, which was acquired in 2017 and has a
resolution of 1 m. The ground points from both datasets were converted to raster layers
with a resolution of 5 m. Pixel-wise differences were calculated, resulting in an overall
RMSE of 0.450 m.

The elevation of the classified leaf-off ground points (DTM) and the leaf-on canopy
points (DSM) were used to generate a CHM with a geometric resolution of 0.1 m. All the
processing steps were carried out using the software LASTools (version 211112). Figure 3
illustrates a profile cross-section of the two point clouds and their combination. UAV
leaf-off data alone from the same study site two years earlier (2019) have already been used
by Thiel et al. [63] to delineate dead wood debris and have been proven to be suitable for
deriving information from the forest floor.
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Figure 3. Profile cross-section of the normalized point clouds of the study area in the Hainich National
Park generated from UAV RGB images applying an SfM approach. The upper section shows the leaf-
off point cloud from 29 March 2022, the middle section the leaf-on point cloud from 4 August 2021,
and the lower section the combination of both datasets.

2.3. Reference Data

(a) Inventory by the Hainich National Park administration

The Huss site was manually inventoried by the Hainich National Park Administration
in 2013 during a field campaign. The data include the number of all trees for the entire study
site, along with various tree parameters. A subset of the inventory was used, containing
a total of 3251 living trees with pronounced and well-developed crowns, which form
the predominant and dominant stock of the forest stand. This corresponds to classes
1 and 2 according to tree classes proposed by Kraft [64]. The data were used to compare
the total numbers of overstory tree stems.

(b) Stem co-ordinates

Two datasets were generated to validate the detected stem positions and analyze
error sources. For both, a subset of the study site located in the north-eastern part was
used, referred to as the validation area (Figure 4). The first one is based on an MLS point
cloud acquired in August 2022 and is used as an independent (MLS-based) reference
dataset. The second one was obtained from the UAV leaf-off point cloud and represents
all detectable tree stems within the used UAV data; hereafter, it is referred to as “UAV
detectable” (Figure 4).
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Figure 4. Overview of the two reference datasets obtained from the UAV leaf-off point cloud and
an MLS scan. Overstory tree trunks being part of the canopy were manually digitized within the
respective area.

For both point clouds, trees with visible trunks and bases were carefully digitized
manually. To do so, the whole point cloud as well as point cloud slices from different height
levels were inspected visually to detect stems. Each selected stem point had to correspond
to an overstory tree, in order to exclude small understory trees in the reference dataset. A
marker was placed at the base of the stem and the stem co-ordinates were derived from it.
These stem base co-ordinates were then used as stem co-ordinates, even if the stem did not
grow vertically. This means that the trunk co-ordinate is not the midpoint between the base
of the trunk and the crown. The accuracy of the individual digitized stem base co-ordinates
from the MLS datasets was further verified in the field by manually georeferencing and
conducting an inventory of a sample of 145 overstory trees within a subset of the validation
area. Within the validation area, a total of 802 overstory trees were selected from the MLS
dataset, while a total of 578 overstory trees were selected from the UAV dataset.

In order to use the MLS dataset, certain preprocessing steps were performed. After
data acquisition in the field by a ZEB Horizon laser scanner (GeoSLAM, Ltd., Nottingham,
UK), the scan was georeferenced using three ground control points located within the MLS
scan area. The exact locations of these control points, measured with a carrier phase GNSS
rover, were available from previous studies. This allowed the MLS data to be georeferenced
with an RMSE of 0.088 m. Further processing included the normalization of the dataset
using previously classified ground points within the same MLS dataset.

Since this study focuses only on overstory trees, all selected trees in both datasets were
checked to see if they form an upper canopy crown. This step is necessary as the Hainich
National Park is an unmanaged forest and contains a high number of small understory
trees, oftentimes just of a few meters’ height. For the UAV-detectable dataset, trees that
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were not selected as overstory trees were categorized additionally into one of the following
groups: small trees (understory), tree stumps, and tilted stems. Point clusters that were not
clearly identifiable as a tree trunk in the UAV point cloud were labeled as unclassified trees.

(c) Crown shapes

Individual crown shapes were carefully digitized by hand using the RGB leaf-on ortho-
mosaic, CHM, and leaf-on and leaf-off point clouds. This derivation process encompassed
the entire Huss study site. Figure 5 shows the RGB and CHM data, along with the resulting
reference tree canopy delineations.
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Figure 5. Subsets of the crown reference dataset generated manually using the RGB orthomosaic and
CHM data.

It is important to acknowledge that, despite expertise, challenges arose during the
derivation process. At times, it was difficult to determine whether a given area contained a
single tree crown with branches or multiple tree crowns.

2.4. Method for Automatic Detection of Stem Coordinates

For the derivation of trunk co-ordinates, the leaf-off point cloud is used. The approach
involves grouping points that belong to a trunk into one cluster and representing the center
of each cluster as a single point with co-ordinates. From these clusters, various metrics are
computed to subsequently identify tree trunks whose crown also appear in the leaf-on point
cloud. To focus on relevant points, the normalized leaf-off point cloud is trimmed to include
only points within the height range of 3 to 15 m (LASTools command las2las) (Figure 6). The
lower threshold of 3 m was chosen to prevent ground points and downed dead wood debris
from being included, while the upper threshold of 15 m was selected to avoid including
lower branches of the canopy and to facilitate the removal of smaller trees measuring just
a few meters in heights. These thresholds may need to be adjusted based on the specific
characteristics of the study site and were customized for the forest of the Huss site.
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Figure 6. Normalized UAV-SfM point cloud (leaf-off season) at a height of 3 to 15 m used for tree
trunk detection. Blue points represent low points and red points represent higher points.

To reduce noise in the leaf-off point cloud, the Statistical Outlier Filter (SOR) operation
was applied using CloudCompare (version 2.12.0). The filtered point cloud exhibits a
1.67% reduction in points, equivalent to approximately 400,000 points. The remaining
points were then grouped into clusters using the Label Connected Components (LCC)
function (Figure 7). The parameter settings for the SOR algorithms are as follows: number
of points = 250, standard deviation = 3. For LLC function, the settings are number of
points = 100, octree level = 12. This process yields a total of 10,110 potential tree trunks for
the entire study area.
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Figure 7. Clustered points of tree stem candidates after applying a Label Connected Components
(LCC) function (CloudCompare) as a pre-step to obtain tree stem positions.

A Python code is employed to calculate the following parameters that describe each
cluster: minimum, maximum, and mean X, Y, and Z co-ordinates, center co-ordinates
(co-ordinate half way between the minimum and maximum X and Y co-ordinate), number
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of points, difference between the minimum and maximum Z height, and orientation angle
(orientation of the points within the cluster using the 3-dimensional distance between the
lowest point and the highest point).

With the calculation of individual co-ordinates for each cluster, the clusters can now
be described by their center co-ordinate representing potential stem co-ordinates and
can be further filtered for actual tree trunks according to their parameter values. Only
points associated with a cluster containing more than 750 points, a difference between the
maximum z-height and the minimum z-height exceeding three meters, and an orientation
angle less than 15 degrees are considered. The angle threshold was chosen not only to
exclude clusters that do not represent stems due to their orientation but also to exclude
standing deadwood, which often is tilted. To avoid overlapping stem candidates belonging
to the same tree, each stem candidate co-ordinate was buffered by the distance of 0.375 m. In
cases where two or more co-ordinates overlap, the centroid of the buffered area is calculated
and used as the co-ordinate of the tree trunk. This process results in 3739 trunk co-ordinates
for the entire study area, which are subsequently used to derive the tree crowns.

2.5. Method for Automatic Delineation of Tree Crown Shapes

The objective of this step is the delimitation of the individual tree crowns within the
study area by segmenting the input data, aiming to represent each tree crown as a separate
object. Initially, a tree mask was generated to exclude areas such as understory and non-
forest areas (e.g., open clearings). This was accomplished by applying a segmentation to the
study area and removing objects with a mean height lower than 20 m. Various algorithms
were tested using the extracted tree stem positions as input data for crown delineation
within the generated tree mask. Ultimately, a region growing method implemented in the
software Trimble eCognition (version 10.2) was chosen (Figure 8).
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Figure 8. Workflow of the ITCD using the derived tree stem positions, the CHM, the canopy
orthomosaic (leaf-on), and a region growing approach that comprises two distinct growing processes
(Software eCognition).

The selected method utilizes the previously derived tree positions as starting points,
which ideally also correspond to the highest and brightest point within each crown. Em-
ploying specific growing criteria, each starting point is iteratively expanded by including
surrounding pixels until it forms an object that represents a complete crown. To prevent
starting points from falling within a small local minimum inside the crown, they were
expanded first to form a circle with radius of 50 cm. Two criteria were employed for
the growing process. Initially, a median-filtered brightness layer was used, calculated by
averaging the intensities of all three RGB layers. Adjacent pixels above a certain brightness
threshold were added to the growing crown. Secondly, the CHM was utilized, enlarging
the crowns by including pixels above a certain tree height threshold. The same thresholds
were applied to all objects. The height threshold started with the highest CHM values of
the study site (40 m) and then iteratively lowered by 1 m until every pixel was added to
one crown object. To refine the results, very small objects with an area below 7.5 m2 were
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merged with their neighboring crowns, resulting in a total number of objects that is less
than the number of detected tree stem positions (Figure 8).

The results of the crown delineation were compared to ITCD methods that do not inte-
grate markers. Among these methods were a CHM-based watershed segmentation without
markers (using Trimble eCognition software, version 10.2) and a pretrained convolutional
neural network on the leaf-on RGB orthomosaic (using the Python package DeepForest,
version 1.2.1).

2.6. Accuracy Assessment

(a) Stem detection

The extracted tree stem positions were validated against the UAV-detectable stem
points and the MLS reference stem points within the validation area (Figure 4). For each
extracted tree position, the nearest tree position from the respective validation dataset
was detected, and each reference point was linked to the closest extracted tree position. A
distance threshold of 1.5 m was used between the nearest extracted and reference stem point
to determine correctly extracted stem positions. This threshold was chosen considering the
average stem diameter at breast height of overstory trees within the study site, which is
49.2 cm. This value was obtained from a subset of 159 overstory trees where the diameter
was manually measured. Due to the manner in which the reference points were generated
through manual digitization, they are positioned on one site of the trunk rather than in
the middle. As a result, minor shifts between stem positions of different datasets can
occur. Various additional threshold values between 1.0 and 2.0 m were tested, but they
only resulted in slight changes in the accuracy values. Therefore, 1.5 m was chosen as a
stable threshold that captures correctly extracted stem points without mismatching not
corresponding stem positions. Thus, any extracted stem point with a reference point within
a radius of 1.5 m is considered as true positive (TP). False positives (FP) are extracted stem
points outside the respective radius, and false negatives (FN) are reference stem points
with no corresponding extracted stem point within the distance thresholds. Recall, Precision,
and F1-score were calculated for all combinations of datasets, whereby Recall, Precision, and
F1-score are defined as following [65]:

Recall = TP/(TP + FN) (1)

Precision = TP/(TP + FP) (2)

F1-score = 2× (Recall × Precision)
(Recall + Precision)

(3)

(b) Crown delineation

To assess the accuracy of the extracted tree crown delineation compared to the reference
crowns, the intersection over union (IoU) metric was used. The IoU is calculated by
comparing the overlapping area between matching extracted crown polygons and reference
crown polygons (intersection) with the total area of both polygons combined (union). For
each extracted polygon, the reference polygon with the highest overlap was considered the
matching polygon. An IoU score of 1 indicates an identical reference and extracted crown;
0 means there is no overlapping area between them. The mean value of all IoU polygon
scores is calculated, as well as the percentage of crowns with an IoU ≥ 0.5. This threshold
is commonly used in various studies to define true positive tree crowns [36,51,66,67].

In addition, precision, recall, and F1-score (Equations (1)–(3)) were calculated for
each crown and as mean values. These values were computed by comparing the correctly
delineated crown area to the area of extracted and reference crown, respectively. The
correctly delineated crown area (TP) is defined as the overlapping area (intersection) of
reference and extracted areas. The area of the extracted crown equals the sum of TP and FP,
while the area of the reference crown equals the sum of TP and FN.
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3. Results
3.1. Stem Detection

A total of 3739 tree trunks were detected by the algorithm for the whole study site
(Figure 9), which aligns well with the inventory conducted by the National Park Adminis-
tration, counting 3251 trees for the Huss site. However, it is important to consider the time
difference of 9 years. The number of extracted trees also closely matches the number of
reference crowns, with 3700 crowns delineated within the study site.
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As mentioned in Section 2.3, precision, recall, and F1-score have been calculated for
the extracted stem positions compared to both the MLS reference dataset and the UAV-
detectable dataset, as well as for the two validation datasets compared to each other. The
comparison between extracted trees and UAV-detectable trees, both based on the same
UAV-SfM dataset, evaluates the algorithm’s performance in detecting tree stems present
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in the UAV data (Table 4, row (a)). Validating the extracted positions against the MLS
reference data demonstrates how many correct trees can be detected out of all present
trees (Table 4, row (c)). The comparison between the UAV-detectable and MLS reference
datasets reflects the ability of drone data in generating a correct and complete digital copy
of tree positions (Table 4, row (b)). In total, 626 of the extracted tree positions lie within
the validation area, compared to a total of 578 UAV-detectable trees and a total of 802 MLS
reference trees within the same subset. The F1-scores for the extracted tree stems are
0.773 when validating with the MLS reference dataset and 0.801 when validating with the
UAV-detectable stems.

Table 4. Results of the accuracy assessment for stem detection, comparing the three available datasets
with each other (detected stem positions, UAV-detectable stem positions, and MLS reference stem
positions). TP = true positive, FN = false negative, FP = false positive. The color coding (dark
green–green–yellow–orange–red) indicates the value range within which each respective number lies
between the highest (green) and lowest (red) accuracy values.

Validation Extracted No. Validation
Trees

No. Extracted
Trees TP FN FP Precision Recall F1-Score

(a)
UAV

detectable
Prop.

Method 578 626 482 96 144 0.770 0.834 0.801

(b)
Reference

(MLS)
UAV

detectable 802 578 552 232 26 0.955 0.704 0.811

(c)
Reference

(MLS)
Prop.

Method 802 626 543 236 83 0.867 0.697 0.773

In addition to the 578 labeled UAV overstory trees, tree stems present in the UAV
datasets classified into small trees (understory), tree stumps, tilted stems, and point clusters
that are not clearly recognizable as a tree trunk (unclassified trees) were gradually added to
the dataset and used for the accuracy assessment (Table 5).

Table 5. Results of the accuracy assessment for the stem detection comparing the detected stem
positions using the proposed method with the UAV-detectable dataset, considering different types
of trees labeled within the UAV point cloud (overstory trees, small/understory trees, tree stumps,
tilted trees, and unclassified trees). TP = true positive, FN = false negative, FP = false positive. The
color coding (dark green–green–yellow–orange–red) indicates the value range within which each
respective number lies between the highest (green) and lowest (red) accuracy values.

Type of Validation Tree
(UAV-Detectable Dataset)

No. Validation
Trees

No. Extracted
Trees TP FN FP Precision Recall F1-Score

(a) Only overstory trees 578 626 482 96 144 0.770 0.834 0.801
(b) Overstory + understory trees 671 626 543 120 83 0.867 0.819 0.843
(c) (b) + unclassified trees 731 626 583 140 43 0.931 0.806 0.864
(d) (c) + tree stump and tilted trees 804 626 611 183 15 0.976 0.770 0.861

3.2. Crown Delineation

Individual tree crowns were generated for the entire study site. Two subsets comparing
the extracted crowns to the reference crowns are shown in Figure 10. A total of 3414 crowns
were delineated for the entire Huss study site, compared to 3700 crowns in the crown
delineation reference dataset. The deviation to the detected stem positions (3739 tree
positions were detected) can be explained by the fact that 325 tree positions did not have a
corresponding delineated crown. The IoU score was calculated for all extracted crowns,
resulting in a mean score of 0.442. A proportion of 42.9% of all crowns had a score ≥ 0.5.

The mean precision value for all crowns was 0.680, and the mean recall value was 0.614,
resulting in an F1-score of 0.645. As a high number of false positives (area) indicates over-
segmentation, while a high number of false negatives (area) indicates under-segmentation,
low precision values indicate a tendency of over-segmented crowns and low recall values
indicate a tendency of under-segmented crowns. Therefore, no strong trend of either under-
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or over-segmentation can be observed in the applied method, as precision and recall have
similar value ranges. However, slightly lower recall values may indicate partial under-
segmentation of crowns, which aligns well with the slightly lower number of extracted
crowns compared to the reference crowns.
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Figure 10. Results of the crown delineation using the proposed method (yellow) compared to the
reference crowns (red) for two selected subsets (A,B) within the study area.

The results of the approaches, which did not include tree stem markers, resulted in
a mean IoU score of 0.393 for the watershed segmentation and 0.238 for the DeepForest
segmentation.

Moreover, tree height was calculated for each of the extracted crowns utilizing the
CHM. This analysis exemplifies the use of individual tree crowns for deriving further forest
parameters. It resulted in a mean tree crown height per object of 30.45 m (using the mean
height value per crown) and a mean tree height of 33.72 m (using the maximum height
value per crown).

4. Discussion
4.1. Stem Detection

The total number of trees detected by the algorithm aligns well with the count of trees
recorded by the National Park Administration. The minor discrepancies in the numbers
could stem from differing definitions: the inventory data classify trees in classes based on
dominance [64], while our categorization distinguishes between overstory and understory.
For instance, if co-dominant trees are also included in the inventory data, the count increases
to 4876. Comparing the extracted trees to the MLS reference dataset, the results showed a
slight underestimation of the total number of trees, approximately by 22%. The precision
value of 0.867 indicates a high reliability of the extracted trees. However, the recall value of
0.697 underscores that some of the trees were missed.

Interestingly, when comparing the extracted tree stems with the UAV-detectable data,
the situation is reversed: recall is slightly higher than precision. The high recall value of
0.834 suggest that the developed algorithm performs well and is able to detect most of the
trees present in the used UAV dataset. A considerable percentage of trees not detected by
the algorithm can, therefore, be attributed to an incomplete UAV dataset, where the drone
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may not be able to detect all relevant tree stems. The slightly lower precision values are
mainly due to the algorithm detecting point clusters as trees that are outside the defined
scope (i.e., trees that are not overstory trees). The Hainich National Park represents an
unmanaged and heterogeneous forest environment, where various tree types of different
ages and growth forms, which together form a complex structure, are present. Apart
from dominant overstory trees, the area is characterized by an understory layer of smaller
trees, remaining tree stumps from broken or fallen trees, and standing dead wood. When
using a remote-sensing-based approach in structurally diverse forest environments, it is
important to consider these distinct tree types. Defining the tree type to be detected is
crucial, as the number of trees can vary significantly depending on factors such as the
inclusion of understory trees. As this study employs stem positions for crown delineations,
the goal of the tree detection was to detect overstory trees. Since, so far, it is challenging
to derive reliable stem parameters such as DBH directly from the UAV-SfM point cloud,
detected stem positions cannot be filtered by DBH class. However, by analyzing the 3D
extend of the point clusters, we were able to identify tilted stems based on their growing
angle and excluded them. Although tilted stems are not of interest in this case, the same
approach could be further explored to detect snags, standing dead trees, which are often
tilted. However, as mentioned before, identifying only overstory trees was not met in every
case. The results in Table 5 illustrate in more detail that some of the extracted trees are
likely not part of the canopy. The precision values increase gradually when understory
trees, tree stumps, tilted stems, and unclassified stems are included. When all types of
tree stems are considered, nearly all extracted tree stems are correct (precision of 0.976).
This indicates that the extracted tree positions are very reliable but do not in every case
represent overstory trees. When matched with their closest UAV-detectable tree (max.
distance 1.5 m) among the 626 extracted trees within the validation area, 129 of them do
not correspond to a classified overstory tree but to one of the other categorized tree types,
most of them to understory trees. To improve the detection of only overstory trees, it is
possible to use a point cloud slice from a higher forest layer, which could exclude smaller
understory trees and tree stumps. However, this approach may increase the number of
missed overstory trees as the point cloud becomes sparser with elevated tree height. To be
able to filter trees not only by the above tree categories but also by tree size, it would be of
great interest to derive parameters such as DBH directly from the point cloud. To improve
the UAV-SfM point cloud, different flight parameters were tested during this study, but
further investigation regarding the acquisition parameters could be conducted, e.g., by
adding more oblique flights or changing the camera settings [68].

While most studies using optical UAV data focus on raster-based tree detection meth-
ods (Table 1), such as methods based on local maxima filtering from CHMs [27,69], it has
been demonstrated that point cloud approaches are also suitable for producing accurate
stem positions using UAV-SfM point clouds. These methods often stem from the laser scan-
ning sector; their potential for UAV-SfM point clouds, especially under leaf-off conditions,
could be further investigated.

To evaluate the suitability of UAV-SfM point clouds in general for detecting single
tree positions, independent of the chosen stem detection approach, we compared the UAV-
detectable stem positions with the MLS reference stem positions. This comparison was
performed visually and by validating the UAV-detectable dataset with the MLS reference
dataset (Table 4, row (b)). The accuracy assessment between the two datasets demonstrated
very high precision values, indicating the high reliability of trees visible in the SfM point
cloud. However, recall values are considerably lower, highlighting the already mentioned
fact that tree stems are missing in the SfM dataset. Nevertheless, it could be demonstrated
that point clouds based on UAV-SfM approaches are a cost-effective and accurate substitute
to LiDAR in tree stem detection. This goes along with several studies that compared
UAV-SfM and airborne LiDAR point clouds of forests and stated that UAV-SfM can be an
adequate substitute to airborne LiDAR point clouds for forest applications [70–72].
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4.2. Crown Delineation

By applying the proposed method using detected stems for crown delineation, a
moderate F1-score could be achieved. The resulting IoU score remains relatively low. As
mentioned earlier, the model does tend to slightly under-segment the crowns.

The moderate accuracy values reflect the challenging nature of defining crown bound-
aries in a dense, structurally diverse, and complex forest such as the Hainich National Park.
Even with careful observation, it is often difficult to distinguish visually individual crowns
within the orthomosaic or point cloud. For example, neighboring trees of the same tree
species can appear as either two individual trees or two branches belonging to the same tree.
These ambiguities are hard to resolve using only leaf-on data, whether through visual inter-
pretation or ITCD algorithms based on canopy information. To address these limitations,
we analyzed the combination of leaf-off and leaf-on data for crown delineation, reasoning
that every individual tree should have a detectable tree stem, while crown parts without
a detected tree stem would correspond to branches. We compared the crown delineation
with several commonly used ITCD methods that do not employ markers. The results of the
marker-less approaches yielded lower accuracy values compared to the proposed method,
which involves including tree stem positions from leaf-off data as markers. This indicates
that the integration of stem positions as markers improved the results. Regarding the
comparison of both tree stems and crowns with the reference data within the corresponding
subset, the numbers of reference crowns (606), extracted crowns (617), and extracted tree
stems (626) match very well. However, the number of MLS reference tree stems is higher
(802). Considering this, it can be assumed that the visual delineation of crowns in the UAV
data, as well as extracted tree stems and crowns, underestimate the number of overstory
trees/crowns by approximately 22–24% in dense forest stands. As most ITCD studies
validate their crowns by comparing them to crowns generated by visual interpretation
of the data [19,20], it is likely that many remote-sensing-based studies underestimate the
number of overstory trees/crowns in dense forest environments.

To improve the crown delineation results, the use of other algorithms could be further
explored. Several deep learning approaches have shown promising results [34,36,51,66,73]
and new approaches are constantly developed. Additionally, it would be worth investigat-
ing how prior-derived stem positions from leaf-off data could be used as additional input
for deep learning crown delineation.

4.3. Combination of Leaf-off and Leaf-on UAV Data to Model Forest Structure

Building on our findings, we recommend combining leaf-off and leaf-on SfM point
clouds, especially for dense deciduous forest stands. Our study has demonstrated that
these datasets contain highly complementary information, as shown in Figure 3. Leaf-on
data provide limited under-canopy information due to the density of the canopy, while
relying solely on leaf-off data makes it challenging to accurately estimate crown parameters
and tree heights [74]. However, by leveraging both datasets, a more comprehensive picture
of the forest canopy, tree stems, and forest floor can be obtained, enabling more accurate
derivation of forest parameters. This option, of course, is only possible for areas with
deciduous forests experiencing a leaf-off season. This finding aligns with the results
of other studies that have combined leaf-off and leaf-on SfM data primarily to generate
accurate height models [74–76]. For instance, Nasiri et al. [75] generated a CHM by utilizing
both leaf-off and leaf-on data from UAV imagery to derive tree height and crown diameter.
Moudrý et al. [76] reported comparable accuracy between DTMs derived from leaf-off SfM
data and those from airborne LiDAR. In our study, we not only used leaf-off and leaf-on
data to generate height models but also used the tree detection results from the leaf-off
point cloud to enhance the accuracy of other forest-related parameters that rely on accurate
tree detection and identification, such as crown delineation in our case.

Several ITCD methods, such as region growing approaches, require markers as starting
points for crown delineation. Ideally, these markers should represent the highest points
of the crowns. Although watershed segmentation can be applied without markers, it has
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been reported to work better when markers are included [32]. In dense deciduous forest
environments, obtaining these markers solely from CHMs is challenging. However, our
method, which combines leaf-off and leaf-on data, provides accurate tree stem positions
that can serve as marker points. Although, it must be acknowledged that, even with highly
accurate stem positions, crown delineation is limited if the leaf-on data do not allow the
distinction between neighboring crowns. Nevertheless, to accurately determine the number
and location of trees in a dense forest site, it is essential to look beneath the canopy. Some
studies are exploring the possibility of under-canopy UAV flights for the data retrieval of
stem and forest floor [77,78]. However, currently, automated flight missions under dense
forest canopies cannot be realized.

5. Conclusions

This study emphasizes the significance of integrating leaf-off and leaf-on SfM point
clouds for single-tree-based monitoring and management using UAVs equipped with
optical RGB camera systems. Our focus was on deriving overstory tree stem positions and
crown delineations using UAV-SfM data products.

Tree stem detection was carried out by applying a clustering and rule-based approach
on the leaf-off point cloud. Accuracy assessment involved comparing three datasets: the
extracted stems, manually detected UAV stems, and MLS reference stems. We found that
the proposed method delivers highly reliable stem positions (precision of 0.867). Recall
values were slightly lower, indicating that approximately 22% of the present trees were
missed. Categorizing different tree types allowed us to analyze the type of tree stem being
detected by the algorithm. This analysis revealed that the distinction between overstory and
understory tree stems is not always met. When working in dense structurally diverse forest
environments, the high number of small understory trees has to be considered. Further
investigations could explore the potential of UAV-SfM leaf-off data for detecting understory
trees. Validating the UAV detectable stems against the MLS reference stems demonstrated
high accuracy values (F1-score of 0.811), confirming the potential of UAV-SfM point clouds
in general as a cost-effective alternative to LiDAR data. Using the extracted stem positions
as markers for ITCD improved the results compared to methods without markers. However,
the moderate accuracy values (F1-score of 0.645, mean IoU of 0.442) indicate the challenges
of delineating crowns in dense forests. Promising improvements are expected with the
development of new deep learning approaches. The results highlighted that both the
number of overstory tree stems and crowns tends to be underestimated, probably even
within the crown reference data, indicating potential underestimations in many studies
focusing on dense deciduous forests. This underscores the challenges in collecting reliable
reference data, as neither the view of the canopy from above via remote sensing data nor
from below via field surveys seem to provide the complete picture.

Overall, we advocate for the use of a combined leaf-off and leaf-on SfM approach
in future forest monitoring and management tasks. While our focus was on tree stem
detection and ITCD, the potential of a combined leaf-off–leaf-on point cloud could be
further explored for the derivation of other forest parameters and methods.
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Abbreviations

AMS Adaptive-kernel bandwidth Mean-Shift
CHM Canopy Height Model
CNN Convolutional Neural Network
DBH Diameter at Breast Height
DSM Digital Surface Model
DTM Digital Terrain Model
FMS Fixed-kernel bandwidth Mean-Shift
FN False Negative
FP False Positive
IoU Intersection over Union
ISO International Organization for Standardization
ITCD Individual Tree Crown Delineation
LCC Label Connected Components
LiDAR Light Detection and Ranging
MLS Mobile Laser Scanning
RGB Red Green Blue
RMSE Root Mean Square Error
RTK Real-Time Kinematic
SfM Structure from Motion
SOR Statistical Outlier Filter
SSD Single Shot Detector
TP True Positive
UAV Unoccupied Aerial Vehicle
VWF Variable Window Filter
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