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Estimating the Interferometric Vertical
Wavenumber From Range Shifts
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Abstract— The estimation of the interferometric vertical
wavenumber over sloped terrain is an integral step for many
interferometric and tomographic synthetic aperture radar (SAR)
applications. The state of the art for this estimation is to
calculate the angle of incidence and the local terrain slope
after geometric corregistration has been performed. In this
letter, an alternative approach for estimating the vertical
wavenumber is proposed that requires only the estimation of
the range corregistration shifts. This considerably simplifies
the calculation effort without compromising the estimation
performance. The proposed approach is demonstrated on
Advanced Land Observing Satellite (ALOS) phased array L-
band synthetic aperture radar (PALSAR) data and compared
against the conventional methodology.

Index Terms— Synthetic aperture radar interferometry
(InSAR), vertical wavenumber.

I. INTRODUCTION

IN CROSS-TRACK synthetic aperture radar interferometry
(InSAR), the normal baseline, B⊥, is given by the spatial

separation of two antennae on the zero-Doppler plane mea-
sured perpendicular to the line-of-sight (LOS) [1], [2], [3], [4].
The interferometric sensitivity to height is proportional to
B⊥. The parameter expressing this sensitivity is the vertical
wavenumber κz , which describes the rate of change of
the interferometric phase associated with a given height
change [5], [6].

The conventional methodology for estimating the (slope-
normal) κz requires the calculation of incidence angle and
local slope in order to define the normal vector at every
range point [1], [2]. This is usually performed during (or
after) the back-geocoding step, where using an external digital
elevation model (DEM) and precise orbit information for
each pixel in the primary (e.g., primary) image and the
corresponding secondary (e.g., secondary) image coordinates
are calculated [3], [5], [7], [8]. This way, the corregistration
shifts required to resample the secondary image in order to
match the primary one are obtained.

In this letter, an alternative approach for estimating the
(slope normal) vertical wavenumber is proposed that requires
only the estimation of the range corregistration shifts and
can, therefore, be applied directly after the back-geocoding
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Fig. 1. Contours of 1(r⃗) in (left) near-field and in (right) far field. The
near-field plot shows the positions of satellites M⃗ and S⃗, the LOS, and the
normal baseline. The far-field plot shows the validity of both the radial and
the shift of radiation center approximations.

step. For this, two scalar fields that allow representing
the interferometric phase and the terrain topography are
introduced in Section II. In Sections III and IV, these two
fields are used to derive the vertical wavenumber as a
function of range (corregistration) shifts. The demonstration on
Advanced Land Observing Satellite (ALOS) phased array L-
band synthetic aperture radar (PALSAR) data and comparison
against the conventional methodology are performed in
Section V. In Section VI, the use of the proposed approach
to obtain “quick and dirty” vertical wavenumber estimates
without any knowledge on orbit or topography is discussed.
Finally, Section VII concludes this work.

II. TWO SCALAR FIELDS

We consider an interferometric configuration consisting on a
primary M and a secondary S antennae separated by a spatial
baseline with a normal component B⊥, as shown in Fig. 1.
The effect of the local topography on the interferometric phase
measured by the configuration can be expressed by means of
two 2-D scalar fields defined on the zero-Doppler plane of the
primary antenna. The first field is the difference between the
distances of a given point at the end of a position vector r⃗ to
the primary and secondary antennas M⃗ and S⃗

1
(
r⃗
)

=
∥∥S⃗ − r⃗

∥∥−
∥∥M⃗ − r⃗
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where ∥a⃗∥ = (a2
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2 + a2
3)

1/2 is the length of a vector a⃗ =

[ a1 a2 a3 ]
T in Euclidian 3-D space.
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Fig. 2. Graphical demonstration of two scalar fields 1(r⃗) and F and of their
derivatives ∇⃗1(r⃗) and C⃗ t in the zero-Doppler plane, respectively.

Any contour of 1(r⃗) forms a hyperbola with its two
foci at M⃗ and S⃗. At far field, these hyperbolae are once
more approximated by their asymptotes, which are rays
radiating from the midpoint of two antennae (M⃗ + S⃗)/2.
These asymptotes are approximated by rays radiated from
M⃗ after its translation by (M⃗ − S⃗)/2. The error induced
by this second approximation is negligible in the far field,
especially in spaceborne SAR configurations. Each contour of
1(r⃗) is regarded as the LOS (see Fig. 1). Along the LOS,
the interferometric phase is constant. The gradient of 1(r⃗),
i.e., ∇⃗1(r⃗), is perpendicular to the LOSs and parallel to the
wavefront. Scatterers on the same wavefront are imaged at the
same range in the SAR image, but they would have different
interferometric phases.

Fig. 1 shows the shape of the scalar potential 1(r⃗) indicated
by the contours. On the left, the near field case is shown.
Given ∥S⃗ − M⃗∥ = B = 400 m as an example, the nine
contours correspond to the 1(r⃗) values of −400 to 400 m
in 100-m steps changing color from violet to yellow. The far-
field geometry for a sensor at 670-km altitude is shown at the
right. Here, the contours are plotted with a 10 times denser
sampling, i.e., every 10 m. The gradient ∇⃗1(r⃗) is large where
the contours are dense and small where they are sparse. At a
range distance R, ∥∇⃗1(r⃗)∥ takes its maximum (B⊥/R), where
1(r⃗) = 0 and B = B⊥. In the orthogonal direction, where
1 =B and B⊥ = 0, ∇⃗1 = 0.

The second relevant field is the potential of the surface
topography F defined to be F := 0 at the surface, positive
over and negative under it, so that ∇⃗F ̸= 0 everywhere while
∥∇⃗F∥ = 1 at F = 0. F is smooth as it is bandpass filtered
by the range resolution. The F := 0 contour is parameterized
as C⃗(t), where t ∈ R. The parameter t is defined to be the
range sampling, so that for each value of t ∈ N, C⃗(t) becomes
the t-th range point. In the following, its derivative (∂C⃗/∂t)
will be referred as C⃗ t . Following the definition of F and C⃗ ,
F(C⃗) = 0 and ∇⃗F become the surface normal on points
on C⃗ .

On the zero-Doppler plane of the primary antenna,
a reference coordinate system defined by the tangent at the

intersection of Earth’s ellipsoid with the LOS and its normal
vector is introduced, as shown in Fig. 2. The angle between the
vertical axis and the LOS is then the incidence angle θ , while
the angle between the wavefront and C⃗ is the local incidence
angle α. The local slope angle in the range direction is then
θ − α.

III. CALCULATION OF THE VERTICAL WAVENUMBER

The interferometric phase is measured by the interferometric
configuration of Fig. 1

φ0 =
4π

λ
1
(
r⃗0
)

(2)

where λ is the wavelength, and r⃗0 is the position of a scatterer.
The (slope-normal) vertical wavenumber κz is the change rate
of the interferometric phase as the scatterer ascends along the
wavefront as much as a unit distance normal to the slope.
We consider a point at r⃗ s = r⃗0 +s(∇⃗1(r⃗)/∥∇⃗1(r⃗)∥), where s
is its distance from r⃗0 along the wavefront. The interferometric
phase φs at r⃗ s is

φs =
4π

λ
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As the slope-normal height difference h between r⃗0 and r⃗ s is
h = s sin α, the interferometric phase difference 1φ = φs −φ0
can be written as

1φ =
4π

λ

∥∥∇⃗1
(
r⃗
)∥∥ h

sin α
. (4)

Finally, κz becomes

κz =
d1φ

dh
=

4π

λ

∥∥∇⃗1
(
r⃗
)∥∥

sin α
. (5)

Substituting ∥∇⃗1(r⃗)∥ ≈ (B⊥/R), where R = ∥r⃗0 − M⃗∥,
leads to the conventional expression of κz [6].

IV. SUBSTITUTION OF LOCAL INCIDENCE ANGLE

Although κz is obtained in (5) from the partial derivative
of the scalar field 1(r⃗), the contribution of the ground terrain
slope is incorporated in the local incidence angle α, which
relates the wavefront to the topography that changes with
range. Following the notation of Section III, the range shift
1r(t) can be expressed as

1r(t) = 1
(
C⃗(t)

)
. (6)

The flat earth phase is merely given by φflat(t) =

(4π/λ)1(C⃗(t)). The derivative of (6) with respect to t

12r =
d
dt

1r(t) =
d
dt

1
(
C⃗(t)

)
is a composite function of t

f
−→ r⃗

g
−→ 1, for f = C⃗(t) and

g = 1(r⃗). The derivative of f is (dC⃗/dt) = C⃗ t and that of g
is ∇⃗1, so that by applying the chain rule follows:

12r =
d
dt

1r(t) = ∇⃗1
(
r⃗
)

· C⃗ t = ∥∇⃗1
(
r⃗
)
∥∥C⃗ t∥ cos α. (7)
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Fig. 3. Relation between wavefront and local slope in a range pixel.

As t is defined to be the range sampling, (7) indicates the
difference of the range shift between adjacent two range pixels.
Therefore, the C⃗(t) component parallel to ∇⃗1(r⃗) is C⃗ t cos α =

(12r/∥∇⃗1(r⃗)∥), as shown in Fig. 3.
For a given slant range sampling p = (c/2RSR), with

c the speed of light and RSR the range sampling rate,
a rectangle with one side along the LOS with a length of
p and the other side along the wavefront with a length of
(12r/∥∇⃗1(r⃗)∥) is considered (see Fig. 3). The diagonal of
this rectangle is ∥C⃗(t)∥, and the angle between the diagonal
and the s(12r/∥∇⃗1(r⃗)∥) side is the local incidence angle α.
Therefore

tan α =
p∥∇⃗1

(
r⃗
)
∥

12r
(8)

and

sin α =
tan α

√
1 + tan2 α

=
p∥∇⃗1

(
r⃗
)
∥√(

12r
)2

+ p2∥∇⃗1
(
r⃗
)
∥2

. (9)

Substituting (8) into (5) completes κz without angle notation

κz =
4π

λp

√(
12r

)2
+ p2∥∇⃗1

(
r⃗
)
∥2. (10)

Note that the vertical wavenumber appears as the (spatial)
derivative of the flat earth phase as a consequence of the fact
that the local slope is the derivative of the topography.

V. VALIDATION

In the following, the vertical wavenumber is estimated
by using the approach proposed and compared to vertical
wavenumber estimates obtained using the conventional
approach for a set of interferometric ALOS PALSAR
acquisitions. The dataset is over the southern part of the
Toyama Prefecture, Japan. The two interferometric images,
primary (scene ID ALPSRP071400730) and secondary (scene
ID ALPSRP064690730), are acquired with a nominal
incidence angle of 23.84◦ on May 28, 2007 and April 12,
2007, respectively. The normal baseline of the interferometric
pair is B⊥ = 638.1 m.

Fig. 4. (First row) Pauli image of Munich test data. (Second row) Ellipsoid
height, (third row) profile along the middle line, (fourth row) local incidence
angle map, (fifth row) profile along the middle line, (sixth row) vertical
wavenumber map, and (seventh row) vertical wavenumber profiles estimated
by two methods (black: conventional and red: proposed).

Fig. 4 shows on top the Pauli RGB color composite of
the site; in the second row the terrain height (obtained from
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Fig. 5. Plots of (top) 1r(t) = 1(C⃗(t)) and (bottom) 12r = (d/dt)1r(t).

the SRTM DEM [4]); in the third row a height profile along
the azimuth line indicated in the Pauli RGB image. The red
vertical lines indicate lay-over ranges, where height is not
defined. In the fourth row, the local incidence angle map and
in the fifth row a range profile of the local incidence angle
(along the indicated azimuth line) are shown.

The vertical wavenumber is estimated using the proposed
approach by (9) as well as the conventional approach by (5).
The terms 1r(t) and 12r are estimated during the back-
geocoding step. However, while the conventional method
requires the calculation of the incidence angle and local terrain
slope, the proposed approach just needs the range shifts.
Fig. 5 shows at top 1r(t) = 1(C⃗(t)) estimated for each
range sample along the indicated range profile. The general
decreasing trend of range shifts with increasing slant range
is modulated by the local topography. The discontinuities
are associated with the layover locations. The corresponding
derivative of 1r(t), 12r , along the profile is plotted at
the bottom of Fig. 5. The negative mean value reflects
the monotonic decreasing trend of 1r(t). The derivative is
characterized by strongly fluctuating small-scale structures
reflecting the topographic derivative (rapid changes of terrain
slope).

The vertical wavenumber estimated using the proposed
approach is shown in the sixth row in Fig. 4. Finally, in the

seventh row of Fig. 4, the two vertical wavenumber estimates,
i.e., the proposed one (in red) and the conventional one (in
black), are compared along the indicated azimuth line. The
two estimates agree precisely.

VI. DISCUSSION

Beyond this, the proposed approach can also be used
to obtain “quick and dirty” vertical wavenumber estimates
without requiring any knowledge on orbit or topography just
by estimating the range (corregistration) shift 1r between
the two interferometric acquisitions. In the case a coherent
correlation [9] is employed, the corregistration accuracy is
defined by the interferometric coherence and the number of
looks available for the correlation [10], [11]

σCR =

√
3

2N

√
1 − γ 2

πγ
=

σ1r

p
.

The estimation accuracy of the required κz relies on the
1r difference. Assuming uncorrelated error components, the
differentiation doubles the variance, so that

σ12r =
√
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√
3
N
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The estimation accuracy of κz is then
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and the relative error becomes
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For ALOS PALSAR where p: = 9.369 m, 12r : 2 cm, B⊥:
500 m, and R: 750 km, the required number of looks for a
10% error even for very high coherence levels of 0.9 is on the
order of 100 000 associated with estimation windows on the
order of 512 × 512 samples. Accordingly, it is only possible
to obtain low-resolution estimates.

VII. CONCLUSION

A formulation that relates the (slope-normal) vertical
wavenumber κz as a function of range (corregistration)
shift 1r between the primary and secondary images has
been derived. This allows the estimation of κz—after
backgeocoding—without the need of estimating the incidence
angle nor the local terrain slope. Accordingly, the proposed
approach simplifies significantly the calculational effort in
the evaluation of vertical wavenumber keeping the estimation
performance the same. Finally, a “quick and dirty” method for
estimating vertical wavenumber was proposed and its practical
applicability assessed.



KIM AND PAPATHANASSIOU: ESTIMATING THE INTERFEROMETRIC VERTICAL WAVENUMBER FROM RANGE SHIFTS 4006005

ACKNOWLEDGMENT

ALOS PALSAR Level 1.1 data are provided by the
Japan Aerospace Exploration Agency (JAXA) under the
framework of Earth Observation Research Announcement. The
ALOS/PALSAR data used in this study are property of JAXA.

REFERENCES

[1] H. A. Zebker and R. M. Goldstein, “Topographic mapping from
interferometric synthetic aperture radar observations,” J. Geophys. Res.,
vol. 91, no. 5, pp. 4993–4999, Apr. 1986.

[2] R. Bamler and P. Hartl, “Synthetic aperture radar interferometry,” Inverse
Problems, vol. 14, no. 4, p. R1, 1998, doi: 10.1088/0266-5611/14/4/001.

[3] R. F. Hanssen, Radar Interferometry: Data Interpretation and Error
Analysis. Dordrecht, The Netherlands: Kluwer, 2001, pp. 35–37.

[4] P. A. Rosen et al., “Synthetic aperture radar interferometry,” Proc. IEEE,
vol. 88, no. 3, pp. 333–382, Mar. 2000.

[5] M. Pardini, M. Tello, V. Cazcarra-Bes, K. P. Papathanassiou, and
I. Hajnsek, “L- and P-band 3-D SAR reflectivity profiles versus LiDAR
waveforms: The AfriSAR case,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 11, no. 10, pp. 3386–3401, Oct. 2018, doi:
10.1109/JSTARS.2018.2847033.

[6] F. Kugler, S. Lee, I. Hajnsek, and K. P. Papathanassiou, “Forest
height estimation by means of pol-InSAR data inversion: The role
of the vertical wavenumber,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 10, pp. 5294–5311, Oct. 2015, doi: 10.1109/TGRS.2015.
2420996.

[7] E. Sansosti, P. Berardino, M. Manunta, F. Serafino, and G. Fornaro,
“Geometrical SAR image registration,” IEEE Trans. Geosci. Remote
Sens., vol. 44, no. 10, pp. 2861–2870, Oct. 2006.

[8] D. O. Nitti, R. F. Hanssen, A. Refice, F. Bovenga, and R. Nutricato,
“Impact of DEM-assisted coregistration on high-resolution SAR
interferometry,” IEEE Trans. Geosci. Remote Sens., vol. 49,
no. 3, pp. 1127–1143, Mar. 2011, doi: 10.1109/TGRS.2010.
2074204.

[9] R. Scheiber and A. Moreira, “Coregistration of interferometric SAR
images using spectral diversity,” IEEE Trans. Geosci. Remote Sens.,
vol. 38, no. 5, pp. 2179–2191, Sep. 2000.

[10] R. Bamler and M. Eineder, “Accuracy of differential shift estimation
by correlation and split-bandwidth interferometry for wideband and
delta-k SAR systems,” IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2,
pp. 151–155, Apr. 2005.

[11] P. Prats-Iraola, R. Scheiber, L. Marotti, S. Wollstadt, and
A. Reigber, “TOPS interferometry with TerraSAR-X,” IEEE
Trans. Geosci. Remote Sens., vol. 50, no. 8, pp. 3179–3188,
Aug. 2012.

http://dx.doi.org/10.1088/0266-5611/14/4/001
http://dx.doi.org/10.1109/JSTARS.2018.2847033
http://dx.doi.org/10.1109/TGRS.2015.2420996
http://dx.doi.org/10.1109/TGRS.2015.2420996
http://dx.doi.org/10.1109/TGRS.2010.2074204
http://dx.doi.org/10.1109/TGRS.2010.2074204

