SAF & HYDROGEN – TOWARDS ZERO-EMISSION AVIATION

Andreas Huber DLR-Institut für Verbrennungstechnik

Towards zero-emission aviation

Reduction from the baseline in 2050 In the most progressive ICAO Scenario

21% Aircraft Technology

Ref.: ICAO Report on the feasibility of a long-term aspirational goal (LTAG) for international civil aviation CO2 emission reductions https://www.icao.int/environmental-protection/LTAG/Pages/LTAGreport.aspx

Towards zero-emission aviation

*SAF Sustainable Aviation

Fuel

Leipold, A. et al. "DEPA 2050 Development Pathways for Aviation up to 2050", DLR project DEPA 2050, final report, 2021 https://www.dlr.de/fw/Portaldata/42/Resources/dokumente/aktuelles/DEPA2050_StudyReport.pdf

Towards zero-emission aviation Aircraft fleet and potential low-carbon energy supply

	2020	2025	2030	2035	2040	2045	2050
Commuter » 9-19 seats » < 60 minute flights » <1% of industry CO2	SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF
Regional » 50-100 seats » 30-90 minute flights » ~3% of industry CO2	SAF	SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF
Short haul » 100-150 seats » 45-120 minute flights » ~24% of industry CO ₂	SAF	SAF	SAF	SAF potentially some Hydrogen	Hydrogen and/or SAF	Hydrogen and/or SAF	Hydrogen and/or SAF
Medium haul » 100-250 seats » 60-150 minute flights » ~43% of industry CO ₂	SAF	SAF	SAF	SAF	SAF potentially some Hydrogen	SAF potentially some Hydrogen	SAF potentially some Hydrogen
Long haul » 250+ seats » 150 minute + flights » ~30% of industry CO2	SAF	SAF	SAF	SAF	SAF	SAF	SAF

ATAG*- Waypoint 2050, Balancing growth in connectivity with a comprehensive global air transport response to the climate emergency. 2020 w2050 v2021 27sept full.pdf (aviationbenefits.org)

Towards zero-emission aviation Reduction of climate impact – CO_2 and non CO_2 effects

Predominantly caused by

- Contrail cirrus
- CO₂
- NO_x

Opportunities & challenges – SAF combustion Reduction in CO_2 emissions & main non- CO_2 effect

Opportunities & challenges – SAF combustion Compatibilité et Vol Carburants Alternatifs Nouveaux

French DGAC-funded research project with support from DLR

• Impact on <u>emissions</u> and <u>contrail properties</u>

Airbus A319neo (source A/C) and DLR Falcon (chase A/C)

- 1. Jet A-1,
- 2. 100% HEFA and
- 3. hydrotreated Jet fuel

Ground emission measurements at Safran engine test bench

Measurement results (Jet A-1 => 100% HEFA):

- Significant reduction in nvPM mass and number
- So far no remarkable differences in engine operability

ONERA

Opportunities & challenges – SAF combustion Jet-stabilized combustion systems - <u>DLR Airblast Injector</u>

Leaner & faster premixed, (pre-vaporized) combustion

Heating oil flame

- $T_{air} = 500 \text{ K}$
- $\Phi = 0.8$

Opportunities & challenges Hydrogen combustion

Opportunities & challenges – Hydrogen combustion Jet-stabilized combustion systems

Leaner & faster premixed combustion

Cooperation in WotAn:

N. Petry et. al., Investigation of fuel and load flexibility of an atmospheric single nozzle jet-stabilized flox® combustor with hydrogen/methane-air mixtures, Proc. ASME Turbo Expo 2023, GT2023-102392

Co-Optimization of Sustainable Aviation Fuel and Combustor Design

 \rightarrow Potentials for combustion system optimization due to SAF

 \rightarrow An accelerated path

(new design degree of freedom)

SAF & hydrogen – Towards zero-emission aviation Outlook

- Co-Optimization "fuel ←→ combustor" (enabling low-NO_x / low-soot combustion)
- Similar reduction potential of climate impact by using H₂ and SAF

adapted from: Silberhorn, D. et.al. Climate Impact Reduction Potentials of Synthetic Kerosene and Green Hydrogen Powered Mid-Range Aircraft Concepts. Appl. Sci. **2022**, 12, 5950. https://doi.org/10.3390/app12125950

Towards zero-emission aviation

Required fuel production capacity to achieve net zero by 2050

Mission Possible Partnership's "prudent scenario" (high biomass availability, moderate renewable electricity costs)

Ref.: Mission Possible Partnership (2022): Making Net Zero Aviation Possible. Hg. v. Mission Possible Partnership. Online: https://www.energy-transitions.org/publications/making-net-zero-aviation-possible/

13

Towards zero-emission aviation DLR TPP: PtL Research, Technology and Demonstration

- Demonstration of PtL production on a semi-industrial scale (10.000 t/a PtL)
- Combination with a research module (100 t/a PtL)
- Integration and scale-up
- Optimization of operation and reduction of cost
- Optimization and evaluation of PtL
- Use of the optimized PtL in flight campaigns

SAF & hydrogen – Towards zero-emission aviation Conclusions

Hydrogen combustion

- a long term option up to medium haul flights
- premixing technology,
- higher air fuel ratio and
- ensuring short residence times

SAF combustion

- only realistic option in the near future for medium and long haul flights
- New, advanced combustion systems
- co-optimization of SAF and combustor design
- Ramp-up of SAF production is essential

There is no single solution on the way towards a zero-emission aviation