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Abstract—Image classication plays an important role in
remote sensing. Earth observation (EO) has inevitably arrived
in the big data era, but the high requirement on computation
power has already become a bottleneck for analyzing large
amounts of remote sensing data with sophisticated machine
learning models. Exploiting quantum computing might contribute
to a solution to tackle this challenge by leveraging quantum
properties. This article introduces a hybrid quantum-classical
convolutional neural network (QC-CNN) that applies quantum
computing to effectively extract high-level critical features from
EO data for classication purposes. Besides that, the adoption of
the amplitude encoding technique reduces the required quantum
bit resources. The complexity analysis indicates that the proposed
model can accelerate the convolutional operation in compari-
son with its classical counterpart. The model’s performance is
evaluated with different EO benchmarks, including Overhead-
MNIST, So2Sat LCZ42, PatternNet, RSI-CB256, and NaSC-TG2,
through the TensorFlow Quantum platform, and it can achieve
better performance than its classical counterpart and have higher
generalizability, which veries the validity of the QC-CNN model
on EO data classication tasks.

Index Terms—Image classication, quantum circuit, quantum
machine learning (QML), remote sensing imagery.

NOMENCLATURE

qL Qubits for the spatial information.
qC Qubits for the color information.
qK Qubits for the index of the kernels

and feature maps.
qR Qubits for the values of the feature

maps.
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|lx,y⟩ Quantum state of the (x, y)-
coordinate in the input; |lx ⟩ and
|ly⟩ are for the coordinates x
and y, respectively, which can
be written as |xn−1, . . . , x0⟩ and
|yn−1, . . . , y0⟩.

|cx,y⟩ Pixel value at the coordinate (x, y);
|0⟩C and |1⟩C are the basis states
of qC.

|rx,y⟩ Weight of the kernel for the pixel
at the coordinate (x, y); |0⟩R and
|1⟩R are the basic states of qR.

|k⟩ Quantum state for the index of the
kernels and feature maps.

|i ⟩ Quantum state of the encoded
image.

| f1⟩ Result of the elementwise product
in the quantum state.

| f2⟩ Generated feature map in the quan-
tum state.

|m⟩ Quantum state of the feature map
for measurement.

E(M) Expectation value with the mea-
surement operator M .

I. INTRODUCTION

IN THE Earth observation (EO) domain, image classication
is an active research eld, contributing to deriving land

use and land cover information from the remote sensing

imagery [1]. However, due to the advances in remote sensing
technologies, EO has irreversibly arrived in the big data era.
Given the rapid growth of the data and the complexity of
machine learning models for analysis, the required compu-
tation capacity has already been a primary barrier to the
use of classical machine learning algorithms to automatically
comprehend remote sensing images. Leveraging the power
of quantum computing might overcome this challenge in
the future since it is expected to efciently solve problems

that are prohibitively expensive for classical computers [2].
Investigating how to apply quantum computing in remote
sensing is important and prospective.

Quantum machine learning (QML) is an interdisciplinary
eld that integrates machine learning and quantum computing.
Numerous contributions from researchers attempting to exploit
its potential for various tasks have been made to the eld, such

as data processing [3], [4], classication [5], [6], [7], segmen-

tation [8], optimization [9], and quantum entanglement indi-

cation [10]. In the noisy intermediate-scale quantum (NISQ)
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era [11], applying QML for image classication is highly
suitable. The reason is that quantum computing can speed
up the complicated computation for image comprehension,
and the classication output is simple but decisive, which is

suitable for the probabilistic result from QML algorithms [12].
Several QML models have been proposed to classify images,

using either quantum annealer [13] or parameterized quan-

tum circuits (PQCs) [14]. However, whether quantum neural
networks (QNNs) (a subeld of QML) can outperform their
classical counterparts remains an open question. Moreover,
only a few studies regarding applying QML to classify remote

sensing images have been explored [15], [16]. Therefore,
further investigations on QML for image classication are
necessary and benecial, especially in remote sensing.

However, current quantum machines are not fully fault-
tolerant, and only a few qubits are supported, which restricts
the applications of QML algorithms in practice. Most pro-
posed quantum algorithms can only be veried via simulation
on a small scale. Despite that, the signicance and neces-
sity of the research on QML algorithms should not be
underestimated because it is fundamental for further practi-
cal applications when more advanced quantum devices are
available.

Regarding remote sensing image classication, deep learn-

ing has been widely investigated [17], [18], [19]. Among them,
the convolutional neural network (CNN) is essential for feature
extraction due to its performance and adaptability. However,
only a few proposals related to the quantum version of CNN
have been made. We seek to investigate a quantum CNN
model that can not only leverage quantum computing to extract
critical features for classifying remote sensing data but also
be qubit-efcient to meet the constraints of available qubits in
quantum machines or simulators in the NISQ era.

Inspired by the study introduced in [20], a new hybrid
quantum-classical CNN (QC-CNN) is developed, in which the
quantum part is a parameterized circuit to extract essential
features from images, and the classical part conducts the
classication accordingly. In addition, our model exploits the
amplitude encoding technique for image classication tasks,
which requires relatively fewer qubits than using computation
basis encoding.

To evaluate the effectiveness of our model, we used various
EO benchmarks in our experiments with the TensorFlow

Quantum (TFQ) platform [21], i.e., Overhead-MNIST [22],

So2Sat LCZ42 [23], PatternNet [24], RSI-CB256 [25], and

NaSC-TG2 [26]. The experimental results suggest that the
QC-CNN model outperforms its classical counterpart and
exhibits greater generalizability. Furthermore, in our experi-
ments, we also studied our model’s performance with different
quantum gates, measurements, model structures, and noise
effects to gain deeper insights into our model’s properties and
validity.

Regarding the efciency, due to quantum parallelism, the
proposed model can perform the elementwise product ef-
ciently and speed up the feature extraction process by simul-
taneously transforming all desired quantum states.

The main contributions of this work are given as follows.

1) This work introduces a new hybrid QC-CNN for mul-
ticategory image classication, which can effectively
extract critical features from images by using quantum
circuits and achieve superior classication performance
to classical CNN models.

2) This work presents a quantum convolution layer that
can reduce the number of qubits and simplify the
model’s structure for classication by applying ampli-
tude encoding.

3) This work investigates the impacts of quantum gates,
measurement strategies, the structure of the model, and
the noise effects on the classication performance.

This article is structured as follows. Section II introduces
basic concepts of quantum computing, and Section III presents
related work for image classication with quantum comput-
ing. Section IV details the structure of the QC-CNN model.
The experimental evaluation of the model’s performance is
presented in Section V. Then, we analyze the scalability and
efciency of the model in Section VI. Finally, the conclusion
and future work are discussed in Section VII.

II. BACKGROUND

A quantum is the minimum discrete unit of any physical
entity, and it has many special phenomena, such as super-
position and entanglement, which can be utilized to perform
computation tasks. This computation methodology refers to
quantum computing.

Qubit is the elementary concept in quantum computing,
an analogous concept of bits in classical computation. The
specialty of a qubit lies in that the qubit state is a linear
combination of the basis states (e.g., |0⟩ and |1⟩), which is
called superposition, as shown in (1), where the coefcients α
and β are complex numbers indicating the amplitudes of the
quantum state, and the states |0⟩ and |1⟩ are computational
basis states. When measuring a qubit in the computational
basis, it will collapse either to the state |0⟩ or |1⟩ with the
probability |α|2 and |β|2, respectively,

|ψ⟩ = α|0⟩+ β|1⟩; |α|2 + |β|2 = 1; α, β ∈ C. (1)

Another quantum property is entanglement. The entangled
qubits are correlated, and the state of one qubit affects the
state of the other. The entangled quantum state cannot be
separated into two states, which means that the entangled state
|ψAB⟩ cannot be written as a tensor product of its component
state |ψA⟩ and |ψB⟩. Thus, |ψAB⟩ is not equal to |ψA⟩ ⊗ |ψB⟩
(note that |ψA⟩ ⊗ |ψB⟩ can also be written as |ψA⟩|ψB⟩ or
|ψAψB⟩).

To perform quantum computing, the quantum circuit model
is one of the most popular models, which generally consists
of three sequential parts.

A. Information Encoding

The input of any quantum algorithm is a quantum state.
Classical data need to be encoded in such a state rst. There
are two basic encoding techniques: computation basis encod-
ing and amplitude encoding. Specically, the computation
basis encoding maps the classical data into a basic quantum
state of a quantum system, so it requires the classical data
to be converted into the binary string form and uses the
corresponding quantum basis state to represent it. As for
the amplitude encoding, the classical data will be indicated
by the amplitude of a quantum state. The classical data have
to be normalized to guarantee that the sum of the squared
amplitudes of the quantum state is equal to 1.

Based on these encoding techniques, various methods for

encoding images to quantum states have been explored [27].
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Fig. 1. Matrix representations for the involved elementary quantum gates.

B. Quantum State Transformation

Transforming quantum states is a critical step of quantum
computing, playing a pivotal role in various computation tasks.
After information encoding, a sequence of quantum gates,
acting on one or more qubits, is utilized to manipulate the input
state and convert it into another state through entanglement,
rotation, and so on. The transformed quantum state is expected
to be suitable for subsequent computation purposes.

The quantum gate is an analogy of logic gates in classical
computers, but the difference is the gate for quantum comput-
ing must be unitary, which preserves the normalization and
reversibility of the quantum system.

In this article, the following elementary quantum gates are
involved: RY gate (rotation around the Y -axis), Hadamard
gate (rotation around the X + Z -axis with π ), X gate (rotation
around the X -axis with π ), U3 gate (rotation with three Euler
angles), and CU3 gate (controlled version of the U3 gate).
Their matrix representations are shown in Fig. 1.

C. Measurement

Quantum state measurement takes place at the end of
the quantum circuit, which obtains the information from the
quantum state to classical data. The obtained output, e.g., the
expectation values, can be treated as the result of quantum
computing. In this work, we use the expectation values as the
extracted features from the input image for further classica-
tion processing.

Regarding QML, PQCs are commonly used as a hybrid

approach, such as [28], [29], and [30]. Specically, a PQC
is composed of xed quantum gates, but the parameters of
these gates are trainable. They will be optimized during the
training process in the classical machine, but the quantum
state’s transformation and measurement will be performed in
the quantum machine.

III. RELATED WORK

In recent years, there has been a growing interest in
exploring how to incorporate quantum computing into image
classication amidst the current limitations of quantum hard-
ware. This section gives a brief overview of relevant studies,
starting with those using either quantum machine learning or
quantum deep learning for image classication. Then, recent
contributions involving quantum computing in the EO domain
are discussed.

A. Quantum Machine Learning

Quantum image classication has attracted great attention
from researchers in the QML community, and various studies
have been conducted.

Rebentrost et al. [31] and Havlíček et al. [32] proposed a
quantum support vector machine (QSVM) for classication

tasks. Ostaszewski et al. [33] introduced a quantum model
using the principal component analysis (PCA) to classify
images. Besides integrating SVM and PCA algorithms with

quantum computing, Ruan et al. [34] focused on using the
K-nearest neighbor (KNN) algorithm for image classication.
They presented a method to compute the Hamming distance
and utilized it in their proposed QKNN model to realize a

good analog for the classical KNN algorithm. Dang et al. [35]
employed the quantum minimum search algorithm in their
quantum KNN model to speed up the similarity search pro-
cessing without the negative inuence on the classication
accuracy.

B. Quantum Neural Networks

QNNs have also been investigated for image classication
and recognition. CNN, which can automatically extract the
high-level critical features from images by applying various
lters in its sequential structure, plays an important role and
shows promising performances. Researchers also attempted to
implement the classical CNN with quantum computing.

Cong et al. [36] presented a QCNN containing successive
convolution layers and pooling layers. Their proposed model is
structured by combining multiscale entanglement renormaliza-
tion ansatz and quantum error correction, and they have explic-
itly illustrated the potential of the proposed model in phase
classication for quantum physical systems. Herrmann et al.

[37] experimentally implemented the QCNN for recognizing
topological quantum phases. Regarding employing this model

to classify images, Chen et al. [38] proposed a fractal scaling
down dimension reduction algorithm to reduce the image’s
features and then applied the QCNN model afterward for

image classication. Lü et al. [39] used a quantum state
preparation model to approximate the input image’s quantum
state and applied the QCNN model for the classication. The
effectiveness of the introduced models was veried in their
experiments.

Kerenidis et al. [40] proposed a quantum algorithm for
applying deep CNNs, and it can achieve a similar accuracy
on the MNIST dataset compared with the classical CNN.

Wei et al. [41] demonstrated another basic framework of
a quantum convolution neural network, which uses fewer
parameters to achieve comparable classication performance

as the classical CNN for digit recognition tasks. Hur et al. [42]
presented fully parameterized QCNNs for classical data clas-
sication. When classifying images, they rst apply classical

algorithms, such as PCA and Autoencoder [43], to prepro-
cess input images and extract preliminary global features.
Afterward, their proposed model continuously extracts higher
level features from these preliminary features by applying a
sequence of convolutional circuits and pooling circuits for
classication.

Henderson et al. [44] introduced a new type of transfor-
mation layer (quanvolution layers) using a random quantum
circuit in their proposed quanvolutional neural networks to
obtain meaningful local features for classication purposes.
Their experiments show that the proposed QNN model can
outperform purely classical CNN on the MNIST dataset
in terms of accuracy and efciency. However, the random
quantum circuit results in an unrepeatable operation. More

recently, Matic et al. [45] and Chen et al. [46] independently
proposed novel hybrid CNNs, in which they both use PQCs
instead of a random one as the convolutional kernel to get

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

values of the feature maps for different classication tasks.

Riaz et al. [47] used a strongly entangled circuit without any
additional trainable parameters as a kernel to transform image
features for classication.

Li et al. [20] proposed a quantum deep CNN based on a
quantum parameterized circuit for image recognition. Their
experiments on the MNIST and GTSRB datasets veried the
model’s validity. They use computation basis encoding to
encode kernels’ values and the image’s color information.
Thus, to accurately encode a pixel value from 0 to 255, eight
qubits are needed. In addition, to achieve the convolutional
operation, converting between amplitude encoding and com-

putation basis encoding using quantum phase estimation [48]
algorithms is necessary. Thus, their proposed model not only
requires more qubits to encode images compared with uti-
lizing the amplitude encoding technique but also needs extra
quantum gates and computation costs.

However, note that most of the previous research focuses
on binary classication tasks. To handle multicategories,

Zeng et al. [49] presented a hybrid QNN that applies a
ladder-like PQC to encode the input image and transform the
features and a classical dense layer to handle multicategory
classication tasks. However, their model extracts features
without considering the spatial information of the input image.
In addition, their model uses one qubit to encode only one
feature. Thus, when classifying large images, the number of
needed qubits in their model will increase signicantly.

C. Applied QML and QNNs in the Remote Sensing Domain

As for applying QML/QNNs to classify remote sensing
images, some researchers focused on using quantum annealers

for classication [50], [51], [52]. Besides that, studies based
on quantum circuits also have been conducted to analyze
remote sensing data. Still, many of the related proposals
exploit classical algorithms for feature extraction, and quantum
circuits are basically applied for the nal prediction.

For example, Gawron and Lewiński [53] presented a
neural network based on a quantum circuit to classify mul-
tispectral images for land cover mapping, which uses the
classical PCA algorithm to reduce the image’s features.
Zaidenberg et al. [15] introduced a hybrid model to classify
the EO data, in which a CNN model is used to extract features
from the images, and a quantum circuit is applied for the

nal classication task. Sebastianelli et al. [54] proposed a
circuit-based hybrid QNN to analyze remote sensing images
for land use and land cover classication. Their model uses a
classical CNN derived from the LeNet-5 to extract high-level
features from images and applies a quantum layer imple-
mented with a quantum circuit for the nal classication.

Abdel-Khalek et al. [55] adopted an Inception ResNet to
extract features from high-resolution imagery and a QNN for
classication. The effectiveness of their model was proven in
their experiments.

In addition, Otgonbaatar and Datcu [56] introduced a hybrid
model to analyze polarimetric synthetic aperture radar images.
Their model performs pixelwise classication, which extracts
the features from the Stokes parameters of the pixel from the
image using a quantum circuit for analysis.

IV. METHODOLOGY

In this article, a hybrid QC-CNN is proposed, aiming to
classify images with the supervised deep learning method

by exclusively exploiting the amplitude encoding technique.
As shown in Fig. 2, the proposed QC-CNN model contains two
sequential sections. The quantum section is expected to extract
important features from images efciently, and the classical
section performs the nal classication accordingly.

Our model consists of four types of layers sequentially:
1) encoding layer; 2) quantum convolution layer; 3) mea-
surement layer; and 4) dense layer. The utilized qubits in
the model can be categorized into four groups regarding
their encoded information, represented by different colors
in Fig. 2: qL qubits (white) for the input image’s spatial
information, qC qubits (gray) for the image’s color infor-
mation, qK qubits (green) for the kernels applied in the
quantum convolution layer, and qR qubits (yellow) for the
generated quantum feature maps. The functions of these
layers will be explained in the following, and Nomenclature
claries the denitions of the main notations involved in this
section.

A. Encoding Layer

Encoding an image in a quantum state is a crucial step for
our model. Various quantum image representation methods
have been investigated and developed [27]. Note that the
choice of the representation method will affect not only the
number of needed qubits and quantum gates in the encoding
layer but also the structure of the further quantum layers.
The proposed model adopts the Flexible Representation of

Quantum Images (FRQI) [57] to encode gray-scale images
into quantum states, which can represent images using a small
number of qubits, as it uses amplitude encoding to encode the
color information of all pixels as follows.

Every pixel of an image with 2n × 2n pixels is represented
by its (x, y)-coordinate. By using a quantum state |lx,y⟩ for
the respective coordinate, one requires 2n qubits (qLs) in
superposition, and this is achieved by applying Hadamard
gates. The respective quantum state is

1

2n

2n−1


x=0

2n−1


y=0

|lx,y⟩ (2)

where |lx,y⟩ indicates the (x, y)-coordinate of a pixel as a
binary string form as |xn−1, . . . , x0yn−1, . . . , y0⟩.

For the color information of a gray-scale image, we use
a single qubit (qC), of which the amplitude indicates the
pixel values. In particular, for each pixel of the image, one
RY (θ )-gate is used for the qC’s amplitude transformation,
where the gray value [0, 255] of pixel (x, y) is mapped to
θx,y = [0,π/2], such that the qubit state is

|cx,y⟩ = cos θx,y |0⟩C + sin θx,y |1⟩C . (3)

Entanglement allows binding the pixel’s location with its
color information stored in the two registers |lx,y⟩ and |cx,y⟩.
This is achieved by Multicontrolled-RY(θ)-gates where the
control-bits encode the pixel’s (x, y)-coordinates, and the nal
quantum state for image representation is

|i ⟩ =
1

2n

2n−1


x=0

2n−1


y=0

|lx,y⟩|cx,y⟩ (4)

which encodes the image with 2n × 2n pixel values using
2n + 1 qubits. In contrast, with computation basis encoding,
we need 2n + 8 qubits to accurately encode this image.
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Fig. 2. Quantum circuit for QC-CNN model: 1) white for qL qubits (spatial information encoding), gray for qC qubit (color information encoding), green for
qK qubits (kernel index encoding), and yellow for qR qubits (feature map information encoding); 2) dot markers in the circuit highlight the involved qubits
in the applied quantum gates or the measured qubits in the specic layers; 3) the model contains m convolution layers and each layer involves 2k kernels;
and 4) |i ⟩ and |m⟩ are the outputs from the encoding layer and quantum convolution layers, respectively.

Fig. 3. Circuit example of the encoding layer for one 2 × 2 image: 1) dot
markers indicate the controlled state: white dots for |0⟩ and black dots for
|1⟩; 2) H represents the Hadamard gate and RY(θ ) represents the RY gate
with θ degrees; and 3) θ is the converted pixel value, and the subscripts here
distinguish pixels in the image.

Fig. 3 illustrates one example circuit of the implementation
of FRQI on a 2 × 2 image. The dot markers in the circuit
represent the controlled state: white dots for |0⟩ and black dots
for |1⟩. In this way, the encoding layer translates a classical
image into a quantum state.

B. Quantum Convolution Layer

The quantum convolution layer in the QC-CNN model aims
to achieve the convolutional operation, which plays a critical
role in the proposed model to extract features and generate
corresponding feature maps. In this layer, the kernel size and
the convolutional stride are set to the same to perform the
fast dimension reduction for the generated feature maps, and
they should be modied according to the input image’s size
as classical CNN models. In this article, the QC-CNN model
with 2 × 2-sized kernels and the convolutional stride of 2 is
exampled for clarication.

Given one kernel to perform the convolutional operation for
feature extraction, the kernel will be located at different places
on the input image. At each location, a two-step process will
happen: 1) perform the elementwise product between the patch
of the input image and kernel and 2) sum the output of the
products for each patch to obtain the value of the feature map.

To realize this transformation in the quantum circuit,
we introduce a qR qubit and apply a series of controlled
rotation gates to it. The respective quantum state after the ele-
mentwise product can be generally represented as (5), where
|rx,y⟩ indicates the weight of the kernel for the corresponding
pixel and | f1⟩ represents the output of the elementwise
product process

| f1⟩ =
1

2n

2n−1


x=0

2n−1


y=0

|lx,y⟩|cx,y⟩|rx,y⟩. (5)

Fig. 4. Illustration of the convolutional computation with a 2 × 2 kernel
procedure: 1) encoding a 4 × 4-sized input image’s spatial information
needs four qLs, |x1x0⟩ and |y1y0⟩ for the vertical and horizontal dimensions,
respectively; 2) color indicates weight variables (i.e., W0–W3) of the kernel;
3) the quantum states |x1x0y1y0⟩ with the specic |x0⟩ and |y0⟩ compute with
the equivalent weight (the same color) for the elementwise product; and 4) the
spatial information of the quantum feature map can be represented by |x1y1⟩,
and the values of the feature map are represented by f0 − f3.

Specically, given the example illustrated in Fig. 4, when
the convolutional stride is two, and the kernel size is 2 × 2,
to apply this kernel (different colors indicate different weights)
on the given image, the pixels at the specic locations should
be transformed with the same weight. In Fig. 4, the location of
the pixels marked with the same color should apply the same
weight. Thus, to conduct this elementwise product over the
input in the quantum convolution layer, we need to identify
the pixels with the shared weight in the quantum domain.

As stated in [20], when setting the kernel size as 2 × 2 and
the convolutional stride as two, the rst qL in |lx ⟩ and |ly⟩ can
be employed to specify pixels for different weights. Since |lx ⟩
and |ly⟩ can be written as |xn−1, . . . , x0⟩ and |yn−1, . . . , y0⟩,
respectively, the states with the same |x0⟩ and |y0⟩ states
should apply the equivalent weight. For the case shown in
Fig. 4, this 4 × 4 image needs four qLs to encode its spatial
information. The states |x1x0y1y0⟩ with the specic |x0⟩ and
|y0⟩ should have the equivalent weight (illustrated with the
same color). Thus, to specify the location of the pixels with
the shared weight for the convolutional computation between
the image and a kernel, only |x0⟩ and |y0⟩ should be focused.
As a result, to perform the convolutional operation over the
entire input, only four gates are required due to the four
possible states of |x0y0⟩, regardless of the input’s spatial size.
In contrast, classical convolutional operations over the input
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rely on the sliding window technique, leading to a quadratic
increase in computation with the spatial size of the input.
A detailed discussion can be found in Section VI-A.

To realize the elementwise product for the convolution
operation in the quantum circuit, besides considering the
pixel’s location, the pixel’s value encoded in the qC (|c⟩) is
also important. For this reason, in our model, we apply the U3
gates with three controllers (i.e., |x0⟩, |y0⟩, and |c⟩) on the qR
qubit, which can rotate the qR with three Euler angles based
on the pixel’s value and its location. The rotated qR can be
described by (6), in which |0⟩R and |1⟩R are basic quantum
states for qR, and k0x,y and k1x,y are the values of one weight

variable of the applied kernel. To identify a 2 × 2 kernel, four
weight variables should be identied

|rx,y⟩ = cos k0x,y |0⟩R + eik
1
x,y sin k0x,y |1⟩R . (6)

After the elementwise product, we obtain the quantum state
| f1⟩. To obtain the feature map, we sum the resulting values
of the elementwise product for each patch, as illustrated in
Fig. 4. The generated feature map | f2⟩ can be indicated as

| f2⟩ =
2

2n

2n

2
−1



x ′=0

2n

2
−1



y′=0

|lx ′,y′ ⟩| fx ′,y′ ⟩ (7)

in which |lx ′,y′ ⟩ indicates the spatial information of the feature
map and | fx ′,y′ ⟩ encodes the value of the feature map, which
can be represented as

| fx ′,y′ ⟩ =
1

2

1


x0=0

1


y0=0

|x0⟩|y0⟩|cx ′x0,y′ y0⟩|rx0,y0⟩. (8)

Furthermore, (8) can be written as follows based on (3) and
(6):

| fx ′,y′ ⟩ = α |x0⟩|y0⟩|0⟩C |0⟩R
+ β |x0⟩|y0⟩|1⟩C |0⟩R
+ γ |x0⟩|y0⟩|1⟩C |1⟩R (9)

in which α, β, and γ are the amplitudes of obtained quantum
states. Note that, when the state of qC is |0⟩C , the applied
U3 gate will have no effect on qR. Hence, the amplitude of
the quantum state |x0⟩|y0⟩|0⟩C |1⟩R equals 0, and it is omitted
in (9). The unnormalized amplitude of |1⟩R in (9) can be

computed following (10), where k0x0,y0 and k1x0,y0 indicate the

values of the weight variables for the kernel as introduced
before, and θx ′x0,y′ y0 refers to the value of the corresponding
pixel

1


x0=0
y0=0



sin θx ′x0,y′ y0


×


sin k0x0,y0



×



e
ik1x0 ,y0



. (10)

Hence, the convolutional operation is performed in the
quantum circuit, and the generated feature map (| f2⟩) is suc-
cessfully encoded using |lx ′,y′ ⟩ and | fx ′,y′ ⟩ with the preserved
entanglement. This feature map can be treated as the input of
the next quantum convolution layer. After several convolution
layers, the feature map (|m⟩) with the required dimension is
generated for further classication.

To apply multiple kernels in one quantum convolution layer,
qK qubits will be used as additional controllers for the applied
U3 gates, and d qKs can maximally prepare 2d kernels for
each layer. Before working as the controllers of the U3 gates,

Fig. 5. Circuit example of the quantum convolution layer: 1) white for qLs,
gray for qC, green for qK, and yellow for qR; 2) dot markers in the circuit
indicate the controlled state: white dots for |0⟩ and black dots for |1⟩; and
3) H represents the Hadamard gate, and U3 represents the U3 gate.

these d qKs rst are initialized as |0⟩⊗d , and then, a Hadamard
gate is applied on each qK. Thus, we prepare a quantum state
|k⟩ that can be written as |+⟩⊗d to indicate the index of the
applied kernels and also the generated feature maps.

Fig. 5 demonstrates one example of the quantum circuit for
one quantum convolution layer with two kernels to process a
4 × 4-sized input image. In the end, two generated feature
maps with the size of 2 × 2 are expected accordingly. The
degrees in the U3 gates in this circuit example indicate the
values of the weight variables for the kernels, which will be
optimized during the training process.

C. Measurement Layer

The measurement layer in the model is used to obtain the
feature maps from the quantum states to the classical states.
Besides that, this layer will also atten the obtained feature
maps into a 1-D feature vector for the dense layer. For this
purpose, the interested quantum state and the operator for the
measurement need to be specied. The expectation values are
taken with respect to the measurement operator M based on
the quantum states |m⟩ indicating the generated quantum
feature maps following

E(M) = ⟨m |M |m⟩. (11)

The obtained expectation value, E(M), will be treated as
one classical feature value for classication.

Since, in this layer, the quantum state embedding the feature
maps’ information is of most interest, only the corresponding
qLs and qR are desired. To obtain all the generated quantum
feature maps, the qKs should be also taken into account.

For example, given the state |m⟩ for k quantum feature
maps with the size of m × m, it can be represented as

|m⟩ =
1

m
√
k

m−1


xm=0

m−1


ym=0

k−1


k=0

|lxm ,ym ⟩|k⟩| fxm ,ym ⟩ (12)

where |lxm ,ym ⟩ indicates the location information of the feature
map; | fxm ,ym ⟩ embeds the values of the feature map; and |k⟩
indicates the index of the feature maps. To simplify, the target
quantum state |m⟩ can also be rewritten as

|m⟩ =
1

m
√
k

k×m2



i=1

|i⟩| fi ⟩ (13)

in which |i⟩ represents the index of the extracted feature and
| fi ⟩ embeds the value of the i th extracted feature.

Fig. 6 represents an example of the measurement layer,
in which two generated feature maps with the size of 2 ×

2 are expected. Thus, eight features will be obtained.
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Fig. 6. Circuit example of the measurement layer: 1) white for qLs, gray
for qC, green for qK, and yellow for qR; 2) one convolution layer with two
kernels is applied on a 4 × 4 input image; and 3) two feature maps are
generated: |x1y1⟩ encodes the location information, |r⟩ encodes the values of
the feature map, and |k⟩ shows the index of the created feature maps.

Fig. 7. Strategies for QML to deal with g-category classication tasks,
including (a) using multiple binary classiers, (b) using multiple qubits in the
last layer to indicate the prediction, and (c) using a classical dense layer in
the end for prediction: 1) input: classical gray-scale input image; 2) encoding:
encoding layer; 3) PQC: quantum convolution layer with trainable parameters;
4) measure: measurement layer; 5) dense: classical dense layer with softmax
activation function; and 6) output: ID vector for prediction.

Given the desired quantum state |m⟩ in a Hilbert space,
we consider three types of measurement operators formed by
Pauli-X, Pauli-Y, and Pauli-Z operators, and we measure the
state |m⟩ in the X-basis, Y-basis, and Z-basis, respectively.
Specically, we dene a set of operators with respect to one
orthonormal basis for measurement, and each operator M is
Hermitian. Regarding one specic basis formed by states |b⟩,
we conduct the measurement of the quantum state |m⟩ in the
computational basis. For each interested state |bi ⟩, the operator
Mi can be dened by |bi ⟩⟨bi |. The expectation value E(Mi )

according to (11) is the i th obtained feature.
In this way, the feature maps’ information will be obtained

from the quantum states to the classical data, and it will be
utilized for the nal classication.

D. Dense Layer

With the classical output from the measurement layer,
a classical dense layer is utilized for the nal classication.
The neurons in this layer are deeply connected, and each
neuron encodes one expectation value. In this layer, suitable
activation functions (e.g., softmax for multicategory classi-
cation and sigmoid for binary classication) will be applied
in the end to achieve the nonlinear transformation and output
a probability distribution to indicate the classied category.

E. Multicategory Classication

To deal with multicategory classication tasks with QML
(e.g., classifying the image into g categories), there are gener-
ally two common strategies. One is to train g binary classiers,
and the structure is shown in Fig. 7(a). However, this method

will inevitably increase the trained parameters and training
time signicantly. The other method illustrated in Fig. 7(b)
employs g qubits in the model’s last layer to indicate the
image’s category, which requires relatively fewer trainable
parameters but increases the needed qubits for classication.

To improve the training efciency and reduce the qubits,
we propose to use a classical dense layer with a suitable activa-
tion function (e.g., softmax for multicategory classication) for
the nal prediction [see Fig. 7(c)]. Thus, the proposed model is
a hybrid model containing a quantum section for the feature
extraction and a classical section for the nal classication
output.

F. Training Process

The proposed model is based on PQCs. The rotation angles
of the quantum gates in the quantum convolution layers are
regarded as the trainable parameters, which will be optimized
in the training process by classical algorithms (e.g., the

Adam algorithm [58]), but the quantum state’s evolution and
measurement are conducted on a quantum computer. More
precisely, the training process is composed of the following
steps.

1) The training set of the classical images after the nor-
malization process can be identied as I = {I0, . . . , In},
and each element indicates one training classical image.
The categorical label yi for an arbitrary image Ii will be

transformed to [y0i , y
1
i , . . . y

g−1

i ] for a g-category classi-
cation problem using one-hot encoding technique (note
that the superscripts here represent indices instead of
exponents).

2) For one input image, the model outputs a probability
distribution, given as f (Ii ,) = ỹi , where ỹi is a vector
in ℜg and  denotes the trainable parameters in the
model.

3) The cross-entropy loss function is used to compare the
output against the label (L(ỹi , yi )), and the cost value
will be averaged over each batch from the training
dataset.

4) The trainable parameters  will be optimized and
updated during the backpropagation of gradients by
applying the Adam algorithm [58]. As for gradient
calculation for the trainable parameters in the quan-
tum circuit, there are several techniques, for instance,

the adjoint method [59]. This training process will be
repeated until the parameters are optimized.

V. EXPERIMENTS

To evaluate the performance of our model on EO data
classication tasks, we conducted experiments using multiple
EO benchmarks and compared our model with different deep
learning models.

Data Preparation: In this study, we experimented with
ve different EO datasets, i.e., Overhead-MNIST [22],
So2Sat LCZ42 [23], PatternNet [24], RSI-CB256 [25], and
NaSC-TG2 [26]. Due to the limited computation power of
current quantum simulators, we reduced the size of the datasets
in our experiments by only focusing on a subset of categories
for each benchmark. Furthermore, we downscaled the labeled
images in all the datasets to a size of 8 × 8 × 1 with different

techniques: Lanczos algorithm [60] and convolutional autoen-

coder [61]. Note that the objective of our experiments was to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

EXPERIMENTAL DATA FOR PERFORMANCE EVALUATION

assess our model’s effectiveness. To avoid overpowering the
autoencoders, we added Gaussian noise as the perturbation
to the output of the autoencoders and evaluated our model’s
performance with the noisy input. The details about the data
preparation process for our experiments are provided in the
following, and the summarized information can be found in
Table I.

Overhead-MNIST [22] contains overhead view images (28×
28) of ten kinds of entities (e.g., “car,” “ship,” and “plane”).
There are 8519 training images and 1065 testing images,
which are all gray-scaled. In this study, we used all the
5098 images labeled in 6 categories (“car,” “ship,” “plane,”
“harbor,” “helicopter,” and “oil gas eld”) for training and
637 images from these categories in its test dataset for
evaluation. From the training images, we randomly selected
800 samples (approximately 15%) to create a validation
dataset, and the remaining samples were used for training.
To downsize these labeled images, we used the Lanczos
algorithm.

So2Sat LCZ42 [23] consists of 17 local climate zone (LCZ)
labels of around half a million Sentinel-1 and Sentinel-2 image
patches with the size of 32 × 32 in 42 cities. For this dataset,
we used the intensity of the rened LEE-ltered VV channel
from the Sentinel-1 data as the input. Then, we adopted the
Lanczos algorithm to downsize the input patches. Regarding
the categories, we focused on three LCZ labels (“compact
middle-rise,” “large low-rise,” and “dense trees”) and randomly
selected around 5000 labeled patches in the cities of Berlin and
Munich from these categories to build a balanced dataset. The
sampled images were split into three sets: 70% for training,
15% for validation, and 15% for testing.

PatternNet [24] has high-resolution imagery covering
38 different classes, and there are around 800 samples of
size 256 × 256 pixels in each class. For this dataset, we uti-
lized a convolutional autoencoder to reduce the features of
the input images to the size of 8 × 8. In the experiment,
we focused on three classes (“coastal mansion,” “parking lot,”
and “swimming pool”) and used all the provided samples. For
evaluation, we randomly separated these samples with a ratio
of 70 :15 :15 as the training, validation, and test datasets.

RSI-CB256 [25] is a global-scale dataset, having more than
24 000 images in 35 categories. In our experiments, we set
“dry farm,” “mangrove,” “residents,” “snow mountain,” and
“storage room” as our target categories and randomly selected
800 RGB-image samples with a size of 256 × 256 for each
category. The labeled images were downsized to 8 × 8 using
a convolutional autoencoder and were also divided into three
sets: 70% for training, 15% for validation, and 15% for testing,
with no overlap in between.

NaSC-TG2 [26] is an EO benchmark dataset for natural
scene classication, which has around 20 000 samples with
the size of 128 × 128 in ten classes. For our experiments,

we concentrated on three target classes (“forest,” “residential,”
and “snowberg”) and randomly selected 1000 samples with
RGB channels for each class to build a balanced dataset. Then,
we utilized a convolutional autoencoder to reduce features to
8 × 8 for our experiments. In the end, we randomly separated
the prepared samples into the training, validation, and test
datasets with the ratio 70% :15% :15%.

Model Preparation: In the experiments, we evaluated our
model with two quantum convolution layers, each with two
kernels for feature extraction. The main focus of our experi-
ments is comparing our model and the classical CNN model
since it serves as the classical counterpart of our approach.

Specically, we selected two CNN models as the competi-
tors. The rst CNN model with six kernels (CNN-6) has a
similar model structure as our model, and each convolution
layer applies two lters. However, compared with this CNN
model, our model will extract more features in the measure-
ment layer for classication when measuring the quantum
feature maps on multiple bases even though only two kernels
are applied in each quantum convolution layer (24 features
for the QC-CNN model versus eight features for the CNN-6).
Thus, the other CNN model with 14 kernels (CNN-14), which
extracts the same number of features for nal classication and
has a similar number of trainable parameters as our model, was
also considered for performance comparison.

In addition, we also included another three CNN-based
models and two quantum models for evaluation.

With respect to the selected CNN-based models, Block

CNN [62], ResNet [63], and DenseNet [64] have signi-
cantly deeper structures and more parameters than our model.
To ensure a fair comparison and account for the small input
image size of 8 × 8, we simplied these models’ structures
and applied fewer layers and kernels for image classication.
Specically, the Block CNN model comprises two blocks, a
global average pooling layer and a fully connected layer. Each
block contains three convolutional layers with the same kernel
size, and every layer has two lters in the rst block and four
lters in the second block. The ResNet model used in this
study consists of two residual blocks, followed by a global
average pooling layer and a fully connected layer that produces
the nal output. The convolutional layers in the residual blocks
were congured with two and four lters, respectively, and
the kernel size in the model was set to 2 × 2. The DenseNet
architecture starts with one convolution layer and then follows
two dense blocks separated by one transition layer. Each dense
block includes two convolution layers, with two lters being
utilized in each layer.

As for the quantum models, QCNN [54] and QNN [44],
they are also hybrid, but quantum computing plays different
roles in classication in these models. We evaluated them with
the same input with the size of 8 × 8. Table II summarizes
the pipelines of these models in the experiments. Different
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TABLE II

PIPELINES OF THE QC-CNN MODEL AND OTHER COMPARED QUANTUM MODELS

from our model, the quantum algorithms in these models
encode and process either a small number of high-level
features or local patches with low-level features. Specically,
the QCNN [54] model uses a classical deep learning model
to extract high-level features rst, and the quantum algorithm
encodes and transforms these features, followed by a classical
dense layer for classication. QNN [44] uses a quantum circuit
to extract local features from every patch of the image with
the sliding window method. Then, a classical CNN model is
used to perform the nal classication. The different ways of
using quantum computing in these models result in different
requirements for quantum resources.

Quantum Simulation Settings: In our experiment, we used
the TFQ platform [21] to develop and train our model. As one
of the widely used frameworks for quantum deep learning,
it enables the usage of several types of simulators. Interested

readers may refer to the work [65] for a detailed comparison
among different frameworks.

Regarding the quantum machine used in our study,
we adopted a noiseless simulator from TFQ for training,
which outputs the analytic results after quantum computing.
The reason for selecting this simulator is that the goal of
our experiments is to verify the validity of our quantum
algorithm, and this noiseless simulator written in C++ is
faster than other simulators on the platform. As for performing
backpropagation, we applied the adjoint differentiator provided
by TFQ. It is compatible with the analytic output and the
adopted simulator. In addition, it computes the gradients faster
than others. However, note that this differentiation technique
cannot currently be easily realized on a real quantum machine.

Experimental Settings: To train the aforementioned models,
unless otherwise stated, we set the epoch number as 500 and
the batch size as 100, and the cross-entropy loss function was
used. We trained our model using the Adam optimizer [58]
with a learning rate of 0.03 and the competitors with their
default learning rates. Each training was repeated three times,
and we calculated the average classication accuracy of the
trained models with the lowest validation loss value during
the training process. The resulting values, along with their
corresponding standard deviations, were used for comparison
and discussion purposes.

Eventually, we carried out four different experiments to
evaluate the model’s performance:

1) analysis of general classication performance;
2) analysis of quantum gates and measurement operators;
3) analysis of the structure of the QC-CNN model;
4) analysis of the noise effects on the QC-CNN model’s

performance.

Specically, the rst experiment was designed to assess the
classication performance of the QC-CNN model on different
datasets, in which all the prepared datasets were used. The sub-
sequent experiments aimed to investigate the properties of the
quantum component in our model. To ensure that the powerful
machine learning-based approaches for feature reduction, such
as autoencoders, will not diminish the impact of the studied
quantum properties, we only used the Overhead-MNIST and
So2Sat LCZ42 datasets for these three experiments.

A. Analysis of General Classication Performance

We present the classication accuracy achieved by different
models in Table III. The table demonstrates that our model
outperforms both CNN models (CNN-6 and CNN-14) in terms
of test accuracy for all ve EO datasets. Furthermore, despite
having a simpler structure and fewer trained parameters, our
model achieves comparable classication performance to the
competitor with the highest test accuracy among the compared
CNN-based deep learning models and quantum models for
every used dataset (with a performance difference of at most
0.013). In some cases (e.g., Overhead-MNIST), our model
demonstrates superior performance among all competitors.

Moreover, as shown in Table III, the difference in classi-
cation accuracy between training, validation, and testing sets
for our model is relatively small compared to other models,
suggesting that our model has less overtting and higher
generalizability than others.

In addition, a one-sided Wilcoxon signed-rank test [66] was
performed between our model and the competitors over ve
EO datasets. The null hypothesis states that the classication
performance (the averaged test accuracy) of our model is equal
to or worse than that of the competitor over ve EO datasets,
and the alternative hypothesis suggests that the average test
accuracy of our model over ve EO datasets is greater than
the competitor. As shown in Table IV, the p-values comparing
our model with two CNN models are below 0.05. This
indicates the rejection of the null hypothesis, i.e., in favor
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TABLE III

CLASSIFICATION PERFORMANCE COMPARISON BETWEEN THE PROPOSED MODEL AND OTHERS

TABLE IV

SIGNIFICANCE ANALYSIS: P-VALUE BETWEEN OUR MODEL AND OTHERS

of the alternative hypothesis, which suggests that our model
outperforms its classical counterparts. As for other competitors
with more complex structures and parameters, there is insuf-
cient evidence to support the alternative hypothesis, and its
implication aligns with the previous nding based on Table III.
It is important to note that, in computer vision, it is not
common to use the p-value to examine the signicance of the
improvement, as a tiny percentage of improvement in, e.g.,
image classication, would lead to unprecedented practical
usage. This is also the situation for EO. Thus, although we
carried out this experiment for the sake of completeness, the
readers are recommended to make the assessment based on
the actual application scenario.

To conclude, in comparison with the CNN model (our
model’s classical counterpart), our model could extract critical

features with fewer kernels from the input image, and it can
achieve better classication performance and higher general-
izability. As for the classical deep learning model with a more
complex structure (e.g., ResNet), our model can have a similar
performance. However, there is no guarantee that it can always
outperform these classical models. In addition, it is worth
mentioning that the quantum simulator used in the experiments
was noiseless, so the experiments were conducted in an ideal
condition. The model’s performance will be compromised
when adopting a noisy device or simulator.

B. Analysis of Quantum Gates and Measurement Operators

There are various types of quantum gates and measurements
that can be applied in our model, as introduced in Section IV,
for example:
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TABLE V

QC-CNN’S ACCURACY WITH DIFFERENT QUANTUM GATES IN THE CONVOLUTION LAYERS AND OPERATORS IN THE MEASUREMENT LAYER

1) rotation gates in the quantum convolution layer (e.g.,
U3, RX, or RY);

2) operators in the measurement layer (e.g., Pauli-X,
Pauli-Y, or Pauli-Z).

To evaluate the effects of different rotation gates and mea-
surements on classication performance, several experiments
were conducted. Specically, we used all the samples from
two categories (“Car” and “Plane” in the Overhead-MNIST;
“Compact Middle-rise” and “Dense Trees” in the So2Sat
LCZ42) in Table I to prepare two balanced datasets. Different
types of quantum gates in the quantum convolution layers and
the operators in the measurement layer have been tested, and
the results are demonstrated in Table V.

1) Rotation Gates in Quantum Convolution Layer: The U3
gate makes a single qubit rotate with three Euler angles,
whereas the RX and RY gate let the qubit rotate around the
X -axis and the Y -axis, respectively. Thus, using U3 gates can
achieve more complex rotation. As shown in Table V, adopting
U3 gates can generally achieve higher accuracy for image
classication, but note that the model using U3 gates has a
threefold increase in the number of the trainable parameters
compared with the model using RX or RY gates.

In addition, using RX or RY gates in the model can
sometimes also achieve comparable performance as using U3
gates. For example, when adopting the X-measurement for
the Overhead-MNIST data and the Z-measurement for the
So2Sat LCZ42 data, the performance difference regarding
classication accuracy when applying different gates in the
quantum convolution layer is limited.

2) Operators in the Measurement Layer: In our experi-
ments, we evaluated four measurement strategies, i.e., X, Y,
Z-measurement and XYZ-measurement, to obtain the features
from the quantum state by applying Pauli-X, Pauli-Y, and
Pauli-Z operators. Specically, for the rst three strategies,
we measure the quantum state in the X-basis, Y-basis, and
Z-basis, respectively. As for the XYZ-measurement, we con-
catenate the values obtained based on the previous three
strategies and use them together in the further classical dense
layer.

As can be seen in Table V, the experimental results indicate
that the model applying the XYZ-measurement can generally
outperform others, but this measurement also extracts more
features for the successive dense layer compared with others.

Similarly, the model with the measurement on one basis
can have comparable performance to the one using the
XYZ-measurement in some cases. For instance, to classify
the Overhead-MNIST dataset and the So2Sat LCZ42 dataset,
the X-measurement can reach a similar performance to the
XYZ-measurement despite the adopted rotation gates.

C. Analysis of the Structure of the QC-CNN Model

To evaluate the impacts of the model’s structure on the
classication performance, we experimented with our model
having a different number of kernels and quantum convolution
layers using two datasets. For the Overhead-MNIST, we used
all the samples from the categories “Car,” “Ship,” and “Plane”
to build a balanced dataset. Regarding the So2Sat LCZ42,
we used all the data introduced in Table I.
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TABLE VI

CLASSIFICATION PERFORMANCE COMPARISON OF OUR MODEL WITH DIFFERENT STRUCTURES

TABLE VII

CLASSIFICATION PERFORMANCE COMPARISON WITH THE NOISE

According to the results shown in Table VI, the model’s
structure can inuence its classication performance like the
classical CNN. When applying a suitable number of kernels
and convolution layers for feature extraction, our model’s
classication accuracy can be improved.

D. Analysis of the Noise Effects on the QC-CNN

Model’s Performance

To evaluate our model’s ability to handle the noise, we tested
our model’s performance given different types of noise and
compared it with its classical counterpart.

For the noise in the data, to avoid the inuence of the
procedure for dimension reduction, we added the Gaussian
noise to the downscaled input images. As for the noise in the
model, we involved the noise at the end of the circuit for mea-
sured qubits. Specically, the noisy model will additionally
add one gate from Pauli-X, Pauli-Y, and Pauli-Z gates with a
certain error rate on each measured qubit. In our experiments,
we considered the error rate of 0.01, 0.05, and 0.10.

Considering the time needed for simulating the noisy
quantum model, we simplied the tasks. In this experiment,
we focused on three category classication tasks. For the
Overhead-MNIST, we dened “Car,” “Ship,” and “Plane” as
the target categories. As for the So2Sat LCZ42, we used
all the categories in Table I. To train the models, we ran-
domly selected 600 images from the training samples in these
target categories for each dataset. To evaluate and compare
the models’ performance, we utilized all the validation and
test data from the target categories listed in Table I. The
models were trained with an epoch number and a batch
size of 50.

The experimental results can be found in Table VII.
As shown in the table, our model can have better performance
compared with the CNN model when dealing with the noise
in the data. Regarding the noisy model, the misclassication
rate increases with the error rate, which is expected. However,
the usage of the trainable classical dense layer increases the
resilience of our model against the noise effects.

VI. DISCUSSION

The scalability and efciency of the model also play an
important role in the model’s estimation. The efciency indi-
cates the speed of the quantum algorithm for classication.
As for the scalability analysis, the number of qubits needed
to scale the model is discussed.

A. Network Efciency Analysis

We analyzed our network’s efciency from two perspec-
tives: the number of required quantum gates and the number of
trainable parameters for classication. As an example for our
analysis, we chose the QC-CNN model that has m sequential
quantum convolution layers, and each layer applies 2k kernels
with a size of 2 × 2 and a convolutional stride 2. The efciency
comparison between our model and its classical counterpart for
feature extraction can be found in Table VIII.

1) Number of Quantum Gates: The number of quantum
gates used in a quantum algorithm is directly related to the
number of operations required for computation because a
quantum circuit is built up with gates, and each gate represents
a specic operation. Our model’s gate complexity is discussed
individually for each type of layer in the model.

a) Encoding layer: To encode a gray-scale image of size
2n × 2n using FRQI, 2n H gates on qLs are used to prepare
the spatial information. For each pixel, a controlled RY gate
with 2n controllers is required that can rotate a qubit with
arbitrary degrees around the Y -axis based on 2n qubits’ states.
Thus, in total, this layer requires 22n RY gates controlled by
2n qubits and 2n H gates for input image encoding.

To reduce the number of gates applied in this layer, several

techniques, such as those described in [67] and [68], can
be applied. However, it is important to note that this study
does not aim to address the issue of encoding images more
efciently, as it falls outside the scope of this work.

b) Quantum convolution layer: The convolutional com-
putation also relies on the rotation gate with multiple con-
trollers. In our model, we apply the U3 gate controlled by
k + 3 qubits in these layers regardless of the size of the input
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TABLE VIII

FEATURE EXTRACTION EFFICIENCY COMPARISON

BETWEEN QC-CNN AND CNN

image, and these controllers are 2 qLs, k qKs, and 1 qR (or the
qC for the rst convolution layer). In the end, there are 4m ×

2k U3 gates with k + 3 controllers. To prepare 2k kernels, k
H gates for qK are also required.

c) Measurement layer: To obtain the expectation val-
ues in the measurement layer, we have to run the quantum
circuit multiple times. After the quantum convolution layers,
given the generated feature maps with 22(n−m)+k features,
we need O(22n−2m+k+1) runs of the circuit to obtain the
required feature values from the quantum state.

When comparing the number of operations between our
model and classical CNN models, we would like to focus on
the convolution layers that are the key components responsible
for feature extraction in both models. However, it is worth
mentioning that, if we consider the encoding layer and the
measurement layer, the overall efciency of our model will be
compromised. Still, as introduced before, there are possibilities
to speed up the encoding process, and it is beyond the scope of
this work. Thus, we mainly discuss and compare convolutional
computation in different models.

As studied in [69], a classical convolution layer with the
same settings as our QC-CNN model requires O(2k+2n) opera-
tions to process a gray-scale image of size 2n × 2n . In contrast,
our quantum convolutional layer requires only 2k+2 U3 gates
with k + 3 controllers, regardless of the image’s spatial size.
This suggests that our quantum convolution layer can speed up
the convolutional operation for feature extraction, particularly
when analyzing large remote sensing images.

2) Number of Trainable Parameters: Table VIII compares
the number of trainable parameters of a convolution layer with
2k kernels of size 2 × 2 to process gray-scale images in our
QC-CNN model and a CNN model.

As shown in the table, the number of trainable parameters
in the quantum convolution layer depends on the utilized
quantum gate along with the number of applied kernels.
Applying controlled U3 gates can manage more complex
rotations, but it also has a threefold increase in the number
of trainable parameters compared with using RX or RY gates.

Compared to classical CNN models, the use of U3 gates
requires more trainable parameters for a given number of
kernels, as shown in Table VIII. However, the experimental
results in Table III indicate that our model with only four
kernels can outperform the CNN-14 model with 14 kernels,
suggesting that the kernels in our model are more efcient
than those in classical models. As a result, our model still
requires fewer parameters than CNN-14 despite the adoption
of U3 gates.

Furthermore, note that incorporating RX or RY gates in our
model can sometimes lead to comparable performance as U3
gates, as evidenced by the experimental results presented in
Table V. As such, it is possible to further reduce the number
of trainable parameters in our model without compromising
classication performance. This implies that our model has the

TABLE IX

DEMANDED QUBITS IN THE QC-CNN MODEL FOR GRAY-SCALE IMAGES

potential to extract valuable features with signicantly fewer
parameters, highlighting its advantage in training efciency.

B. Scalability Analysis

The requirement of qubit resources for QML models is
one of the essential criteria for quantum computing, especially
in the NISQ era. Thus, it is important to analyze the qubits
needed in the proposed model for the classication task.

Table IX concludes the number of qubits for each layer of
the proposed model to classify gray-scale images. Concerning
color images, three qubits are needed to encode the spectral

information with the MCQI method [70]. Thus, the number of
qubits for the model containing 2k kernels and m successive
quantum convolution layers is 2n+k+m+1 for the gray-scale
images and 2n + k + m + 3 for the color images. As shown
in Table IX, for a gray-scale image with the size of N × N ,
our model only requires 2 log(N ) + 1 qubits. To prepare K
kernels for the quantum convolution layers, log(K ) qubits are
sufcient. Thus, the proposed model achieves advantages in
terms of information encoding.

VII. CONCLUSION AND FUTURE WORK

In this article, a new hybrid QC-CNN is proposed to
classify remote sensing images into multicategories, which can
accelerate feature extraction in the quantum domain for classi-
cation and achieve better performance than its classical CNN
counterpart. Exclusively applying amplitude encoding in our
model signicantly reduces the requirement on quantum bit
resources. In addition, we investigated the impacts of quantum
gates, measurements, the model structure, and the noise effects
on our model’s classication performance. More importantly,
our experimental results demonstrate a proof of concept for
applying CNN in the quantum domain for image classication.
Furthermore, evaluating our approach using simulators on EO
benchmarks has provided us with the opportunity to explore
the potential of using QNNs for EO data comprehension within
the current limitations of quantum machines.

Due to the QC-CNN model’s acceleration in the compu-
tation procedure and its relatively low requirement on the
number of qubits, the proposed model might provide a pos-
sibility to tackle the challenges in the remote sensing domain
for image classication tasks when more advanced quantum
machines are available in the future.

Regardless, future research could continue to explore the
following directions: 1) investigate more suitable image encod-
ing techniques for remote sensing images; 2) further study the
properties of different gates and measurements for classica-
tion; and 3) explore the potential of quantum computing for
different challenges in the EO domain, such as incomplete

data [71] and noisy-labeled data [72].
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