

COMPLEX NETWORKS

A SPATIAL-HYBRID MODEL FOR INFECTIOUS DISEASE DYNAMICS

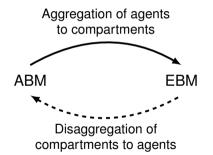
Julia Bicker Predictive Simulation Software 2023/11/29 Joint work with René Schmieding and Martin Kühn Bundesministerium für Bildung und Forschung

Modeling infectious diseases

Agent-based models (ABM)

- High level of detail possible
- Ability to create heterogenous agents and get results on individual level
- Computational cost depends on the number of agents

Equation-based models (EBM)

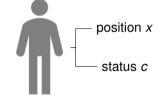


- Limited level of detail due to compartmental representation
- Assumes homogenous and well-mixed population
- Computationally efficient as runtime does not depend on population size

Hybridization Approach

 Spatial hybridization combining an agent-based (focus region) and a piecewise equation-based model (surrounding regions)

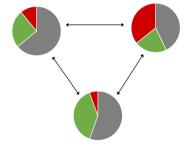
Detailed results in a **focus region** while considering the influence of **neighboring regions** in a **runtime efficient** manner.


Agent-based model*

- Agent $\alpha = (x, c) \in \Omega \times \Gamma$
 - $\Omega \subset \mathbb{R}^2$: Domain agents move in
 - $\Gamma = (c_1, c_2, ..., c_{n_c})$: Set of infection states (status)
- Markov process (Y(t))_{t∈T} describes evolution of system state over time with Y(t) = (X(t), C(t))
- Agents' movement: Diffusion process
- Status adoptions: Poisson processes given by adoption rate functions

*Winkelmann, S., Zonker, J., Schütte, C., Conrad, N.D.: Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading. Mathematical Biosciences 336,

108619 (2021), https://www.sciencedirect.com/science/article/pii/S0025556421000614


*Winkelmann, S., Zonker, J., Schütte, C., Conrad, N.D.: Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading. Mathematical Biosciences 336,

108619 (2021), https://www.sciencedirect.com/science/article/pii/S0025556421000614

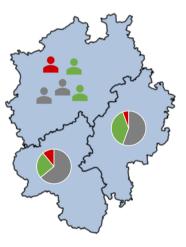
• Subregions S_m , m = 1, ..., M with subpopulations

Piecewise equation-based model* (PEBM)

- Domain $\Omega = \bigcup_{m=1}^{M} S_m$
- Movement: Stochastic jumps between subpopulations given by transition rates
- Status adoption dynamics: Set of ordinary differential equations for every subpopulation

Definition of regions for PEBM: From ABM to PEBM*

- Metastable regions of diffusion process as subregions such that $\Omega = \bigcup_{m=1}^{M} S_m$
- Position: $x \in \mathbb{R}^2 \mapsto x \in \{1, ..., M\}$
- Spatial transitions are rare compared to status adoptions: Approximation of jump processes by deterministic equations


*Winkelmann, S., Zonker, J., Schütte, C., Conrad, N.D.: Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading. Mathematical Biosciences 336,

108619 (2021), https://www.sciencedirect.com/science/article/pii/S0025556421000614

Hybrid model

- Usage of model depends on region
- Regular exchange between ABM and PEBM

Using geodata from https://gdz.bkg.bund.de/index.php/default/verwaltungsgebiete-1-2-500-000-stand-31-12-vg2500-12-31.html

Hybrid model: Exchange between models

ABM \rightarrow PEBM:

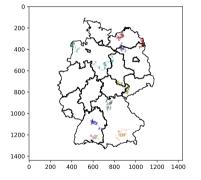
 Unique mapping to subpopulation according to agent's position

 $\mathsf{PEBM} \to \mathsf{ABM}$:

- Loss of information: Position can be anywhere in the focus region
- Agent is created in the center of the focus region

Using geodata from https://gdz.bkg.bund.de/index.php/default/verwaltungsgebiete-1-2-500-000-stand-31-12-vg2500-12-31.html Julia Bicker, Institute for Software Technology, Department of High-Performance Computing: A spatial-hybrid model for infectious disease dynamics, 2023/11/29

Application: Hybrid model for Germany

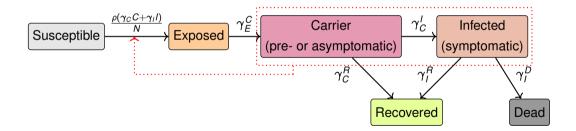

Domain and agents' movement

- Potential P : Ω → ℝ is given by Portable
 Gray Map of German federal states with a
 Gaussian curve on the borders
- North Rhine-Westphalia as focus region
- Diffusion process

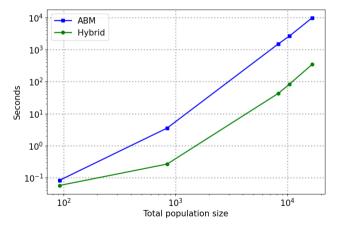
$$rac{dX(t)}{dt} = -
abla P(X(t)) + \sigma \xi(t)$$
, (1)

 σ diffusion constant, $\xi(t)$ a white noise process

Using geodata from https://gdz.bkg.bund.de/index.php/default/verwaltungsgebiete-1-2-500-000-stand-31-12-vg2500-12-31.html

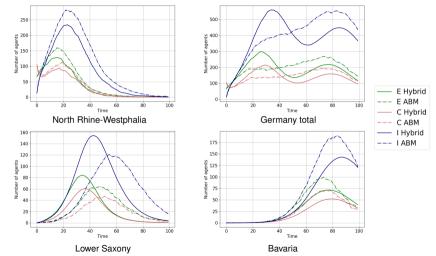


Application: Hybrid model for Germany



Transmission model

Runtime results hybridization



- ABM runtime lies in O(n_a²), n_a number of agents
- Hybrid model reduces runtime by 96.5% for ≈ 17000 agents compared to ABM

Simulation results hybridization

- Spatial resolution is important
- ABMs can model on individual level but are costly
- Influence from other regions should be considered cost effectively
- Hybrid model can save more than 90% of cost and resources
- Parameter fitting ongoing

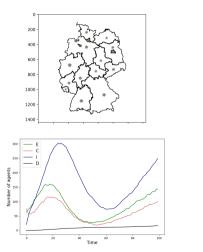
Github repository: https://github.com/DLR-SC/memilio, code for hybrid model on fork

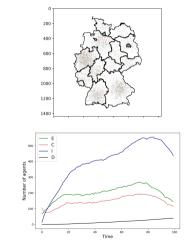
https://github.com/reneSchm/memilio

 To be submitted: Julia Bicker, René Schmieding, Martin Kühn: A spatial-hybrid model for infectious disease dynamics (2023)

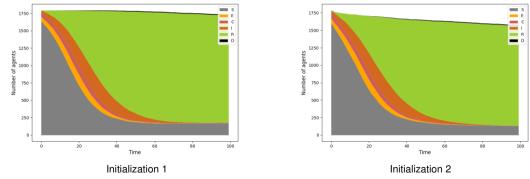
Thank you for your attention!

Appendix

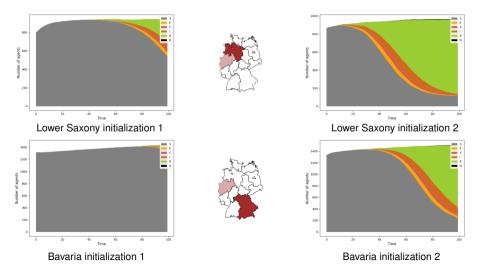

□ > < @ > < \overline > < <p>•


15

Simulation results ABM



Agents' position initialization influences model results


Simulation results ABM - Focus region

Simulation results ABM - Surrounding region

