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Abstract: The retrieval of soil moisture information with spatially and temporally high resolution
from Synthetic Aperture Radar (SAR) observations is still a challenge. By using multi-orbit Sentinel-1
C-band time series, we present a novel approach for estimating volumetric soil moisture content
for agricultural areas with a temporal resolution of one to two days, based on a short-term change
detection method. By applying an incidence angle normalization and a Fourier Series transformation,
the effect of varying incidence angles on the backscattering signal could be reduced. As the C-band
co-polarized backscattering signal is prone to vegetational changes, it is used in this study for the
vegetational correction of its related backscatter ratios. The retrieving algorithm was implemented
in a cloud-processing environment, enabling a potential global and scalable application. Validated
against eight in-situ cosmic ray neutron probe stations across the Rur catchment (Germany) as
well as six capacitance stations at the Apulian Tavoliere (Italy) site for the years 2018 to 2020, the
method achieves a correlation coefficient of R of 0.63 with an unbiased Root Mean Square Error of
0.063 m3/m3.

Keywords: soil moisture; C-band; SAR; short-term change detection; multi-orbit; vegetation correction

1. Introduction

By using 60% to 90% of the total available water, agricultural systems are being the
main consumers of fresh water resources on a global scale [1]. In this regard, they are heavily
affected by the increasing impacts of climate change on the available water resources, while
adding further pressure on it with the rising global demand for agricultural products,
and the accompanying intensification of their production [2–4]. As irrigated agricultural
areas produce nearly twice as much yield compared to rain-fed areas, the demand for
irrigation water will consequently grow in the future. It is estimated that until 2080, the
demand will increase by over 50% for developing countries and by approximately 16%
for developed countries compared to the year 2000, while the largest change will occur
in Africa and Latin America with 300% and 119%, respectively [5]. Detailed knowledge
about soil moisture, being a key parameter in the agricultural sector, is therefore crucial
for mitigating these effects on both local and regional scales. This information is used to
estimate the efficiency of irrigation, determine its impact on local water resources, improve
regional and local water allocation and hydrological models, and estimate the soil carbon
storage capacity [6,7]. Nevertheless, high-resolution surface soil moisture data for regional
and local monitoring (down to managing precision farming level) are still challenging to
obtain [8].
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By using Synthetic Aperture Radar (SAR) satellite missions, this knowledge gap can be
filled [9–11]. Providing a cloud- and weather-independent monitoring of the Earth’s surface,
SAR observations are suitable for regional and local soil moisture estimations, however,
with a global extent [12]. While currently available soil moisture products from satellite
missions such as Advanced Scatterometer (ASCAT) [13], Advanced Microwave Scanning
Radiometer—Earth Observing System/2 (AMSR-E/AMSR2) [14,15], Soil Moisture and
Ocean Salinity (SMOS) [16], and Soil Moisture Active Passive (SMAP) [17] are limited
due to their coarse resolution, various studies evaluate the potential of downscaling these
products using additional remote sensing or ground reference data [18–22]. Choi and
Hur [18] used Moderate Resolution Imaging Spectroradiometer (MODIS) multi-spectral
data to enhance the AMSR-E soil moisture product from 25 km to 1 km spatial resolution.
For the successive mission, AMSR2, Fang et al. [23] used as well MODIS data, to produce
a 1 km soil moisture product, while Piles et al. [24] and Molero et al. [19] used MODIS
data to downscale SMOS 40 km resolution soil moisture product to a finer resolution of
1 km. However, the use of additional optical satellite data limits these methods to cloud-
free conditions, which can lead to large gaps within monitoring, especially in tropical
and subtropical regions. Using only cloud- and weather-independent radar data for
downscaling, Das et al. [22] used Sentinel-1A and Sentinel-1B SAR data to enhance the
SMAP radiometer resolution, increasing the resolution from 36 km to 1 km, even though
the temporal resolution is degraded from 3 to 12 days due to sparse spatial overlapping
of both missions. By taking advantage of recent machine learning approaches, SAR-
based soil moisture estimation can be adapted to local, non-linear relationships between
backscattering signals and soil moisture [25]. Hachani et al. [26] trained an artificial neural
network (ANN) using Sentinel-1 and auxiliary in-situ data (e.g., soil moisture, soil texture,
topography, vegetation measurements) to estimate soil moisture within an arid region with
a resolution of 20 m. Datta et al. [27] compared different machine learning approaches
(Support vector machine (SVM), K-Nearest Neighbor (KNN), and Random Forest (RF)) to
estimate soil moisture over bare soils with a spatial resolution of 20 m. Using only Sentinel-1
backscatter time series, Bauer-Marschallinger et al. [28] presented a 1-km resolution soil
moisture product, using a well-established change detection algorithm operated in the
Sentinel-1 Data Cube at TU Wien. Using representative backscattering values from the
driest and wettest conditions at a grid point, the relative soil moisture is retrieved here by
scaling the individual backscattering value between these minimum and maximum values.
Most recently, Balenzano et al. [29] published a volumetric soil moisture data set based on
Sentinel-1 time series using a change detection method, with a spatial resolution of 1 km
and a temporal resolution of 6 days.

However, current methods have limited applicability in agriculture due to their coarse
spatial or temporal resolution [30]. When using physical backscatter models to decompose
the SAR signal, the lack of publicly available full-polarimetric SAR observations often
limits their use; in addition, they require a lot of surface information. For empirical
models, their site dependence is an obstacle to their representation in other areas due to the
large variability within the agricultural landscape [31]. In this regard, short-term change
detection approaches are promising because they are independent of surface parameters
that do not change significantly relative to soil moisture (e.g., soil roughness, soil texture,
vegetation water content) and can be applied on the freely available dual-polarized C-band
Sentinel-1 time series. Nevertheless, especially for agricultural areas with distinct bare soil
and vegetation conditions, the influence of changing vegetation still limits their application.
In this regard, new methods for addressing the effect of changing vegetational conditions
need to be developed.

We developed a new method to address this issue by minimizing the time period
between consecutive SAR observations. This is achieved by extending the alpha approxima-
tion approach by Balenzano et al., 2011 to multi-orbit acquisition time series. Moreover, we
developed a method to detrend the vegetational effect on the related backscatter ratios. The
method is established within the cloud-processing platform Google Earth Engine (GEE),



Remote Sens. 2023, 15, 2282 3 of 31

using temporal and spatial high-resolution Sentinel-1 time series. Its integration into cloud
computing environment allows a fast and applicable way for on-demand computation of
soil moisture for individual time periods and areas of interest on a global scale.

2. Study Area

Two different study sites, the Rur catchment in western Germany and the Apulian
Tavoliere site in southern Italy, were selected for evaluation. The Rur catchment is located
in the federal state of North-Rhine Westphalia in the West of Germany, while small parts
of it are also situated in Belgium and the Netherlands. It has a total area of 2354 km2,
with an elevation of 680 m above sea level (asl) in the south and 30 m asl in the north
(Figure 1) [32]. The northern, flat parts of the catchment are dominated by crop cultivation,
with mainly sugar beet, maize, and winter cereals [33]. In the southern region, located in
the low mountain range Eifel, the main landcovers are pastures and forest of deciduous
and coniferous trees [32]. Looking at the soil types within the Rur catchment, at the most
northern parts, Fimic Anthrosols and Dystric Cambisols soils with a loamy sand texture are
present, while the other northern parts are characterized mostly by Cumulic Anthrosols and
Haplic Luvisols with both silt loam textures. In the southern regions, Fluvisols, Gleysols,
Eutric Cambisols, and Stagnic Gleysols with a silt loam texture are present [33]. While the
mean field capacity in the northern part is greater than 200 mm, the soils in the southern
part are less productive with field capacities ranging between 50 and 150 mm [32]. The
mean annual precipitation ranges between 650 mm to 850 mm in the northern part. As the
Rur catchment is located in the west wind zone, precipitation shadowing effects caused
by the High Fen Mountains can be observed in the southeastern part of the catchment,
causing lower annual precipitation of around 700 mm compared to the 1200 mm present in
western luv site of the catchment [32,34]. In the southern Eifel region, most of the rainfall
occurs in winter when evapotranspiration rates are at their lowest, which results in a large
proportion of precipitation rapidly becoming runoff. Contrary to this, the northern part
of the Rur catchment receives the highest rainfall during the summer, when potential
evapotranspiration rates are high, which can effectively buffer precipitation events [33].
Previous studies revealed lower mean soil moisture values in the northern part of the
Rur catchment, which could be attributed to the lower precipitation rates. The observed
spatial variability in this region, being dominated by agricultural practices/farming and a
very flat terrain, were found to be driven by vegetation, due to the temporal differences
of evapotranspiration rates. Furthermore, varying management practices (e.g., planting
and harvesting dates), and soil parameters (e.g., porosity and field capacity) were seen as
the main reasons. In the southern region, higher mean soil moisture values were observed.
Here, the highest variation occurs within sub-catchments dominated by forest stands, due to
the heterogeneous topography and higher precipitation levels. For grassland areas, which
are also characteristic for the southern part, also high mean soil moisture values, but with a
much lower standard deviation could be observed [33]. During the observation period from
2018 to 2020, a long persisting drought period was present over central Europe, also leading
to soil moisture deficits in the Rur catchment. For further information, we refer to the
European Drought Observatory reports as well as the monthly drought monitoring from
Helmholtz Centre for Environmental Research [35,36]. The Rur catchment also includes
the Selhausen test site, which is due to the very good availability of in-situ data used as a
validation site for several air- and space-borne microwave soil moisture products and listed
as a super-site by the Committee on Earth Observation Satellites Land Product Validation
Subgroup (CEOS LPV) [37–42].
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Figure 1. Overview of the Rur catchment with the location of Cosmic-Ray Neutron Probe stations
(CRNS) used for validation.

The second study area is located at the Segezia experimental farm (41◦22′16′′N
15◦29′30′′E) with an area of approximately 4 km2, located in the Cervaro basin (Northwest
part of the Puglia region, Southern Italy) (Figure 2). The main crops are cereals (durum
wheat, barley, oat) as well as pastures (natural or annual grass of mixed cereals and legume
crops). With its semiarid Mediterranean climate, the summer is hot and dry while the
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winter is short and temperate. The annual precipitation is around 550 mm, being mostly
concentrated in winter months. The topography is characterized by a gentle slope, ranging
between 130 m and 200 m asl. The soil texture is sandy clay loam [43]. The study area is
part of the greater Capitana plain with an area of approximately 4000 km2, located around
the city of Foggia and is characterized by intensive and irrigated agricultural management
by farms with an average size of 20 ha.

Figure 2. Overview of the Segezia experimental farm with the locations of capacitance stations (Cap.).

3. Data
3.1. Sentinel-1 C-Band SAR

A total of 709 dual-polarized (VV + VH) Sentinel-1A and Sentinel-1B scenes for the
Rur catchment (Figure 3) and 361 scenes for the Apulian Tavoliere site are used for the
period between January 2018 to December 2020, covering all or parts of the study area. The
polar-orbiting twin satellite constellation monitors the Earth’s surface, using 5400 MHz
C-band SAR instruments, while following the same orbital plane 180◦ apart. In this regard,
a combined revisit time of 6 days can be achieved [44,45]. Depending on the latitude, even
denser time series are possible, as multiple orbits can cover a given area. In this study,
four orbits (Orbit 139, Orbit 88, Orbit 15, Orbit 37) are covering the Rur catchment area,
recording it in alternating incidence angles (Desc.: 43.8◦, Asc.: 30.2◦, Asc.: 35.4◦, Desc.:
39.5◦). Hence, a temporal resolution of one to two days is achieved here. For the Apulian
site, two orbits are used (Orbit 124, Orbit 146), recording in alternating incidence angles
(Desc.: 38.9◦, Asc.: 32.3◦), achieving a temporal resolution of five to two days. The scenes
are in Interferometric Wide-Swath Mode (IW) and Ground Range Detected High Resolution
(GRDH) format [46]. The IW mode captures a 250 km swath with a spatial resolution of
5 m by 20 m by combining three sub-swaths, using Terrain Observation with Progressive
Scans SAR (TOPSAR). For GRDH product, the scenes are resampled into 10 m by 10 m
pixel spacing. The combined time series from Sentinel-1A and Sentinel-1B are obtained and
processed using the Google Earth Engine (GEE) web platform [47]. The platform provides
Sentinel-1A and Sentinel-1B scenes, which are preprocessed by the following steps, using
the Sentinel-1 Toolbox SNAP software: thermal noise removal, radiometric calibration,
terrain correction using Shuttle Radar Topography Mission (SRTM) Version 3.0 Global 1 arc
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second dataset (SRTMGL1) [48,49]. The backscattering intensities are acquired as Digital
Numbers (DN).

Figure 3. Overview of the input datasets for the Rur catchment: Sentinel-1 dual-polarized vertical-
vertical (VV) scene (A), CORINE land cover data (B), OpenLandMap Soil Texture data (C), and
OpenLandMap Field Capacity (D).
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3.2. CORINE Land Cover Data

The Coordination of Information on the Environment Land Cover (CORINE) dataset
provides a land cover classification for Europe with a resolution of 100 m, grouping the
land types into five major groups: artificial surfaces (I), agricultural areas (II), forests and
semi-natural areas (III), wetlands (IV), and water bodies (V), which are further charac-
terized within 44 individual subcategories in total. The minimum mapping unit is 25 ha
with a mapping accuracy of greater than 85%. The dataset is based on Sentinel-2 and
Landsat-8 image classification using computer-assisted visual image interpretation tools
(CAPI) [50,51]. Focusing on agricultural areas for estimating soil moisture, all areas within
the group “agricultural areas” are considered, while all other categories were masked.
Thereby, all subcategories within the category “agricultural land” are considered as one
class. The CORINE land cover dataset only distinguishes between individual cultivation
types when there is long-term land use (e.g., olive trees, fruit trees, rice fields, pastures).
Areas with crop rotations are placed in the subcategory “complex cropping patterns”. In
this respect, no information on the specific crop type is available for this study.

3.3. OpenLandMap Data

The OpenLandMap Dataset is a global gridded dataset, providing soil information
with a spatial resolution of 250 m for six different soil depths (0, 10, 30, 60, 100 and 200 cm),
based on 350,000 observations from United States Department of Agriculture (USDA)
database in combination with ancillary remote sensing data using a machine learning
approach [52]. In this study, information about the percentual sand and clay content is used
for the inversion of soil moisture to dielectric constant and vice versa, using the formula
developed by Hallikainen [53]. Furthermore, field capacity (volumetric %) at 33 kPa for the
0 cm soil depth is used, for serving as an initial soil moisture starting point. For a detailed
overview, the soil properties for different soil depths are listed in Tables 1 and 2 for both
Rur and Apulian test site. As the proposed soil moisture retrieval approach is implemented
within the Google Earth engine, the OpenLandMap dataset already available within it
offers a good compromise between high spatial resolution and global coverage. However,
this choice does not mean that regional or local soil datasets with higher resolution or
accuracy may not also be suitable.

Table 1. Overview of CRNP stations.

Soil Depth [m] Clay [%] Sand [%] SOC [g/kg] Bulk Density [kg/m3]
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ze
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ea
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)

A
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RU_C_006
0 24.5 18.7 23 1276.3

0.10 24.6 18.4 20 1280.0

6.0275, 50.7985
0.30 26.3 18.8 10 1425.9

0.60 28.9 18.3 5 1490.7

G
ev

en
ic

h RU_BCK_002
0 22.8 21.1 15 1312.2

0.10 22.9 21.2 13 1323.4

6.3235, 50.9892
0.30 25.6 21.3 7 1420.5

0.60 27.7 20.9 2 1482.2

M
er

ze
nh

au
se

n

ME_BCK_001
0 15.9 23.6 20 1306.1

0.10 16.2 23.6 15 1349.3

6.2974, 50.9303
0.30 17.4 23.4 5 1453.2

0.60 18.2 24.1 4 1494.3

Se
lh

au
se

n SE_C_001
0 17.1 20.2 11 1315.7

0.10 17.1 20.2 12 1321.9

6.4471, 50.8659
0.30 19.2 20.8 7 1458.2

0.60 20.6 20.9 0 1497.2
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Table 1. Cont.

Soil Depth [m] Clay [%] Sand [%] SOC [g/kg] Bulk Density [kg/m3]

M
ea

do
w

K
al

l

RU_C_005
0 25.0 22.9 36 1222.7

0.10 25.0 22.8 38 1236.2

6.5264, 50.5013
0.30 26.8 23.3 10 1365.6

0.60 29.4 23.0 7 1414.9

K
le

in
ha

u-
H

ür
tg

en
w

al
d

RU_C_007
0 18.5 36.9 43 1093.0

0.10 18.4 36.6 42 1123.9

6.3720, 50.7224
0.30 19.1 37.1 20 1227.4

0.60 20.8 39.1 9 1346.4

R
ol

le
sb

ro
ic

h RO_C_001
0 19.2 35.2 43 1139.6

0.10 19.4 35.2 40 1153.5

6.3042, 50.6219
0.30 19.7 35.6 24 1271.7

0.60 21.2 36.7 10 1393.9

Sc
hö

ne
s-

ei
ff

en

RU_BCDKR_001
0 22.6 33.6 59 1054.1

0.10 22.7 33.3 60 1095.9

6.3755, 50.5149
0.30 24.3 34.5 27 1179.1

0.60 25.3 35.8 16 1357.2

Table 2. Overview of Apulian Tavoliere site.

Soil Depth [m] Clay [%] Sand [%] SOC [g/kg] Bulk Density [kg/m3]

W
he

at

A
pu

lia
n

Ta
vo

lie
re

6.0275, 50.7985

0 17.8 41.2 87 958.5

0.10 17.9 41.2 82 1038.9

0.30 18.7 41.4 24 1117.4

0.60 19.8 43.8 13 1307.9

3.4. Global Land Data Assimilation System (GLDAS)

The Global Land Data Assimilation System (GLDAS) is a near-real terrestrial modeling
system, incorporating ground-based and spaceborne observations to provide information
on surface states and fluxes on a global scale [54]. It was developed by the National
Aeronautics and Space Administration (NASA) Goddard Space Flight Center and the
National Oceanic and Atmospheric Administration National Centers for Environmental
Prediction (NCEP). In this study, the GLDAS Noah Land Surface Model L4 3 hourly
0.25 × 0.25 degree V2.1 (GLDAS_NOAH025_3H_2.1) product was used, which is providing
data from January 2000 to present with a spatial resolution of 0.25◦ [55]. The model uses
National Oceanic and Atmospheric Administration (NOAA)/Global Data Assimilation
System (GDAS) atmospheric analysis fields [56], the disaggregated Global Precipitation
Climatology Project (GPCP) V1.3 Daily Analysis precipitation fields [57,58], and the Air
Force Weather Agency’s Agricultural Meteorological modeling system (AGRMET) radiation
fields as forcing input variables [59].

3.5. Cosmic-Ray Neutron Probe (CRNP) Stations

Eight cosmic-ray neutron probe (CRNP) stations are spatially distributed on agricul-
tural areas within the Rur catchment to monitor soil moisture. Measuring hourly neutron
intensity, the stations are using either CRS-1000 or CRS-2000/B cosmic-ray neutron probe
(Hydroinnova LLC, Albuquerque, NM, USA), providing soil moisture information within
a circular area of 150 m to 200 m diameter around the CRNP within a soil depth between
15 cm to 70 cm. The CRS-1000 probes are filled with 3He gas, while the CRS-2000/B
probes are filled with 10BF3 enriched gas [60]. Since the neutrons are partially absorbed
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by the gas as they pass through the probes, electrons are produced that are attracted to an
anode. The resulting electric currents are then amplified, detected, and counted by a pulse
module [61]. For soil moisture estimation, the CRNP probes were calibrated using the N0
method [62], using a one-time representative in-situ soil moisture measurement within the
CRNP footprint. Even though the method does not account for biomass correction, it gives
reasonable results with an RMSE ≤ 0.033 cm3/cm3 [63]. In this study, the daily average
was used for comparison.

3.6. Capacitance Stations

In February 2014, eleven stations equipped with an EM50 datalogger were installed
over the Segezia site, with an average spacing of approximately 500 m (Figure 2). They
record volumetric soil moisture values every 15 min using two 5TM and two 10HS probes,
which are installed horizontally at 0.025 m, 0.10 m, 0.20 m and 0.40 m depths. Furthermore,
the 5TM device also measures soil temperature. The capacitance sensors were calibrated
by thermogravimetric method collecting soil moisture samples throughout a year, and it
is periodically controlled. Moreover, intensive campaigns collecting vegetation and soil
parameters in coincidence with radar and optical acquisitions (e.g., PRISMA, COSMO-
SkyMed, RADARSAT-2, Sentinel-1/2, 9LSO-2, SAOCOM) are frequently carried out. In
this study, the capacitance stations at points 2, 3, 5, 7, 9, and 10 are used, having the most
consistent and continuous data for the years 2018 to 2020. For validation, soil moisture
values from 0.025 m and 0.10 m are used, matching with each orbit overpass time.

4. Methods

The soil moisture estimation workflow is completely implemented within the cloud-
processing platform Google Earth Engine (GEE), allowing to process CPU-intense time
series data sets on a catchment scale in considerably shorter time. The workflow can
be divided into two major parts: (1) preprocessing of Sentinel-1 SAR data and (2) soil
moisture estimation using the alpha approximation method (Figure 4). As the algorithm
is constructed in a customizable way, both the observation period as well as the study
region can be changed at a later stage. The output can be both visualized directly within the
browser-based GEE platform and downloadable for local post-processing. In this study, the
output was resampled to a resolution of 200 m, thus aggregating all introduced input grids
(Sentinel-1, CORINE, OpenLandMap, GLDAS) into the same 200 m × 200 m pixel grid
by spatial averaging. The Sentinel-1 data was down-sampled, while the coarser datasets
(CORINE, GLDAS, OpenLandMap) were up-sampled. In this regard, the down-sampling
of Sentinel-1 data to a resolution of 200 m further reduced the effect of speckle noise in
the retrieval and averaged out the spatial heterogeneity, as a coarser scale reduces the
effect of heterogeneous surface parameters (e.g., soil roughness, plant canopy structure
and vegetation water content). On the other hand, the relationship with soil moisture is
strengthened as it adjusts more uniformly across space [64]. Nevertheless, the different
original resolutions of the used data sets can have varying influence on the resulting soil
moisture. Regarding the CORINE data set, both an unnecessary loss of “valid” as well as
not correctly masked Sentinel-1 pixels in the spatial domain are possible. In terms of the
coarser GLDAS and OpenLandMap data set, multiple Sentinel-1 pixels are assigned to the
same soil moisture starting and soil moisture range value, depreciating the correlation to
the spatial soil moisture distribution that can possibly be achieved by using high-resolution
Sentinel-1 time series.
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Figure 4. Workflow of the soil moisture estimation algorithm, which can be divided into two main
blocks: Preprocessing (1) and soil moisture estimation (2). Especially, the steps of Normalize Incidence
Angle, Fourier Series Transformation, Convolution and Vegetational Correction are introduced and
discussed in detail, as they are crucial for the assimilation of multi-orbit SAR observations for
obtaining a vegetation adapted, temporally high-resolution time series for the subsequent short-term
change detection approach.

4.1. Preprocessing
4.1.1. Masking

Two masking steps precede the workflow. In a first step, a land cover mask is applied
to each Sentinel-1A and Sentinel-1B scene, as this study focuses on soil moisture estimation
within agricultural areas. Using a binary mask created from the CORINE Land Cover
Data, where non-agricultural areas are set to zero and agricultural areas are set to one,
masked pixels are excluded from further processing, reducing the amount of computational
resources in the first place. In this regard, the method is not applied to areas, where C-band
is not able to penetrate through the vegetation cover and would give unreasonable results,
e.g., forest areas [65]. In the next step, a soil freeze and snow cover filter were applied,
as both events influence the retrieved dielectric constant and lead to wrong soil moisture
estimations using a short-term change detection method. The snow filtering was done
using the MODIS Terra Snow Cover Daily Global dataset [66], while the freeze filtering was
done using the COM-C Land Surface Temperature (V2) dataset [67], filtering out scenes,
where the air temperature at 2 m height is below 3 ◦C, as soil freezing is possible [68]. The
filtered pixels are replaced by calculating the temporal mean between 15 days before and
15 days after the snow or freeze event, to ensure a continuous time series also during the
winter period. Since heavy convective precipitation events could also potentially affect
the backscattering signal, there could be theoretical possibility that a change in backscatter
is related to such specific meteorological conditions. As these effects usually only occur
under heavy convective storm events (with over 50 mm/h), these conditions only prevail
in approximately 0.1% of areas on a global scale, with the majority of these areas located in
the tropics [69]. Since the likelihood of such events occurring during SAR observations in
both study areas is even lower, it is not considered in this study. However, if the method is
applied on a global scale, it could become a crucial factor, particularly within the tropics.
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4.1.2. Spatial Filtering

To reduce the influence of speckle on the change detection-based soil moisture esti-
mation, a denoising filter was applied to the co-polarized band of each Sentinel-1 SAR
scene. While improving the image quality, changes in backscattering signals between two
consecutive images are becoming more related to changes in soil moisture, rather than due
to the speckle effect. To preserve the edges of individual agricultural fields, a focal median
filter with a 50 m radius circular kernel (according to the area of around 78 resolution cells)
was applied to all scenes in this study. For each pixel, it calculates the median from its
surrounding pixels values and rewrites it into the original pixel. While its fast performance
is suitable for processing large time series, its better ability to preserve the edges of objects
makes it more suitable for field scale soil moisture estimation compared to the focal mean
filter [70].

4.1.3. Incidence Angle Normalization

As the images within the time series were recorded with multiple incidence angles,
they must be normalized to reduce the effect of incidence angle on backscattering signal.
In this regard, the SAR images are normalized to a reference incidence angle of 40◦, using
scene-based linear regression [71]:

σnorm
0 = σi

0 − β
(

θi − θre f

)
(1)

with σnorm/i
0 being the normalized and original backscattering signal, θre f /i being the

reference and original incidence angle and β as the slope derived from linear regression
between σi

0 and θi. An additional correction of azimuthal angle was not considered, as
azimuthal anisotropy is mainly caused by the orientation of steep slopes, as present in
higher and lower mountain ranges. Focusing on agricultural areas, predominantly located
on flat surfaces, the influence of the azimuth angle is substantially lower [71]. Via the
investigation of the influence of azimuthal angle over winter wheat fields, it was found
negligible within a dense time series [72].

4.1.4. Fourier Transformation

Incidence angle normalization adjusts the backscattering signal within the individual
scenes but does not address the different backscatter distributions of the four orbits, caused
by the varying influence of soil and plant parameters as well as crop row orientation on the
incidence angle effect [73–75]. Therefore, the time series still contains backscatter changes
unrelated to soil moisture, which need to be removed. Knowing the frequency of the signal
caused by the changing sequence of incidence angles in the backscatter time series and
determined by the Sentinel-1 revisit time of 12 days, the time series of σnorm

0 is transformed
into a Fourier Series excluding these frequencies by:

σF
0 (t) ∼

a0

2
+ ∑n

k=1(ak cos(kωt) + bk sin(kωt)) (2)

with
ω =

2π

T
(3)

a0 =
2
T

∫ T/2

−T/2
f(t)dt (4)

ak =
2
T

∫ T/2

−T/2
f(t) cos(kωt)dt (5)

bk =
2
T

∫ T/2

−T/2
f(t) sin(kωt)dt (6)
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For each year, the combined backscattering time series was transformed into a Fourier
Series, with T = 365 and n = 24, resulting in excluding signals with a frequency smaller
than 15 days.

4.1.5. Vegetation Correction

In terms of the first-order radiative transfer model, the total backscattering signal can
be written as the sum of the bare soil component and the vegetation affected scattering
component:

σF
0 =

(
fb × σF

soil

)
+ (1− fb )×

(
σF

veg + γ2σF
soil + σF

int

)
(7)

with σF
soil , σF

veg and σF
int being the soil surface, vegetation and vegetation—surface inter-

action backscattering component, respectively, γ2 being the vegetation attenuation factor
and fb being the bare soil fraction [76]. Applying a short-term change detection approach,
the ratio of two consecutive backscatter signals are as follows:

σF2
0

σF1
0

=
( fb × σF2

soil) + (1− fb )×
(

σF2
veg + γ2σF2

soil + σF2
int

)
( fb × σF1

soil) + (1− fb )×
(

σF1
veg + γ2σF1

soil + σF1
int

) (8)

For areas dominated by agricultural crop production, the surface changes from bare
soil conditions to fully vegetated conditions during one growing cycle. For agricultural
areas, this leads to different equations during bare soil and vegetation period, assuming
that the bare soil fraction changes from 0 to 1:

σF2
baresoil

σF1
baresoil

=
σF2

soil
σF1

soil
(9)

and
σF2

vegetation

σF1
vegetation

=
σF

veg + γ2σF2
soil + σF

int

σF
veg + γ2σF1

soil + σF
int

(10)

In this regard, a change in soil moisture leads to different changes in the total backscat-
ter signal when comparing bare soil and vegetation periods:

σF2
soil

σF1
soil

6=
σF

veg + γ2σF2
soil + σF

int

σF
veg + γ2σF1

soil + σF
int

(11)

Here, the related parameters of bare soil fraction fb , vegetation attenuation γ2, as
well as vegetation and vegetation-surface backscatter component σFourier

veg and σFourier
int ,

causing the difference in backscatter sensitivity of the total backscatter signal, are all
related to vegetation. For simplification, we therefore assume that a systematic change
in the backscatter ratios between bare soil and vegetation conditions can be observed
and described by a linear relationship using an appropriate estimator for the transition
between bare soil and vegetation conditions. Comparing the backscatter signals from both
agricultural areas as well as meadow areas for the Rur catchment, having similar temporal
soil moisture dynamics and soil moisture ranges the intensity of the co-polarized backscatter
signal was chosen as an estimator for differentiating the influence of vegetation on the
related backscatter ratios. As shown in Figure 5, the backscatter signal from agricultural
areas ranges between 0.025 and 0.200, with significantly higher values within the bare soil
period, compared to a range of 0.025 and 0.120 for the meadow stations. Especially during
the shooting-phase in spring, the increasing vegetational effect on the backscatter signal
leads to sharply declining total backscattering values, becoming partly uncorrelated to the
temporal behaviour of soil moisture. Looking at the agricultural areas, this results in overall
minima in backscattering values within the period between March and May, where the
influence of changing vegetation is high on the total backscattering signal, while the overall
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minimum of in-situ measured soil moisture is occurring during August and September.
As previous studies showed, the range of backscatter changes decreases with increased
vegetation. Indicating a decreasing sensitivity of the backscattering signal to changes in
soil moisture with growing vegetation, this relationship can be described by an empirical
function [77–79]. As the vegetation influence on the backscattering ratios can vary quite
significantly, depending on the crop type and the vegetation parameters (e.g., plant height,
plant geometry/structure, biomass, vegetation water content) [42,80], we choose a linear
regression on pixel-basis to remove this trend by:(

σF2
0

σF1
0

)detr.

=

(
σF2

0

σF1
0

)
−m

(
σF1

0 − σF1
mean

)
(12)

with m and σmean being the regression slope and mean backscattering value. Apply-
ing a pixel-based linear regression, no information about the specific crop type is used.
Nonetheless, it is assumed that all crops affect the corresponding backscatter ratios dur-
ing the transition from bare soil to fully vegetated conditions, and this is the dominating
factor for a systematic change in the backscatter ratios during the season, as vegetation
sensitive C-band is used. By resampling pixels to a coarser resolution of 200 m, each pixel
furthermore contains different plant types and their individually mixed vegetation-induced
attenuation behavior. The linear regression is only applied to stations with distinct bare soil
and vegetation conditions during the growing season, with a yearly backscattering range
greater than 0.10, which was empirically chosen for the study area.

Figure 5. Range and mean of co-polarized backscattering signals and CRNP soil moisture measure-
ments from each of four agricultural stations (A) and meadow stations (B) for the year 2020. As
shown, the backscattering values range between 0.025 and 0.200 at the agricultural stations, while
ranging between 0.025 and 0.120 at the meadow stations. Furthermore, the lowest backscattering
values at the crop dominated stations can be observed within the shooting-phase of the crops within
the months March to May, while being significantly biased against the observed soil moisture, which
has its lowest values in August.
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4.2. Soil Moisture Estimation
4.2.1. Alpha Approximation

By using a change detection approach on a dense time series of SAR data, the changes
in backscattering signal between two consecutive observations can be related to a change in
soil moisture, assuming that the temporal variability of this parameter is highest compared
to other surface parameters, such as soil roughness, vegetation height, vegetation water
content, and vegetation geometry, and the recording parameters frequency and incidence
angle are constant within the time series [81]. Thus, the ratio of two consecutive co-
polarized backscattering signals

(
σ
(2)
0 /σ

(1)
0

)
can be expressed as function of soil dielectric

constants
(

ε(1,2)
)

and incidence angle (θ) [82]:

(
σF2

0

σF1
0

)detr.

≈

∣∣∣∣∣∣
α
(2)
PP

(
ε(2), θ

)
α
(1)
PP
(
ε(1), θ

)
∣∣∣∣∣∣
2

(13)

with

|αVV(ε, θ)| =

∣∣∣∣∣∣ (ε− 1)
(
sin2θ − ε

(
1 + sin2θ

))
(ε cos θ +

√
ε− sin2θ)2

∣∣∣∣∣∣ (14)

For solving the equation, it can be resolved to zero, giving [81]:

∣∣∣α(1)PP(ε, θ)
∣∣∣−
√√√√σ

(1)
0

σ
(2)
0

×
∣∣∣α(2)PP(ε, θ)

∣∣∣ = 0 (15)

Applying this equation to all consecutive observation pairs of the SAR time series, an
underdetermined linear equation system can be created, with N unknown variables and
N−1 equations, depending on an initial soil moisture value to be analytically solvable [83]:



1 −

√(
σF1

0
σF2

0

)detr.
0

... 0 0

0 1 −

√(
σF2

0
σF3

0

)detr. ... 0 0

· · · · · · · · · . .
.

· · · · · ·

0 0 0
... −

√(
σFN−2

0
σFN−1

0

)detr.
0

0 0 0
... 1 −

√(
σFN−1

0
σFN

0

)detr.


×



∣∣∣α(1)PP(ε1, θ)
∣∣∣∣∣∣α(2)PP(ε2, θ)
∣∣∣

· · ·∣∣∣α(N)
PP (εN , θ)

∣∣∣

 =


0
0
· · ·
0

 (16)

In addition, in this study, it is proposed to rescale the backscattering signal to dB, as
this is expected to reduce possible biases in the final soil moisture estimates.

4.2.2. Soil Moisture to Dielectric Constant Inversion

As the alpha approximation method requires dielectric constant values (ε), the initial
in-situ volumetric soil moisture values (mv) need to be converted as well as the derived
dielectric constant values from alpha approximation must be converted back into soil
moisture. Using the soil texture class data set, this is done by applying the following
equation by Hallikainen et al. [53]:

ε = (a0 + a1S + a2C) + (b0 + b1S + b2C)mv + (c0 + c1S + c2C)m2
v (17)
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with ai, bi, ci being frequency dependent constants, while S and C are the sand and clay
percentages. In this study, we used constants for 5.3 GHz, matching Sentinel-1 C-band
frequency of 5.4 GHz, provided by Chen et al. [84]. In the last step, the minimum and 95th
percentile of retrieved soil moisture values are rescaled between the observed minimum
and maximum of the region retrieved from GLDAS dataset.

5. Results and Discussion

The effect of the individual processing steps on both the backscattering time series as
well as the resulting soil moisture estimations are presented and discussed in this chapter.
Focusing on the main processing steps relevant for preparing the multi-orbit SAR time
series for the short-term change detection approach under changing vegetational influence,
the incidence angle normalization, Fourier Series transformation, and vegetation correction
are discussed in detail. Finally, the soil moisture product is assessed in terms of its spatial
and temporal accuracy over the Rur catchment and the Apulian Tavoliere test site. For the
evaluation metrics, we applied both the squared Pearson correlation coefficient (R2) as well
as unbiased Root Mean Square Error (uRMSE) as described by Gruber et al., 2020 [85].

5.1. Incidence Angle Normalization

Looking at the average backscattering signals for each orbit exemplarily over the
Rur catchment, there is a clear trend visible of decreasing backscattering signals due to
increasing incidence angles (Table 3, Figure 6). The normalized signals do not show such
a trend for the respective orbits. The incidence angle normalization reduces the range
of observed median backscattering intensities related to changing incidence angles by
approximately 70% for the co-polarized signal. Nevertheless, the probability distribution
function shows that the different distributions of backscattering values, depending on the
incidence angle, are still present. While the orbits 88, 37 and 139 show a stronger bimodal
distribution in co-polarization, orbit 15 has a more down-skewed distribution. In this
regard, the influence of both incidence angle as well as ascending and descending orbit
is still present and is similar to previous studies [71,86]. As the influence depends on
surface and vegetation parameters, e.g., surface roughness, vegetation biomass, canopy
height, plant geometry and phenology, a crop specific normalization could improve the
results. Nevertheless, the results imply further processing steps to level out the different
backscattering signals for a short-term change detection approach.

Table 3. Comparison between original median backscatter values and incidence angle normalized
median backscatter values from individual orbits.

Median Backscatter Value Incidence Angle Normalized Median
Backscatter Value

Orbit 88 15 37 239 88 15 37 239

VV 0.147 0.112 0.107 0.091 0.111 0.095 0.105 0.106

5.2. Fourier Series Transformation

Although the time series was incidence angle normalized, co-polarized signals are still
differently affected by the incidence angle over the season. Using the CRNP station Aachen
(RU_C_006) as an example, the co-polarized signal is mostly affected during the non-
vegetation period from October to March, as observed in previous studies [86], resulting in
a soil moisture range of 0.75 m3/m3 for this period and 0.43 m3/m3 for the other months
(Figure 7).
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Figure 6. Comparison between original and incidence angle normalized backscattering intensity for
co-polarized channel, averaged over the whole study area. The incidence angles correspond to the
orbits 15, 37, 88 and 139. As shown, the median backscatter intensity for each orbit is leveled to a
common value after normalization, while the individual distribution of backscattering intensities is
still different for each orbit.

Figure 7. Comparison between in-situ and estimated soil moisture (SM) from incidence angle
normalized and Fourier Series (FS) transformed backscatter time series (A) as well as corresponding
boxplots (B) and the periodogram (C) for the CRNP station RU_C_006 for 2018.

Looking at the in-situ soil moisture range of these periods, the lowest variability
can be observed during the non-vegetation times from October to March with a mean
soil moisture range of 0.120 m3/m3, while more variations occur during the remaining
months with around 0.282 m3/m3. As the highest variability in estimated soil moisture
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is observable in the periods with the lowest in-situ measured soil moisture variability,
it is likely caused by the stronger incidence angle effect on non-vegetated surfaces, as
previously observed [87]. By calculating the Fourier Series from the normalized time series,
the influence of alternating incidence angle on the estimated soil moisture is reduced,
visible at the reduced variability looking at the related boxplots (Figure 7). To evaluate
the sensitivity of the chosen minimum frequency, soil moisture is estimated from Fourier
Series excluding frequencies higher than 10 days, 15 days, and 22 days. Here, both the
squared Pearson correlation coefficient (R2) as well as unbiased Root Mean Square Error
(uRMSE) [85] are improved due to the Fourier Series transformation. While the soil moisture
estimation from incidence angle normalized backscattering time series achieves an R2 of
0.10 with an uRMSE of 0.12 m3/m3, the estimated soil moisture from the Fourier Series
transformed time series performs better with R2 values between 0.20 to 0.23 and uRMSE
between 0.07 m3/m3 and 0.08 m3/m3. Looking at the soil moisture range derived from
Fourier Series transformed time series, for the non-vegetation period, the estimated soil
moisture values have a range of 0.23 m3/m3, 0.24 m3/m3, and 0.22 m3/m3, while for the
vegetation period they have a range of 0.22 m3/m3, 0.20 m3/m3, and 0.19 m3/m3. In this
regard, all Fourier Series transformed backscattering time series are able to mitigate the
effect of varying incidence angle. Especially during the non-vegetation period, the range
could be reduced by up to 70%, even though it is still two times higher than observed from
in-situ data. Regarding the sensitivity to the chosen maximum frequency, no significant
influence on the retrieved soil moisture is observed.

By excluding frequencies higher than the revision time, some information about soil
moisture is naturally lost in the backscatter time series. In principle, a diurnal cycle can
be observed for soil moisture, with decreasing soil moisture one to two hours before
sunrise and increasing soil moisture about two to four hours before sunset [88]. Since all
available orbits are used, the original SAR time series includes soil moisture information
from both morning (around 05:00 a.m. to 06:00 a.m.) and evening acquisitions (around
04:40 p.m. to 05:10 p.m.) for both study areas. Excluding high frequencies, information
about the sub-daily dynamics of soil moisture is therefore filtered out. Nevertheless, the
dynamics of changing vegetational water content and dew cycles during the day are also
filtered out, which are also affecting the backscatter signal of C-band. Excluding high
temporal frequencies also reduces the representation of short-term wetting and drying of
topsoil due to precipitation events, while retaining weekly and seasonal patterns. Since the
backscattering signal is not only affected by precipitation through soil moisture increase
but also by intercepting water, these effects are also reduced. In doing so, a tradeoff can be
made between losing temporal information about soil moisture and reducing backscatter
changes unrelated to soil moisture. Thus, the exclusion of frequencies higher than the
revisit time mainly links to the effect of the changing angle of incidence rather than the
loss of soil moisture information. Looking at the power spectral density, calculated using
Welch’s average periodogram [89], a small peak at 3 days frequency is observable, which
is the period between ascending and descending scenes (Figure 7). The next increase in
power compared to the in-situ measured soil moisture power spectral density curve is
starting from 5 days frequencies onward, which is again the period between ascending
and descending scenes, while it is also peaking at 6 days frequency, which is the period
between matching orbits of Sentinel-1 A and B. As the power spectral density of the Fourier
Transformed soil moisture time series is reduced for these frequencies, it is in line with
filtering out backscattering signals related to alternating incidence angles.

5.3. Vegetational Correction

The fraction of bare soil and vegetation affected backscatter as well as the changes in
the vegetation scatter contribution during the growing cycle lead to different correlations
between the change of backscatter and change of soil moisture. Using the co-polarized
backscatter signal as an estimator for bare soil and vegetation conditions during the growing
season for agricultural areas, the consecutive backscatter ratios are adjusted through a
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linear regression (Section 4.1.4). In this regard, the effect of increasing vegetation scattering
contribution within the total backscatter signal can be corrected. In Figure 8, the backscatter
ratios from Fourier Series transformed and vegetational adapted time series of CRNP
station SE_C_001 are shown. At the agricultural crop dominated SE_C_001 station, a small
positive trend is present, indicating a decline in backscatter ratios caused by increasing
vegetation scatter contribution. By removing this trend, the backscatter ratios related
to lower backscatter value are increased, while the ratios related to higher backscatter
values are decreased. By grouping the backscatter ratios into three vegetational periods
of no-vegetation (January, February, October, November, and December in light grey),
intermediate-vegetation (Mar, Apr, Aug, and Sep in dark grey), and full-vegetation cover
(May, June, and July in black), most of the increase in backscatter ratios fall into the
full-vegetation period. A similar correction can be observed within the non-vegetation
period, leveling down the related backscatter ratios. Normalizing the backscatter ratios to
the mean backscatter value, the ratios within the intermediate-vegetation period are not
changed considerably.

Figure 8. Comparison between backscatter ratios from Fourier Series (red) and vegetation corrected
backscatter time series for the CRNP station SE_C_001. The ratios for vegetation adapted time series
are grouped into three vegetation periods, while the ratios from Fourier transformed time series are
colored in red.

Figure 9 shows the soil moisture from Fourier Series transformed and vegetation
corrected backscatter time series, compared to the in-situ measured soil moisture for the
CRNP station RU_C_006. In general, an increase in estimated soil moisture can be observed
within the period from February to May, while a decrease is observed between June and
October. From November onward, both soil moisture estimations are aligning. This leads
to a better match between the in situ and estimated soil moisture and corrects for the
relative underestimation of soil moisture in the first half of the year, dominated by growing
vegetation, relative to the overestimation of soil moisture in the second half of the year,
characterized by vegetation maturing and drying. In this respect, the temporal course of
the measured and the estimated soil moisture are in better agreement. In particular, the
estimated soil moisture minimum of the vegetation-corrected time series is in August and
thus agrees with the values measured at the station and not in May as in the uncorrected
soil moisture estimate. For this example, the soil moisture estimation without vegetation
correction achieves an R2 of 0.54 with an uRMSE of 0.044 m3/m3, while the vegetation
corrected ones lead to an increase in R2 to 0.80 with an uRMSE of 0.029 m3/m3.
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Figure 9. Comparison between vegetation corrected and non-corrected estimated soil moisture to
in-situ measured soil moisture at the CRNP station RU_C_006.

5.4. Effect of Individual Processing Steps on Soil Moisture Estimation

To evaluate the influence of the individual processing steps, the resulting soil moisture
values are compared with the in-situ measured values from the eight CRNP stations within
the Rur catchment as well as six capacitance station at 0.025 m and 0.1 m soil depth within
the Apulian Tavoliere site. To relate the estimated soil moisture to the CRNP data and
capacitance measurements, the mean estimated soil moisture around each location within
a diameter of 200 m was calculated and was chosen to match the detection radius of
the CRNP stations. We focus on the main processing steps that were used to create the
temporally and spatially high-resolution time series from multi-orbit Sentinel-1 scenes. In
this regard, the estimated soil moisture from incidence angle normalisation (IA), incidence
angle normalisation and Fourier Series (IA + FS) and incidence angle normalisation, Fourier
Series and vegetational adapted (IA + FS + VA) time series are compared (Tables 4 and 5).
Since the agricultural crops at the respective CRNP sites change annually in some cases, the
methods are evaluated for the individual years 2018, 2019 and 2020, using the coefficient of
determination (R2) as well as the unbiased Root Mean Square Error (uRMSE). It needs to
be mentioned that by comparing soil moisture estimations from C-band SAR observations
to in-situ measurements from CRNP station, different soil depths are considered. While
C-band only represents the first upper centimeters of soil, CRNP represents a soil depth
between 15 cm to up to 70 cm, depending on the soil moisture condition. In general, a strong
correlation between surface and root zone soil moisture was observed, when comparing
SMOS near-surface soil moisture measurements to root-zone in-situ data [90]. Nonetheless,
under extreme dry conditions, remotely sensed soil moisture shows a reduced variability,
due to the limited storage capacity of the upper soil layer compared to the root zone soil
moisture [91]. On the other hand, when comparing point data from capacitance sensors
from 0.025 m and 0.1 soil depths, the spatial soil heterogeneity can result in soil moisture
values, which are not representative for the area covered by the radar signal. Especially
when losing contact to the surrounding soil, capacitance probes can lead to unreasonable
values. In this regard, CRNP measurements are more suitable, providing an integrated
soil moisture value over its footprint area. However, in this study, no significant difference
between CRNP and capacitance measurements were found, regarding the performance of
the introduced soil moisture estimation, whether due to different soil depth nor different
spatial footprints of both in-situ instruments.
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Table 4. Comparison between overall soil moisture retrievals from incidence angle normalized (IA),
IA and Fourier Series transformed (IA + FS), and IA + FS and vegetational adapted (IA + FS + VA)
SAR time series for each catchment and soil depth, with better performance indicated by a darker
background color.

Mean R2 Mean uRMSE
Test Site IA IA + FS IA + FS + VA IA IA + FS IA + FS + VA

20
18

Rur 0.36 0.47 0.58 0.056 0.052 0.046
Apulian Tavoliere 0.025 m 0.36 0.39 0.44 0.058 0.058 0.056

Apulian Tavoliere 0.1 m 0.37 0.39 0.42 0.060 0.059 0.057

20
19

Rur 0.27 0.48 0.55 0.058 0.045 0.042
Apulian Tavoliere 0.025 m 0.15 0.16 0.49 0.081 0.081 0.059

Apulian Tavoliere 0.1 m 0.36 0.36 0.39 0.065 0.067 0.066

20
20

Rur 0.47 0.57 0.68 0.054 0.047 0.041
Apulian Tavoliere 0.025 m 0.19 0.17 0.29 0.074 0.069 0.063

Apulian Tavoliere 0.1 m 0.29 0.27 0.39 0.069 0.066 0.063

Table 5. Statistical comparison between the individual processing steps in regard to the correlation
and error of the related estimated and in-situ measured soil moisture for each individual station
within the Rur catchment. Darker colors indicate a better performance.

R2 uRMSE [vol. %]

CRNP IA IA + FS IA + FS + VA IA IA + FS IA + FS + VA SM
Range

VV
Range

C
ro

p
do

m
in

at
ed

20
18

RU_C_006 0.12 0.23 0.51 6.54 6.14 4.67 26.12 0.11
RU_BCK_002 0.42 0.23 0.52 5.76 6.43 5.03 26.21 0.20
ME_BCK_001 0.28 0.38 0.56 5.74 5.36 4.47 23.40 0.14

SE_C_001 0.46 0.45 0.60 5.55 5.54 4.79 26.10 0.15

20
19

RU_C_006 0.37 0.38 0.51 4.25 4.51 3.85 21.69 0.11
RU_BCK_002 0.29 0.47 0.60 5.70 4.92 4.35 26.24 0.20
ME_BCK_001 0.18 0.39 0.52 5.89 5.02 4.53 23.55 0.17

SE_C_001 0.06 0.36 0.53 9.10 4.02 3.33 19.45 0.16

20
20

RU_C_006 0.54 0.54 0.80 4.21 4.43 2.89 23.14 0.16
RU_BCK_002 0.66 0.44 0.82 4.50 5.41 3.02 24.65 0.20
ME_BCK_001 0.62 0.42 0.87 4.38 5.44 2.66 24.99 0.16

SE_C_001 0.05 0.67 0.39 10.64 6.26 8.02 37.13 0.17

M
ea

do
w

do
m

in
at

ed

20
18

RU_C_005 0.61 0.73 0.73 3.66 3.12 3.10 22.23 0.07
RU_C_007 0.28 0.65 0.65 6.55 5.34 5.34 30.86 0.08
RO_C_001 0.36 0.53 0.52 5.48 4.86 4.87 30.88 0.08

RU_BCDKR_001 0.31 0.58 0.58 5.61 4.46 4.44 28.73 0.09

20
19

RU_C_005 0.45 0.63 0.63 4.32 3.82 3.82 19.49 0.06
RU_C_007 0.31 0.56 0.56 5.52 4.46 4.43 24.20 0.08
RO_C_001 0.25 0.51 0.51 5.93 4.78 4.81 25.66 0.05

RU_BCDKR_001 0.24 0.55 0.55 5.79 4.77 4.76 21.38 0.05

20
20

RU_C_005 0.55 0.76 0.76 4.11 3.22 3.21 22.35 0.08
RU_C_007 0.36 0.66 0.73 6.19 4.47 4.12 27.73 0.10
RO_C_001 0.48 0.51 0.51 4.88 4.76 4.79 24.52 0.07

RU_BCDKR_001 0.49 0.55 0.55 4.27 3.91 3.91 24.26 0.08

Using only the incidence angle normalisation, both low to high correlations between
in-situ measured and estimated soil moisture are achieved for the Rur catchment as well as
Apulian Tavoliere site. In general, the Rur catchment had mean R2 values of 0.36–0.47 and
mean uRMSE of 0.054–0.058 m3/m3 for the individual years (Table 4).

Almost no correlation is observed at the CRNP station SE_C_001 in 2019 and 2020
with R2 of 0.06 and 0.07, while the highest correlations are observed in 2020 at the CRNP
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stations RU_BCK_002 and ME_BCK_001 with R2 values of 0.66 and 0.62, respectively.
The highest uRMSE is observed in 2019 and 2020 at station SE_C_001 with 0.091 m3/m3

and 0.106 m3/m3, respectively. The lowest uRMSE values are observed in 2020 at the
station RU_C_006 with 0.042 m3/m3 and RU_BCDKR_001 with 0.043 m3/m3 (Table 5). At
the Apulian Tavoliere site, mean R2 values of 0.15–0.36 and mean uRMSE of 0.058–0.081
m3/m3 for a soil depth of 0.025 m, and mean R2 values of 0.29–0.37 and mean uRMSE of
0.060–0.069 m3/m3 for a soil depth of 0.1 m are achieved (Table 4). The lowest correlation
is found at 0.025 m soil depths at station 9 and 5 in 2020, with R2 values of 0.01 and 0.09,
respectively, while the highest correlations can be found at 0.1 m soil depth at station 10
with 0.68 in 2019 and station 5 with 0.51 in 2018. Here, the uRMSE is highest in 0.025 m soil
depth at station 10 in 2019 with 0.112 m3/m3, while it is lowest at the same year and station
but in 0.1 m soil depth with 0.044 m3/m3 (Table 6). Even though this could be caused by
differing soil moisture within the related soil depths, most likely it is due to corrupted
measurements, as other stations do not show such a significant difference.

Table 6. Statistical comparison between the individual processing steps in regard to the correlation
and error of the related estimated and in-situ measured soil moisture for each individual station at
the Apulian Tavoliere site. Darker colors indicate a better performance.

Soil Depth 0.025 m 0.1 m
R2 uRMSE [vol. %] R2 uRMSE [vol. %]

TDR IA IA + FS IA + FS
+ VA IA IA + FS IA + FS

+ VA IA IA + FS IA + FS
+ VA IA IA + FS IA + FS

+ VA

20
18

Station_2 0.42 0.50 0.30 5.04 4.65 5.42 0.33 0.42 0.30 6.64 6.15 7.06
Station_3 0.35 0.34 0.39 5.38 5.77 5.61 0.28 0.27 0.36 5.71 6.09 5.74
Station_5 0.43 0.44 0.60 6.73 6.69 5.82 0.51 0.47 0.54 5.46 5.70 5.32
Station_7 0.41 0.42 0.53 6.00 6.10 5.25 0.45 0.43 0.51 5.94 6.16 4.48
Station_9 0.23 0.30 0.47 5.52 5.11 5.28 0.32 0.44 0.41 5.92 5.46 5.97
Station_10 0.36 0.36 0.39 6.33 6.39 6.26 0.33 0.33 0.37 5.96 6.02 5.90

20
19

Station_2 0.14 0.15 0.39 7.50 7.49 5.92 0.17 0.20 0.46 7.30 7.05 5.96
Station_3 0.36 0.35 0.55 5.91 6.16 4.79 0.33 0.34 0.60 6.04 6.18 4.49
Station_5 0.10 0.11 0.21 9.31 9.36 8.46 0.23 0.23 0.10 7.23 7.38 8.58
Station_7 0.14 0.15 0.79 8.15 8.06 3.64 0.55 0.56 0.37 6.35 6.33 7.61
Station_9 0.10 0.11 0.34 6.37 6.45 5.96 0.21 0.19 0.42 8.07 8.26 6.78
Station_10 0.08 0.09 0.64 11.24 11.32 6.49 0.68 0.64 0.40 4.34 4.89 6.26

20
20

Station_2 0.13 0.17 0.02 7.12 6.28 8.52 0.12 0.16 0.49 7.24 6.38 5.30
Station_3 0.13 0.05 0.30 7.97 7.90 6.03 0.43 0.34 0.43 6.03 5.92 5.32
Station_5 0.04 0.03 0.19 8.17 7.67 6.23 0.20 0.20 0.22 6.47 5.91 5.66
Station_7 0.37 0.41 0.46 6.75 5.79 4.93 0.50 0.44 0.43 6.26 6.22 5.93
Station_9 0.01 0.01 0.50 8.55 8.04 5.52 0.34 0.28 0.52 7.26 7.46 5.67
Station_10 0.45 0.38 0.26 6.01 5.84 6.58 0.16 0.15 0.25 8.40 7.89 7.18

As described in Section 5.1, the influence of the alternating incidence angles on the
backscattering signal is still present in the incidence angle normalised time series, affecting
the resulting soil moisture estimation. Grouped in the three different vegetation periods,
the different range of in-situ measured and estimated soil moisture is displayed (Figure 10).
For the Apulian Tavoliere site at 0.025 m soil depth, the estimated soil moisture range
matches the observed one. However, for the Rur catchment, there was an overestimation
of the minimum soil moisture, while for the Apulian Tavoliere site at 0.1 m, there is an
underestimation. This suggests that the scaling from GLDAS may not be optimal but can
be further improved. Furthermore, the estimated soil moisture still showed extreme low
and high values due to the incidence angle still effect present in the backscatter time series.
Crop-dominated stations showed significant variation in correlation and error between
individual years due to the influence of incidence angle, which depends on plant geometry,
plant phase, and vegetation water content, changing both between the year as well as within
a year [72,84]. In contrast, the soil moisture estimation at the meadow station (RU_C_005)
is stable over the years, with only slight changes in correlation and uRMSE. Dominated by
meadows with short grass vegetation, it results in a more stationary incidence angle effect
during the growing period. As the incidence angle effect is in general not as prominent due
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to the short vegetation cover, for these types of landcovers, an incidence angle normalized
backscattering time series from multi-orbit Sentinel-1 scenes can already estimate the soil
moisture sufficiently during the whole year.

Figure 10. Comparison between incidence angle normalized soil moisture estimation and in-situ
measured soil moisture (SM) from all eight CRNP stations (A), and all six capacitance stations at
0.025 m (B) and 0.1 m (C) soil depth, grouped into the three vegetational periods.

The soil moisture estimation from incidence angle normalized and Fourier Series
transformed time series (IA + FS) generally improves in terms of both correlation coefficient
and uRMSE. The mean R2 from individual CRNP stations is between 0.47 and 0.57, while
the corresponding uRMSE values range between 0.045 m3/m3 and 0.052 m3/m3 (Table 4).
The strongest improvement is observed in 2019, with a 79% increase in R2 and 22% decrease
in uRMSE. However, Fourier transformation led to reduced correlations in four cases, all
being observed at crop dominated stations (Table 5). At the Apulian Tavoliere site, the
mean R2 from the individual capacitance stations at 0.025 m range between 0.16 and 0.39
with corresponding uRMSE between 0.058 m3/m and 0.081 m3/m3. At 0.1 m soil depth,
R2 values between 0.27 and 0.39 with corresponding uRMSE values between 0.059 m3/m3

and 0.067 m3/m3 are achieved.
Focusing on the alternating incidence angles, the Fourier Series transformation further

reduces its effect on the resulting soil moisture. The minimum and maximum estimated
soil moisture values at the CRNP stations in the three vegetation periods range from
0.186 m3/m3 to 0.563 m3/m3, from 0.162 m3/m3 to 0.481 m3/m3, and from 0.145 m3/m3 to
0.412 m3/m3 (Figure 11). While still exceeding the observed range of soil moisture values
in the non-vegetation period, there is a clear reduction compared to the range of IA soil
moisture estimation. The transformation into the Fourier Series is especially addressing
the maximum soil moisture values. Looking at the varying correlation between in-situ
measured soil moisture and estimated soil moisture for the individual years at each CRNP
station, the additional Fourier Series transformation could reduce the observed range of R2

during the observation period at each station in the mean by around 16%, compared to the
IA soil moisture. At the Apulian Tavoliere site, a similar behavior can be observed, with a
decrease in the upper extreme soil moisture values.
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Figure 11. Comparison between incidence angle normalized and Fourier Series transformed soil mois-
ture estimation and in-situ measured soil moisture (SM) from all eight CRNP stations (A), and all six
capacitance stations at 0.025 m (B) and 0.1 m (C) soil depth, grouped into three vegetational periods.

The addition of vegetation correction improves soil moisture estimation at the CRNP
stations with mean R2 values ranging between 0.55 and 0.68 and corresponding uRMSE
values between 0.041 m3/m3 and 0.046 m3/m3. The improvements in R2 range from 15%
to 105% compared to the previous soil moisture estimations without vegetation correction,
and uRMSE is reduced by up to 27%. The soil moisture estimations for the soil depth
of 0.025 m and 0.1 m at the Apulian Tavoliere site improved in general as well. For the
0.025 m soil depth, R2 values range between 0.29 and 0.49, with the corresponding uRMSE
between 0.056 m3/m3 and 0.063 m3/m3. For the 0.1 m soil depth, R2 values range between
0.39 and 0.42, with corresponding uRMSE between 0.057 m3/m3 and 0.066 m3/m3. In this
regard, the improvements ranged from 14% to 217% in R2 and from 1% to 28% in uRMSE
compared to the backscatter time series without vegetational correction.

Regarding the correlation coefficient at the crop dominated stations, the vegetation
correction improved the observed R2 values in all but one case (Table 5). At station
SE_C_001 in 2020, the IA + FS soil moisture estimations are performing better with an R2

of 0.67 compared to 0.39 from the IA + FS + VA soil moisture estimation. For uRMSE, a
similar behavior is present at that station. At the Tavoliere site in Puglia, the increase in
performance due to vegetation adaptation is most evident when compared to soil moisture
values at 0.025 m depth, while it is not as pronounced at 0.1 m soil depth. Looking at the
meadow dominated CRNP stations, the correlations between IA + FS and IA + FS + VA are
mostly the same, as the vegetational correction is not applied but for one station. Having a
backscatter intensity range greater than 0.10, the vegetation correction was applied and
increased the correlation from R2 = 0.66 to R2 = 0.73 at station RU_C_007 in 2020. As the
footprint of the CRNP stations as well as the 200 m pixels incorporates multiple agricultural
fields, a change in the field diversity could be responsible for the change in backscatter
range compared to the previous years.

With an overall R of 0.68, R2 of 0.46 and uRMSE of 0.056 m3/m3 at the Rur catch-
ment, as well as an overall R of 0.56 (0.63), R2 of 0.31 (0.40) and uRMSE of 0.065 m3/m3

(0.064 m3/m3) at the Apulian Tavoliere site at 0.025 m (0.1 m) soil depth, the proposed
method for estimating soil moisture achieves consistent results (Figure 12). Here, the
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highest correlation can be observed at the CRNP stations, followed by the capacitance
station at 0.1 m soil depth. The performance for the shallow 0.025 cm soil depth is lower,
likely being caused by the higher spatial variability of surface soil moisture. As topsoil
measurements tend to be more heterogeneous and may lack spatial representativeness for a
40.000 m2 pixel, while measurements from deeper soil layers, being less variable, represent
more the average dynamics and achieve better correlations with spatial SAR measurements.
On the other hand, this could also be caused by the exclusion of high frequencies from
the Fourier transformed backscatter time series. As the topsoil shows higher temporal soil
moisture dynamics, the low-pass filtering effect could have resulted in lower correlation
for this soil moisture depth, even though it is the most comparable in terms of penetration
depth of the SAR signal. Reflecting more weekly and seasonal changes, soil moisture
measurements from deeper depth could thus have a higher correlation to the low-passed
SAR time series. Since at the CRNP station, both the areal measurement of soil moisture
and the low-frequency dynamics of soil depth from 0.15–0.70 cm are combined, this could
possibly be the reason for the highest correlation and the lowest uRMSE between estimated
and in-situ measured soil moisture observed here.

Figure 12. Density scatter plot between estimated and in-situ measured soil moisture from all eight
CRNP stations (A) and all six capacitance stations for 0.025 m (B) and 0.1 m soil depth (C) for the
period 2018 to 2020.

For comparison, we also calculated the correlation and error between used GLDAS
and in-situ measured soil moisture derived from CRNP stations in the Rur catchment.
Evaluating GLDAS for all stations and all years in the Rur catchment, an R value of 0.69 with
an uRMSE of 0.061 m3/m3 was achieved, compared to R = 0.68 and uRMSE = 0.056 m3/m3,
achieved with the newly proposed approach. In this sense, similar results were obtained,
with a significantly higher spatial resolution (GLDAS = 27 km, our approach 0.2 km). The
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overall performance at the Apulian Tavoliere site is also comparable to the published
SMOSAR soil moisture product validation study over seven soil moisture test sites located
across Europe, North America, and Australia for the period between 2015 to 2018 [29].
They were using only a single orbit time series with 1068 individual scenes to estimate
soil moisture with a spatial resolution of 1 km and a temporal resolution of 6 to 12 days.
Validated against the spatial average of the Apulian site on the network scale, an R value of
0.71 with an RMSE of 0.064 m3/m3 was achieved. As the spatial averaging increases the
methods sensitivity to soil moisture, averaging our final soil moisture product over the
six capacitance stations further increases the correlation, R, to a value of 0.68 (0.69) with
an RMSE = 0.050 m3/m3 (0.053 m3/m3) for the soil depth of 0.025 m (0.1 m). Spatially
averaging across the eight CRNP stations in Rur catchment on a daily basis, R can be
further increased to a correlation of R = 0.79 with a RMSE = 0.039 m3/m3, while having
709 averaged soil moisture estimations. In this respect, the proposed method can further
improve the short-term change detection approach, by using smaller temporal intervals
between each observation. Furthermore, by applying vegetational correction, the influence
of the changing scattering contribution of vegetation can also be managed.

As shown, major improvements were achieved in the intermediate and full vegeta-
tional period, being addressed by the vegetational correction. In this regard, the presented
method is able to estimate soil moisture also during the vegetation period, by reducing the
effect of varying incidence angles and vegetation scattering using the temporally dense
Sentinel-1 co-polarized C-band time series. It enables a continuous soil moisture monitoring
of agricultural areas during the whole crop cycle, representing soil moisture patterns on
a regional scale, and thus can fill the gap of recent SAR based soil moisture products, re-
garding their lacking spatial or temporal resolution for a regional soil moisture monitoring.
By using the co-polarized backscatter signal as an indicator for the vegetational influence
on the related backscatter ratios for agricultural areas, which have a distinct bare soil and
vegetation cover period, the limitations of C-band vegetation sensitivity, leading to biased
soil moisture information within the backscattering signal, can be addressed. The observa-
tion gaps, which occur when masking out pixels dominated by volume backscattering as
proposed by the SMOSAR soil moisture method, can be avoided, especially as these gaps
occur during the most important phenological stages (shooting, flowering, and ripening of
crops) in the growing period. While being able to improve soil moisture estimation under
changing vegetation conditions in general, the retrieval of soil surface information using
C-band is physically limited. In this regard, depending on the crop type and the vegeta-
tion density, for some periods during the growing cycle, C-band can become completely
insensitive to soil moisture [42]. Even though the resampling to a coarser resolution of
200 m averages out the influence of vegetation, there might be pixels, where no correlation
between a change in backscatter and a change in soil moisture is present. Hence, further
research needs to be carried out, developing a (multi-sensor) method more adapted to the
individual crop types and having deeper penetration capabilities through the canopy.

While the method performs well in both the overall mean and the growing season, the
lowest correlations and highest uRMSE are observed in the non-growing season, where wet
soil moisture conditions are prevailing. As previous studies show, the alpha approximation
method has the highest bias within the soil moisture range from 0.30–0.55 m3/m3, requiring
further improvements especially for wet soil moisture conditions [29]. In addition, the
assumption, that the initial soil moisture condition is on the field capacity level is not fully
matching for the years 2019 and 2020 at the Rur catchment, as the prevailing drought
conditions in these two years are causing soil moisture values lower than field capacity in
both January months. By using adapted initial soil moisture conditions, the problem of
setting appropriate initial soil conditions should be addressed. In this regard, an iterative
approach, as proposed by Balenzano et al., 2011 [81], could mitigate the effect of the
influence of pixels not suitable to be reference for the initial soil moisture. Using a moving
window across the time series, soil moisture is estimated for a shorter period, while the
mean of the resulting soil moisture estimation serves as initial soil moisture values for the
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further iteration. By limiting the calculated mean values of soil moisture to the maximum
value derived from the field capacity when used as initial soil moisture in the next iteration,
the high number of outliers can also be addressed. Nevertheless, this comes with an
increase in computational costs, reducing the applicability of the method for regional
monitoring. Here, further research is needed, optimizing the iteration period regarding its
improvement and computational time.

6. Conclusions

The study presents a methodology for estimating volumetric soil moisture content
[m3/m3] under changing vegetation using multi-orbit co-polarized Sentinel-1 C-band
time series. The method was tested using TERENO sites in the Rur catchment, Germany
(Figure 13) as well as the Apulian Tavoliere site, Italy. The high revisit time of the Sentinel-1
A and B satellites enables a temporal resolution of the resulting soil moisture product
of one to two days when using all available orbits. The method was evaluated using a
spatial resolution of 200 m in accordance with the footprint radius of the eight in-situ
soil moisture sites collecting cosmic ray neutron probe (CRNP) measurements for the
years 2018 to 2020. In addition to the SAR recordings, auxiliary data of soil texture and
field capacity were used as initial starting value and soil moisture to dielectric constant
conversion. The presented method is based on a change in detection approach, using the
short-term change between two consecutive SAR recordings caused solely by changes in
soil moisture. The influence of other surface parameters such as soil roughness, vegetation
biomass, plant height, or phenological stage can be disentangled from the change in
backscattering signal to some extent, as they are associated with a slower rate of change.
In this regard, establishing a temporal high resolution time series from multiple orbits
increases the validity of this algorithm pre-requisite. To reduce the effect of alternating
incidence angles on the backscattering signal introduced by using the multi-orbit time
series, an incidence angle normalization was applied, and an additional Fourier Series
transformation was developed. Furthermore, the effect of changing vegetation scattering
contribution on the backscattering signal was addressed. The backscatter ratios were
corrected for vegetation influence based on the related co-polarized backscatter time series
as an indicator for the vegetation backscatter contribution at pixel scale. In the study, the
effect on the individual processing steps on the backscattering time series as well as on the
resulting soil moisture estimation are analyzed and discussed. Furthermore, the final soil
moisture product was validated with in-situ measurements for two different sites with two
different in-situ measuring techniques as well as three different soil depths.

Each of the applied preprocessing steps significantly increased the overall fitness of
the estimated soil moisture, both in terms of correlation coefficient as well as regarding
uRMSE. While the incidence angle normalization led to an alignment of the mean backscat-
tering values between individual orbits, the effect of incidence angle is still present in the
individual backscattering signal distribution. By using the Fourier Series transformation,
dismissing frequencies higher than the revisit time of the Sentinel-1A and Sentinel-1B, the
change in backscattering signal caused from varying incident angles, can be excluded,
resulting in higher correlation as well as reduced uRMSE at most individual CRNP and
capacitance stations. Adding the newly developed vegetation correction further increase
the correlation between estimated and in-situ measured soil moisture, especially at the crop
dominated stations.

To provide an outlook, further research should be carried out adapting the initial
soil moisture condition for drought periods as well as evaluating other globally available
datasets for this purpose. Especially, the assumption that soil moisture conditions in the Rur
catchment in January are near the field capacity level is not true throughout the drought
years of 2019 and 2020. Furthermore, the criteria for applying the vegetational adaption was
chosen empirically based on the characteristics of the study areas. For a global application,
further research should be carried out on establishing a more generalized criterion.
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Figure 13. Example of soil moisture map for the Rur catchment for 1 June 2019.

By establishing the soil moisture retrieval algorithm within a cloud-processing envi-
ronment, the SAR-based soil moisture estimation takes a step towards a globally applicable.
The scaling of the obtained soil moisture information in terms of adaptable areas, time
periods as well as spatial and temporal resolution leads to improvements in its usability
within the different operational sectors, e.g., for management decisions in agriculture on a
field basis or for drought monitoring on a regional level. Moreover, the temporal resolution
of Sentinel-1 satellite recordings will continuously improve with the upcoming launches
of Sentinel-1C and Sentinel-1D, despite the failure (23 December 2021) of Sentinel-1B. In
this regard, high temporal resolution time series of 1 to 2 days using only single orbit
acquisitions as well as sub-daily time series using all available orbits for estimating soil
moisture will be possible in the near future. A combination with upcoming launches of
L-band SAR missions like NISAR, ALOS-4 and ROSE-L and Tandem-L as well as P-band
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missions like BIOMASS will offer great potential for improving soil moisture estimation
under dense vegetation cover as well as for different soil depths.
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