ID: 570323

Knowledge for Tomorrow

Aeroelastic Design of a Highly-Flexible Wing using a Simplified Composite Optimization Approach within cpacs-MONA

DLRK 2022 – 27th-29th September – Dresden

Matthias Schulze, Kjell Bramsiepe, Vega Handojo, Thomas Klimmek, Kautuk Sinha

German Aerospace Center (DLR) Institute of Aeroelasticity (AE) Göttingen, Germany

The different Wing Models

What is the impact on:

- Stiffness?
- Structural mass?
- Eigenfrequencies?
- Aeroelastic stability?
 - Loads?

Model A SHELL-Elements: Aluminum "aluminum"

Aeroelastic Structural Design Tool

Aircraft Configuration

www.DLR.de • Folie 7

Simplified Composite Optimization

"Black Metal Approch"

- Read out the laminate layout (thickness, material, orientation)
- Convert the layout into 2D-characterisitcs (ABD-matrix)
 - PSHELL/MAT2 (linear anisotropic material)

Optimization Model

- Design variables: Thickness of the CQUAD4-elements
 - ribs, spar web, skin covers
- Constraints: Strain allowables
- Objective: Minimum weight of wing-box

Allowables	Model B	Model C
Max. strain	4.0e ⁻³	6.0e ⁻³
Min. strain	-3.5e ⁻³	-5.0e ⁻³
Shear strain	8.0e ⁻³	12.0e ⁻³

Simplified:

- No lamination parameter optimization
- No aeroelastic tailoring

25

20

Eigenfrequency [Hz] 0 5

5

0

J	Elgenmode		Model R		
	1 st sym. wing bending	-22%	1.25 Hz	-17%	
	1 st sym. wing torsion	+10%	7.68 Hz	-24%	
•••• Model A — Model B — Model C					
5 10 15 20 25 30	Mass case: OEM 35 40 45 50	P			
Mode No. [-]					
	112 Same Jun	202			

Displacements / Stiffness

DLR

Dimensioning Load Cases

Pull-Up Push-Down Roll Landing Gust

Thickness Distribution and Masses

Flutter Check – Stability Curves

Mass case: MCRUI Payload: 100%, Fuel: 25%

Flutter Modes – *highly-flexible*

Smoothing

instabilities

Without

MSC Nastran gust analysis – *false friend?*

MSC NASTRAN Solution 146

- Define gust load in **time domain** (1-cos) 1.
- 2. Transform gust load into **frequency domain** (FFT)
- Solve the equation of motion in modal coordinates (frequency domain) 3.
- Transorm the responses into the **time domain** (iFFT) 4.

Snapshot

Conclusion

Aeroelastic structural design of an aircaft configuration with three different wing charateristics due to a change in material properties has been presented.

What is the impact on:

- Stiffness?
- Structural mass?
- Eigenfrequencies?
- Aeroelastic stability?
 - Loads?

Gust loads **not yet reliable** for the higly-flexible wing...

Composite wings are not always ,more flexible'.

Mass of composite wings depend on **strain allowables**.

Modal parameters depend on **allowable stains**.

Highly-flexible wings are **prone to flutter**.

ID: 570323

Questions?

.Luft- und Raumfahrt - gemeinsam forschen und nachhaltig gestalten