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Abstract

The multipath propagation of the radio signal was considered a problem for
positioning systems that had to be eliminated. However, a groundbreaking new
approach called multipath assisted positioning caused a paradigm shift, where mul-
tipath propagation improves the positioning performance. Moreover, the multipath
assisted positioning algorithm called Channel-SLAM shows the possibility of using
a single physical transmitter in a multipath environment for positioning. In this
thesis, I open a discussion on some problems that have vital importance for multi-
path assisted positioning algorithms with a focus on pedestrian positioning. Using
the idea of multipath assisted positioning, I present a single frequency network
positioning algorithm. I evaluated the single frequency network-based positioning
algorithm for positioning in a real scenario using a terrestrial digital video broad-
casting transmission. I propose a novel pedestrian transition model utilizing the
inertial measurements from a handheld inertial measurement unit. The proposed
pedestrian transition model improves the precision and reliability of the Channel-
SLAM. Comparing the proposed transition model with the Rician transition model
previously used in Channel-SLAM quantifies the performance improvement. This
thesis proposes a joint data association technique that overcomes the strong de-
pendence on the radio channel estimation algorithm used in Channel-SLAM. The
joint data association allows reusing the previously observed virtual transmitters
after an outage of multipath component tracking. The evaluation based on the
walking pedestrian scenario shows that the joint data association algorithm pro-
vides superior positioning precision. The virtual transmitter position estimation
yields a significant computational load in Channel-SLAM. I propose a method
that represents the virtual transmitter by a Gaussian mixture model and learns
its parameters. The evaluation shows that the proposed method outperforms the
previous approach while decreasing the computational load. Also, the current
methods for radio channel estimation yield a considerable computational load that
prohibits a real-time deployment. The thesis investigates the possibility of using
artificial neural networks trained to estimate the number of multipath components
and corresponding delays in a noisy measurement of a channel impulse response.
The artificial neural network-based delay estimator provides a superresolution per-
formance and faster runtime than the classical approaches. The precision of the
trained artificial neural network architecture is evaluated and compared to the
Cramer-Rao lower bound theoretical limit and classical channel estimation algo-
rithms.

Keywords: Channel-SLAM, convolutional neural network, data association, Gaus-
sian mixture model, line spectral estimation, machine learning, multipath assisted
positioning, multipath radio channel, multiple hypothesis tracking, noise regular-
ization, particle filter, pedestrian navigation, positioning, radio channel parameter
estimation, signals of opportunity, ultra-wideband technology.
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Abstrakt

Vícecestné šíření rádiového signálu bývalo považováno za problém pro určování
polohy, který bylo nutné potlačit. Avšak převratný nový přístup určování polohy
s využitím vícecestného šíření způsobil posun paradigmatu, kdy vícecestné šíření
vylepšuje přesnost určování polohy. Algoritmus určování polohy s využitím více-
cestného šíření nazvaný Channel-SLAM navíc ukazuje možnost použití jediného
fyzického vysílače v prostředí s vícecestným šířením pro určování polohy. V této
práci otevírám diskusi k některým problémům, které mají zásadní význam pro al-
goritmy určování polohy s využitím vícecestného šíření se zaměřením na určování
polohy chodců. S využitím myšlenky určování polohy pomocí vícecestného šíření
předkládám algoritmus určování polohy v jednofrekvenční síti. Navržený algorit-
mus určování polohy v jednofrekvenční síti jsem vyhodnotil v reálném případě
s využitím pozemního digitálního vysílání televize. Dále v práci navrhuji pohy-
bový model pro chodce využívající inerciální měření z příruční inerciální jednotky.
Navržený pohybový model pro chodce vylepšuje přesnost a spolehlivost určování
polohy pomocí Channel-SLAM. Poskytnuté porovnání s Riceho pohybovým mod-
elem používaným v Channel-SLAM kvantifikuje zlepšení přesnosti navrženým po-
hybovým modelem. Tato práce navrhuje asociaci dat založenou na sdružené hus-
totě pravděpodobnosti, která překonává silnou závislost Channel-SLAM na algo-
ritmu pro odhad a sledování parametrů rádiového kanálu. Asociace dat založená na
sdružené hustotě pravděpodobnosti umožňuje opětovné využití dříve pozorovaných
virtuálních vysílačů po výpadku sledování komponent vícecestného šíření. Vyhod-
nocení experimentu reálné chůze chodců ukazuje, že algoritmus asociace dat na bázi
sdružené hustoty pravděpodobnosti překonává předchozí metodu. Odhad polohy
virtuálních vysílačů představuje extrémní výpočetní zátěž v Channel-SLAM. Proto
navrhuji metodu, která modeluje virtuální vysílač jako směs Gaussovských dis-
tribucí a zároveň se učí její parametry. Vyhodnocení ukazuje, že navržená metoda
přesností překonává předchozí přístup a zároveň snižuje výpočetní zátěž. Současné
metody pro odhad parametrů rádiového kanálu také představují značnou výpočetní
zátěž znemožňující nasazení v reálném čase. Proto tato práce zkoumá možnost
využití umělých neuronových sítí k odhadu počtu komponent vícecestného šíření a
jejich odpovídajících časových zpoždění při měření impulsní odezvy komunikačního
kanálu s vícecestným šířením a rádiovým šumem. Odhad zpoždění založený na
umělých neuronových sítích poskytuje rozlišení překonávající Rayleighův limit,
tzv. super-rozlišení, a je rychlejší než klasické metody. Přesnost odhadu po-
mocí natrénované umělé neuronové sítě je porovnána s teoretickým limitem, daným
Cramer-Rao dolní mezí, a klasickými algoritmy odhadu parametrů komunikačního
kanálu.

Klíčová slova: asociace dat, Channel-SLAM, částicový filtr, konvoluční neuronové
sítě, navigace pro chodce, odhad parametrů rádiového kanálu, odhad čárového
spekta, rádiový kanál s vícecestným šířením, regularizace šumem, signály příleži-
tosti, sledování více hypotéz, směs Gassovských distribucí, strojové učení, ultra-
širokopásmová technologie, určování polohy, určování polohy pomocí vícecestného
šíření.
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1
Introduction

The increasing demand for fast and convenient delivery of large volumes of goods while
decreasing the number of necessary human workers puts high weight on developing
precise, reliable, and cheap positioning systems. Since a large portion of goods handling
happens inside large warehouses, where Global Navigation Satellite System (GNSS)s do
not work, we must develop alternative positioning systems with indoor capability. At
the same time, the indoor positioning system must be convenient to deploy and occupy
minimal space. Creating an indoor positioning system for a large warehouse by reusing
the principle of GNSSs would require using many transmitters. This would be expensive,
take a large portion of the warehouse space, and unreliable due to signal reflection and
scattering. Addressing these problems requires changing the way of thinking about
positioning systems. That is what the newly developing research of multipath assisted
positioning algorithms do. It breaks the lived-in stereotypes of classical positioning
systems and turns problems into features.

The core principle of positioning has been unchanged throughout human history.
Observation of known waypoints allows obtaining an observer’s position. Suppose the
lost observer can spot three distinct objects of the known position. In that case, he
can calculate the distance to the objects by triangulation and then use the triangulated
distances to calculate his position using trilateration. The distance calculation can be
cumbersome due to the required angle measurements. However, modern technology’s
precision allows measuring the distance directly without triangulation using a precise
time measurement. Today, the waypoint of a know location is transmitting a radio sig-
nal that the lost observer receives. The observer obtains the transmitter distance as a
difference between the radio signal’s Time of Arrival (ToA) and the time the radio signal
was transmitted multiplied by the speed of light. An alternative time-based positioning
method does not require knowing when the radio signal was transmitted. When trans-
mitters start the transmission simultaneously, the position is obtained from radio signal
Time Difference of Arrival (TDoA) by constructing hyperbolas. Each hyperbola has its
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Introduction

Figure 1: Typical indoor multipath scenario with one transmitter and one receiver. The purple
line shows the LoS propagating directly from the transmitter to the receiver. The blue line
represents the NLoS propagating towards the receiver via reflection from the wall-like obstacle.
Finally, the green line shows the scattering of the transmitted signal on an electrically small
obstacle. In this case, the transmitted signal impinges the lamp, which scatters the signal in
all directions. The receiver receives this MPC scattered by the lamp.

focus point located on the transmitter position. The observer stands at the intersection
of the hyperbolas.

The shift from visual observation to radio signal measurement allows positioning
in difficult visual conditions, e.g., at night, in fog, or at extreme distances using small
waypoints. However, to measure the ToA correctly, the radio signal must propagate
directly between the transmitter and receiver on the so-called Line-of-Sight (LoS). The
surrounding environment can reflect and scatter the transmitted radio signal in multiple
directions. Then, the receiver can receive the radio signal even if the LoS is obstructed.
We call such an indirectly received radio signal a Non-Line-of-Sight (NLoS) component,
and we need to recognize and separate it from LoS. Since the multiple radio signal replicas
propagate toward the receiver along different paths, we call this principle multipath
propagation and each signal replica Multipath Component (MPC). The surrounding
environment channels the transmitted radio signal towards the receiver while distorting
it. Hence, the mathematical model of the radio signal distortion is called the radio
channel model. The multipath radio channel model describes the radio signal distortion
when propagated towards the receiver along multiple paths. Fig. 1 shows a typical
indoor multipath propagation scenario.

It can be that multiple transmitters are transmitting the same radio signal simulta-
neously in so-called Single Frequency Network (SFN). Then, the receiver receives a sum
of the delayed radio signal replicas that the receiver must separate to measure the ToA
from the individual transmitters. The effect of SFN is indistinguishable from multipath
propagation, and the multipath radio channel model describes the influence of the SFN.

2



1.1. MULTIPATH RADIO CHANNEL

Historically, the multipath propagation has been seen as an undesired effect decreas-
ing the positioning precision. The positioning algorithm had to suppress the influence
of multipath propagation before calculating the position. However, this paradigm is
changing with the development of multipath assisted positioning algorithms. The multi-
path assisted positioning algorithms do not need to suppress the radio channel influence.
Moreover, it uses the information about the environment in the multipath radio channel
to improve the precision of position estimation. The reflection and scattering of the ra-
dio signal are imagined as additional Virtual Transmitters (VTs). Hence, the multipath
assisted positioning methods allow estimating position using even a single transmitter
while utilizing the multipath radio channel information. In the beginning, the multipath
assisted positioning methods needed to know the environment before positioning. How-
ever, the latest multipath assisted positioning methods use a Simultaneous Localization
And Mapping (SLAM) approach to estimate the environment at the same time while
estimating position.

This vast step in radio signal-based positioning research provides what a modern user
requires from a positioning system. It works indoors and reduces the required number
of transmitters, which decreases the price and space requirements. Moreover, automatic
environment estimation simplifies the deployment. The main drawback of multipath
assisted positioning algorithms is a high calculational load which currently does not
allow a real-time application. This thesis addresses the calculational complexity, and
other drawbacks of the current multipath assisted positioning algorithms.

1.1 Multipath Radio Channel

The multipath radio channel is a mathematical model widely used to model radio signal
propagation in a complex environment. The environment consists of a medium where
the radio signal propagates, and obstacles distort the transmitted radio signal. Hence,
the received signal is an imperfect replica of the transmitted signal. The transmitted
signal propagates with a finite speed through the medium, causing a delay between
transmission and reception. The part of the transmitted signal propagating directly
toward the receiver is called LoS.

The obstacles in the environment are separated into wall-like obstacles and scatterers.
The interaction between the propagated radio signal and the wall-like obstacle is modeled
as a plane wave reflection and refraction on a boundary between two media using Snell’s
law.

In this work, I model the scatterers as electrically small scatterers, which scatter the
impinging radio signal in all directions. The size of the scatterer is comparable to or
smaller than the wavelength of the transmitted signal.

The reflection and scattering effect creates replicas of the transmitted signal received
as so-called NLoS components. The delay of the NLoS components is always larger than
the delay of the LoS component. The received LoS and NLoS replicas of the transmitted
signal are called MPCs.

3



Introduction

Furthermore, each MPC consists of multiple sub-paths caused by propagation through
a turbulent medium, scattering on rough surfaces of the obstacles, or subsurface scat-
tering. The sub-path delays differ from the corresponding MPC delay less than the
reciprocal of the signal bandwidth and are assumed as a random part of the MPC. The
random part of the MPC is called Dense Multipath Component (DMC). Finally, the last
source of distortion is Additive White Gaussian Noise (AWGN) added to the received
signal by the receiver.

According to the definition of the multipath radio channel above, the received radio
signal consists of delayed replicas of the transmitted signal. It was shown in [Bel63] that
the channel can be assumed wide-sense stationary with uncorrelated scattering, or Wide-
Sense Stationary Uncorrelated Scattering (WSSUS) channel for a short period of time.
The WSSUS channel is linear and does not depend on the choice of the transmitted signal
waveform. The mathematical description of the received signal propagated through a
multipath radio channel is given by

s (t) =
L=∞∑

ℓ=1

αℓ (t) r (t− τℓ (t)) + n (t) , (1.1)

where s (t) is the received signal at time t, r (t) is the transmitted signal, τℓ(t) is the
delay of the ℓ-th MPC, and αℓ (t) is the complex-valued amplitude of the ℓ-th MPC.
The model order of the multipath radio channel is given by the number of MPCs by L.
Finally, n (t) is a zero-mean AWGN with variance σ2

n (t).
Based on WSSUS channel, the amplitude, delays, and noise variance can be assumed

constant for a short period of time, αℓ (t) = αℓ, τℓ(t)=τℓ, and σ2
n (t) = σ2

n. The model
order can be assumed finite L < ∞ using a standard approximation ignoring diffuse
scattering, parts of diffracted waves, etc. [Mol09]. Hence, the mathematical model of
the multipath radio channel is defined by

s (t) =
L∑

ℓ=1

αℓr (t− τℓ) + n, (1.2)

for a short period of time. The same multipath radio channel can be characterized by
its Channel Impulse Response (CIR)

h (τ) =
L∑

ℓ=1

αℓδ (τ − τℓ) , (1.3)

where δ (·) is a Dirac delta distribution. Then, the received signal is given as a convolu-
tion between the transmitted signal r (t) and CIR as

s (t) = r (t) ∗ h (τ) + n = s̃ (t) + n, (1.4)

where s̃ (t) is a noise-free received signal.
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1.1. MULTIPATH RADIO CHANNEL

Any real transmitter can only transmit a time- and band-limited signal. Additionally,
finite CIR allows sampling of the received signal without loss of information [Boa15].
Hence, the sampled received signal can be written in a vector form as

s = [s0, . . . , sm, . . . , sM−1]
T , (1.5)

where m indexes the equidistant samples with sampling period T . The total number of
samples is M . The transpose operation is marked by T. The noise-free sampled received
signal can be defined similarly to s as

s̃ = [s̃0, . . . , s̃m, . . . , s̃M−1]
T . (1.6)

The model parameters consisting of all delays

τ = [τ1, . . . , τℓ, . . . , τL]
T (1.7)

and all complex-valued amplitudes

α = [α1, . . . , αℓ, . . . , αL]
T (1.8)

describe the sampled received signal in the frequency domain

S = B (τ )α+ n = e−j2πFτT

α+ n = S̃ + n, (1.9)

where B (τ ) is a nonlinear function describing the multipath radio channel structure
with F = [0, . . . ,m, . . . ,M − 1]T, and S̃ is noise-free frequency spectrum of s̃. Finally,
the sampled received signal s is obtained from S as

s
F−1

←−− S, (1.10)

where F−1 is the Inverse Fast Fourier Transform (IFFT).
The multipath radio channel model based on the sum of individual MPCs [Tur72] was

obtained from a long-distance propagation multipath model [Tur56]. However, it must
be added that the model assumes that the transmitted signal waveform is narrowband
compared to the carrier frequency. This work uses an Ultra-WideBand (UWB) signal
with a bandwidth less than 15% of the carrier frequency. The experiment in [CWM02]
shows that the channel frequency selectivity can be assumed to be the same for all MPCs
in an office-like environment. Hence the presented multipath radio model fits this work.

Additionally, the used multipath radio model ignores some negligible or unobservable
parameters in this work. The Doppler shift is negligible in a case of a slowly walking
pedestrian, which is the case assumed throughout this work. The Angle of Arrival (AoA)
and Angle of Departure (AoD) are unobservable when a single antenna transmitter and
receiver antenna are used.
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Introduction

1.2 Multipath Radio Channel Parameter Estimation
A sparse set of delay (1.7) and complex-valued amplitude (1.8) parameters parametrize
the multipath radio channel (1.2). Except for the channel modeling, the channel param-
eters τ can be utilized, e.g., for ToA or TDoA positioning, and channel parameters α
can be used for Received Signal Strength Indication (RSSI) based positioning.

The multipath radio channel parameters cannot be obtained perfectly because the
received signal is band-limited and corrupted by noise. The multipath radio channel
parameters can be estimated using an estimator. Before introducing some well-known
channel parameter estimators, I must introduce the theoretical limits of achievable preci-
sion known as the Cramer-Rao Lower Bound (CRLB). Our study focuses on sufficiently
large Signal-to-Noise Ratios (SNRs), where it is possible to achieve the CRLB [Cra46].
If the SNR is close to or lower than 0 dB, the Ziv-Zakai bound [IWW83; Ian82] must be
used because the CRLB is no longer achievable.

The CRLB gives the minimum variance any unbiased estimator can achieve. The
derivation for a delay estimation is well studied and can be found, e.g., in [FF95; SJL97;
Ric05]. According to [Ric05], the minimum variance that any nonlinear channel param-
eter estimator can achieve is given as

CRBτ̂ =
σ2
n

∥α∥2
6

M (M2 − 1)
, (1.11)

while the minimal variance of the linear parameter magnitude estimator is

CRB ˆ∥α∥ =
σ2
n

2M
, (1.12)

and the minimal variance of the linear parameter phase estimator is

CRB∠α̂ =
σ2
n

∥α∥2
1

2M
. (1.13)

The CRLB definition drops the MPC coefficient L for clarity.
For a sufficiently large SNR, the CRLB performance is achievable by a Maximum

Likelihood (ML) estimator. The likelihood function of the multipath radio channel
model defined as

p
(
S | τ ,α, σ2

n

)
=

1

(πσ2
n)

M
exp

(
− 1

2σ2
n

(
S − S̃ (τ ,α)

)H (
S − S̃ (τ ,α)

))
, (1.14)

where H marks conjugate transpose, can be used to derive ML estimators τ̂ and α̂ as

τ̂ = argmax
τ

SHB (τ ) α̂, (1.15)

where the argmaxτ returns τ , for which the function SHB (τ ) α̂ is maximized, and

α̂ =
(
BH (τ )B (τ )

)−1
BH (τ )S, (1.16)

6



1.2. MULTIPATH RADIO CHANNEL PARAMETER ESTIMATION

where (1.16) is a Best Linear Unbiased Estimator (BLUE) of linear parameters α [Ric05].
Solving (1.15) is a multidimensional optimization problem, which is generally hard

to solve. Without any additional assumptions about B (τ ), the problem could be solved
only by an exhaustive search over the space of τ , which has exponential complexity in
the number of dimensions of τ .

The estimation and classification of a signal mixture as a subject of research gained
importance with the start of the radar technique. Many approaches to the radio channel
parameter estimation problem emerged during that time. The historical approach to
performing the estimation of the frequency and wavenumber spectrum [Cap69] showed
that it is possible to efficiently estimate the desired spectrum with higher precision than
the spacing given by the sampling of measured data.

The significant improvement of the Capon’s method [Cap69] was introduced by the
MUltiple SIgnal Classification (MUSIC) algorithm [Sch86], where an effective method
of classification based on generalized eigenvalue decomposition was proposed.

The main drawbacks of the MUSIC algorithm were computational complexity, a
requirement for known sensor position, and careful calibration of the array. The Esti-
mation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm
partly overcomes those drawbacks [RK89], reducing computational complexity via con-
straining the array structure. It requires pairs of identical elements, reducing the search
space, and thus reducing the computational complexity. Moreover, it is calculating com-
ponents directly rather than by optimization. The ESPRIT complexity is cubic in the
number of sources, while MUSIC yields exponential complexity.

The algorithm family above assumes narrowband sources of signal and calibrated
antenna arrays. In a case when the wideband measurement is required, the Expectation-
Maximization (EM) algorithms family [DLR77] is applicable. The family of EM algo-
rithms aims to estimate the deterministic parameters via alternating between two steps
assuring convergence of the algorithm with respect to Maximum A Posteriori (MAP)
or ML criterion of the estimated parameters. Many fields of science are still using the
original algorithm. However, several variations of the EM algorithm are improving the
convergence of the optimization process.

One of the variations is a Space-Alternating Generalized Expectation-maximization
(SAGE) algorithm, reducing the complexity by estimating the parameters sequentially
in small groups [FH94]. This method is advantageous for an estimation of the MPCs’
parameters since the individual MPCs can be modeled as statistically independent, which
is given by an uncorrelated scattering assumption [Rap96]. Hence, it is possible to
estimate the parameters of each MPC independently using the SAGE [Fle+99].

Though, when we desire to track the parameters of MPCs’ in a multipath radio chan-
nel characterized by a time-variant CIR for a longer period of time, the SAGE algorithm
becomes computationally extensive and suboptimal. The suboptimality comes from the
fact that the consecutive snapshots of CIR are statistically dependent, but SAGE es-
timates the parameters for each snapshot independently. The correlation between the
individual snapshots of CIR yields additional information that can be used for smooth-
ing the measurements using Bayesian filtering methods. An example of this approach

7
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τ

tRx

Tx
Obstacle

( )0=

Figure 2: Illustration of the data association problem during the radio channel estimation.

is the Kalman Enhanced Super Resolution Tracking (KEST) algorithm [Jos+12], which
combines SAGE with Kalman Filter (KF) to track MPCs over time.

However, the MPC parameters are a potentially nonlinear function of time when a
mobile receiver observes the multipath radio channel. Moreover, outages in MPC obser-
vation occur when the received signal strength becomes too low due to, e.g., shadowing
or large signal propagation distance. When a longer outage in MPC observation occurs,
the MPC track is lost, and KEST cannot associate it with a previously observed track
when reoccurring. Hence, an optimal multipath radio channel estimation algorithm re-
quires a data association algorithm to associate MPCs to its previously observed tracks.

A simple example can illustrate that a sequential channel estimator is not sufficient
for the MPC association. Fig. 2 shows a scenario where a receiver (Rx) moves with
a constant speed along a straight trajectory. The green line shows the Rx trajectory,
and the red line shows the corresponding delay. At some point, the transmitter (Tx) is
behind an obstacle, which causes an outage in the delay τ measurement. The red dotted
line shows the true but unobserved delay. The blue dotted line in Fig. 2 shows the delay
predicted by a linear model of KF after an outage. After the Rx passed the obstacle,
the difference between the observed and predicted delay is significant. Associating the
reoccurring observation with the corresponding prediction causes a high error due to
model mismatch. Moreover, it cannot be guaranteed that the reoccurring observation is
not another MPC. The only possible way to overcome this issue is for the data association
algorithm to be aware of the Rx and Tx position. Then, based on the estimated Rx and
Tx position, the delay can be correctly predicted and associated with the reoccurring
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MPC observation.
The Rx and Tx position estimation uncertainty can be significant compared to the

delay estimation. Also, multiple closely separated MPCs can be present in the radio
channel. Hence, the data association algorithm needs to allow uncertainty in the data
association.

The drawback of the SAGE algorithm is that it requires prior knowledge of the model
order. The estimator needs to be augmented with a model order estimator when the
model order is not known. Some commonly used model order estimation techniques
are Akaike’s Information Criterion (AIC) [Boz87], Minimum Description Length (MDL)
[Ris78], and Bayesian Information Criterion (BIC) derived in [Sch78]. The problem is
that the model order estimation is independent of the MPC parameter estimation and
tends to overestimate or underestimate the model order. The model order overestimation
is stronger when estimating a multipath radio channel with low SNR.

The logical step forward is to estimate the model order and MPC parameters jointly
One of the most recent approaches to this is the Superfast Line Spectral Estimation
(SLSE) algorithm [HFR18]. The SLSE algorithm uses a Bayesian approach to estimate
MPC parameters jointly with the model order and variance of the noise. The combina-
tion of the multiple ideas from recent line spectral estimation publications together with
highly optimal techniques, like the superfast Toeplitz inversion algorithm [AG87] and
a quasi-Newton optimization algorithm "limited memory Broyden-Fletcher-Goldfarb-
Shanno," makes the SLSE the state-of-the-art method for a radio channel parameter
estimation with superior performance and evaluation speed compared to the similar
approaches.

Despite all the advances in the multipath radio channel estimation and line spectral
estimation literature, there still is not a universal algorithm for all situations. Most
multipath radio channel estimation algorithms ignore the DMCs and are snapshot-based.
This leads to high order models with spurious MPCs changing between consecutive
measurements making multipath assisted positioning extremely challenging. Also, the
computational load is prohibitively large for real-time multipath assisted positioning
algorithms.

1.3 Multipath Assisted Positioning

The NLoS MPCs present an interference for a classical positioning algorithm and can
significantly decrease the precision of the estimated position [CS95; SR96]. Hence, the
classical positioning algorithms aim to recognize and mitigate the NLoS MPCs [WH96;
Che99]. Even more challenging is mitigation of the overlapping MPCs and DMCs during
positioning [SW08; JDW08].

In recent years the approach to the NLoS MPCs treatment changed fundamentally.
Before the NLoS propagation presented a problem that had to be mitigated, it now
becomes a feature to exploit. It shows that the correct treatment of the NLoS MPCs
provides additional information that does not decrease the precision of the position
estimation. Moreover, it can be utilized to improve it further.
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The first attempts to utilize the multipath propagation of the radio signal used a
database of the multipath measurements obtained at a given position in a given en-
vironment. The position is then obtained by matching the measured multipath radio
channel with the data in the database. There is a number of methods matching the
multipath radio channel information to a position. E.g., the work in [Tri+06] creates
a database of Power Delay Profiles (PDPs) and corresponding position pairs. Then,
the measured PDP is compared with the PDPs in a database, and the one minimizing
the Least Squares (LS) error is selected. The associated position is then the position
estimate. Another method published in [KWC13] is using the delay information and the
AoA. The method leverages the subspace approach to prioritize strong MPCs in a rich
multipath environment. This family of algorithms is called fingerprinting.

However, some multipath assisted positioning algorithms do not require a fingerprint-
ing database, e.g., the authors of [DT09] show that a non-static UWB radar can be used
to estimate the surroundings. The extension in [DT10] shows that the extracted features
from the environment can be further utilized for positioning using SLAM. Further mul-
tipath assisted positioning algorithms are presented in [SW09; Fro+13; Lei+15; Lei+16;
MLW14; WM12], where the authors exploited the MPCs parameters for positioning
using a transmitter mirroring, together with a known room geometry and transmitter
position.

However, all the previous algorithms require some prior knowledge–either a finger-
printing database or a known floor plan. A different approach is taken by a Channel-
SLAM originally presented in [GJ13] and further improved in [Gen+16b; Gen+16a;
Gen+17]. The Channel-SLAM does not need any prior information. Furthermore,
it requires only one transmitter and a multipath environment for positioning. The
Channel-SLAM treats reflections and scatterings of the electromagnetic field as static
VTs. During the receiver movement the Channel-SLAM can simultaneously localize the
receiver, transmitter and all VTs.

Fig. 3 visualize the principle of VTs. In this figure, the receiver moves along the
red dotted line and the LoS between the physical transmitter VT1 placed on coordinates
given in xTx,1 t shown by the solid purple line. Then if we mirror the physical transmitter
along the reflecting wall-like surface, we obtain the VT2 placed on xTx,2 t. The important
property is that in every possible position of the receiver is the reflection on the reflecting
surface interpretable as an LoS propagation from a static xTx,2 t to receiver position xRx,t

as shown by blue lines. Additionally, the multipath assisted positioning algorithms can
exploit the scenario where the signal is scattered in every direction, as shown by the
orange dash-dotted and green dashed lines. Since, from the algorithm point of view,
there is no difference between the physical transmitter and VTs, they shall be all referred
to as VTs throughout this work.

Most multipath assisted positioning algorithms are based on sequential Bayesian
filtering techniques like KF [Kal60] and its modifications, Monte Carlo methods like
Particle Filter (PF) [GSS93; Aru+02], and sum-product algorithm on factor graphs
[KFL01]. All of the mentioned techniques use the Markov chain principle. The Markov
chain is a property of a stochastic sequential system. The definition of the Markov chain
is that the system state is dependent only on a system observation in a current step
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Figure 3: The concept of Virtual Transmitters. The LoS between the physical transmitter
xTx,1 t and system trajectory in two time instances xRx,0 and xRx,t is shown by solid purple
lines. The MPCs caused by reflection on a wall-like obstacle can be interpreted as an LoS signal
propagated from a VT2 at position xTx,2 t. The position of xTx,2 t is obtained by mirroring the
physical transmitter position along the reflecting surface. A dashed blue line shows the real
ray-like propagation, while a blue dotted line shows the LoS interpretation. Additionally, the
transmitted signal is scattered at a scatterer, where VT3 defines the position of the scatterer
xTx,3 t and the corresponding MPC delay is defined as an LoS shown by green dashed lines,
with an additional propagation length bv,3 t shown by orange dash-dotted line.

and a system state in the previous step but is conditionally independent of all states
and observations before. Assuming the Markov chain property allows storing only the
last system observations and states. The separability of the system observation and
evolution models is another valuable property leveraged in multipath assisted positioning
algorithms.

The Channel-SLAM uses a Markov Chain Monte Carlo (MCMC) based PF [Aru+02]
to obtain the approximation of posterior Probability Density Function (PDF) of the
receiver and VTs positions. The algorithm is based on an idea of SLAM [Thr+04]; thus,
the name of the algorithm is Channel-SLAM [GJ13]. Channel-SLAM is using the KEST
algorithm [Jos+12] to obtain estimates of the MPC parameters and a Rao-Blackwellized
Particle Filter (RBPF) [Dou+00] estimating the posterior PDF.

Another multipath assisted positioning algorithm that does not require any prior
knowledge about the environment is JPDA-MINT. The JPDA-MINT, based on a Belief
Propagation (BP) algorithm, calculates the receiver position’s posterior PDF using factor
graphs [Lei+16; Lei+17]. The JPDA-MINT system is modeled as a factor graph using
the sum-product algorithm described in [KFL01]. The MPC parameters are estimated
using the LS algorithm. Then, the MPCs are associated with the individual VTs using
the Joint Probabilistic Data Association (JPDA). The latest version of the JPDA-MINT
algorithm uses the SLSE algorithm [HFR18] for MPC parameter estimation [LGW21].
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1.4 Machine Learning
Machine learning and especially Artificial Neural Networks (ANNs) are a fast-developing
field of research. It was already shown that it could be used for classification tasks, where
it can even outperform humans. Moreover, the current development in the ANN using
deep learning allows for performing more general tasks and approximating basically an
arbitrary function and using this approximation to extrapolate for previously unknown
data points. Among many others, the ANN can even be used to solve differential equa-
tions [PSW19].

With this generality of application, it is not surprising that ANN found its applica-
tion even in positioning. The ANNs were successfully utilized to perform a room-level
positioning, where the positioning was defined as a simple classification problem [NW17].
Closer to a classical approach is the method deployed in [Wan+16; XBM17], where au-
thors proposed positioning systems based on a fingerprinting database. However, thanks
to the extrapolation done by the ANN, the proposed positioning algorithms outperform
original fingerprinting techniques [BP00].

However, the machine learning techniques described above are bounded by the same
environment where the training data were collected. Hence, it is impossible to use the
ANN trained on a database obtained in one place for positioning anywhere else. It is
desirable to address this problem and propose methods that can improve the current
state-of-the-art multipath assisted positioning approaches but are independent of the
current environment.

Gaussian Mixture Model

The Gaussian Mixture Model is a technique widely used in machine learning, e.g., for
anomaly detection [Li+16], language detection [TRD02], reinforcement learning [AC10],
and more.

In signal processing, the main motivation for this type of approximation is to make
posterior PDF estimation tractable for nonlinear models with possibly non-Gaussian
noise [AS72]. Especially for cases where the Extended Kalman Filter (EKF) approxi-
mation is insufficient [BB03]. When the linearization of the nonlinear model causes a
large error over the update period or when the posterior PDF is multimodal.

The GMM aims to approximate an arbitrary PDF p(X) of a random variable X
using a sum of Gaussian PDFs N (·, ·) as

p(X) ≈
K∑

k=1

wkN (X −Xk,Σk) , (1.17)

where the covariance matrix Σk is in some cases simplified by a scaled identity matrix
λI, and the weights wk must satisfy

∑K
k=1wk = 1.

The parameters of the GMM are usually obtained by an EM algorithm [DLR77].
The work in [AS72] shows that Bayesian filtration techniques like EKF can track the
GMM parameters in dynamic scenarios.

12
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However, the calculation load of the GMM update step can be significant, especially
when the model noise covariance is large or non-Gaussian. In such a case, also the model
noise PDF p(vt) have to be approximated by a sum of Gaussian PDFs to obtain the
predictive PDF based on the nonlinear dynamic model

Xt+1 = f (Xt) + vt. (1.18)

The GMM model order is KN without any pruning, where K is the state GMM order
(1.17), and N is the noise GMM order. Several methods aim to reduce the number of
mixture components to decrease the computational load [Sal90; Pao94; Li+18].

Artificial Neural Networks

Although the idea of ANN occurred already in the 1940s [MP43], the real boom started
with the success of a deep learning architecture AlexNet in 2012 [KSH17]. This break-
through established a new standard for solving classification problems. Since that, the
ANN has spread to many other fields of science, e.g., into many areas of computer
graphics simulations [San+20; Kar+21], reinforcement learning [Sil+16] [Vin+19], and
biochemistry [Jum+21].

In general, an ANN approximates some unknown and possibly intractable nonlinear
function by another nonlinear parametric function. In other words, if we have a dataset{
x(i), t(i)

}
of observation x(i) and target t(i) variable pairs, we desire to find a relation

between observation and target variables as a function

t = f (x) . (1.19)

The dataset members are indexed by i. Since the function f (·) is generally unknown,
we can try to find its parametric approximation as

t ≈ q (W ,x) , (1.20)

where the nonlinear function q (·, ·) has to be selected, and the weights W parametrizing
the function q (·, ·) have to be found.

Selecting the q (·, ·) architecture is based on the core idea of the ANN, which is to
chain simple linear functions with well-defined nonlinear activation functions. A simple
example of such an ANN is

q (W ,x) = W 1max (0,W 0x) , (1.21)

where the max(·) returns the maximum value, max(0, ·) is known as the Rectified Linear
Unit (ReLU) activation function that replaces all negative values from the vector W 0x
with zero. The linear function W 0x is referred to as a fully connected layer. The two-
layer architecture in (1.21) can be proven to approximate arbitrary nonlinear function.
This property is also known as the universal approximation theorem [HSW89].
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Another linear function often used in ANN is a convolution. The convolutional layer
implements convolution between the input data x and a set of filters parameterized by
filter coefficients W . Similarly to (1.21),

q (W ,x) = W 1 ∗max (0,W 0 ∗ x) (1.22)

defines a simple Convolutional Neural Network (CNN) architecture, where ∗ marks a
discrete convolution. The CNN is sometimes accompanied by a max-pooling layer which
decreases the number of parameters in the CNN. The principle of the max-pooling layer
is to cluster closely spaced input variables and select the maximum value from each
cluster as an output.

Now, when a simple ANN is designed, we need to find the set of weights W to
fit (1.20). The process of finding weights is also called ANN training. The locally
optimal weights are usually obtained using gradient approaches, where a backpropaga-
tion method can efficiently evaluate the gradient of any feed-forward ANN architecture
[Bis06].

The idea of gradient-based parameter learning is that the weights are iteratively
updated in the direction given by a gradient ∇ of a loss function L (·, ·) as

W k+1 = W k − η

I

I∑

i=0

∇L
(
t(i), q

(
W k,x(i)

))
, (1.23)

where the learning rate η gives a small step in the gradient direction in an iteration k+1.
In some cases, it is not possible to evaluate the gradient of loss function for the whole
dataset, e.g., the dataset is obtained sequentially, or the whole dataset might not fit the
computer memory. This leads to an approach known as Stochastic Gradient Descent
(SGD), where the dataset is divided into smaller batches

{
t(j),x(j)

}
and weights are

updated sequentially over the batches as

W k+1 = W k − η

J

J∑

j=0

∇L
(
t(j), q

(
W k,x(j)

))
. (1.24)

The cardinality |·| of the batch is referred to as a batch size.
The practice and experiments show that using SGD achieves better performance

than using all available data directly (1.23). The intuition is that the higher noise of the
gradient estimated from a smaller batch pushes the learning process to prefer broader,
less sensitive local optima over sharp ones. Such ANN better generalizes for data not
present in a training dataset. More details about the batch size influence on the ANN
learning can be found in [Kes+17].

Another important aspect of the ANN training is selecting the learning rate param-
eter η. Selecting the learning rate too low leads to an unsatisfactory training duration.
On the other hand, using the learning rate too large can cause the training not to
converge or even diverge. The learning rate is one of the ANN hyperparameters usu-
ally obtained by experimenting with different values, which can be time-demanding. In

14



1.5. GOALS OF THESIS AND CONTRIBUTIONS

[Sut+13; DHS11; KB17; Ama98], the SGD was revisited to address this and other issues
and provide alternative training schedules with better and more robust convergence even
without complicated learning rate scheduling. E.g., adding momentum to speed up the
training process [Sut+13], adaptive methods [DHS11; KB17], natural gradient descent
[Ama98].

Practically, the most used training method is the Adam optimizer [KB17]. Compared
to the SGD, the Adam optimizer also calculates the exponential moving averages of past
squared gradients, which was shown to be modeling a diagonal approximation of the
Fisher Information Matrix (FIM) [RKK19; Mar20]. The diagonal approximation of the
FIM provides a significant calculation boost compared with the full FIM calculation in
a natural gradient descent method [Ama98] while still providing a superior convergence
rate compared with non-adaptive methods like SGD.

In some cases, a more complex ANN architecture consisting of chaining, forking, and
merging many linear and nonlinear layers can provide a significantly better convergence
rate. A famous example of such architecture is a CNN AlexNet initially presented in the
ImageNet Large Scale Visual Recognition Challenge in 2012 [KSH17]. Its idea was to
chain several convolutional layers with ReLU activation, max-pooling layers, and fully
connected layers.

Almost arbitrary architecture, without loops, is achievable using generic ANN li-
braries like TensorFlow [Aba+15], Caffe [Jia+14], and PyTorch [Pas+19]. These li-
braries can automatically obtain the gradient of the designed ANN and use one of the
standard optimizers to find the weights fitting the training dataset.

1.5 Goals of Thesis and Contributions
This thesis focuses on several open problems of modern multipath assisted positioning
methods. Specifically, the goals of this thesis are:

• Research the possibility of positioning in Single Frequency Network and show the
equivalence with multipath assisted positioning (Chapter 2),

• propose and test a novel pedestrian transition model for Channel-SLAM using
inertial sensor fusion (Chapter 3),

• propose and verify a stochastic data association method for tracking and asso-
ciating multipath components with the Virtual Transmitters in Channel-SLAM,
(Chapter 4),

• research the possibility of using a machine learning-based methods for Virtual
Transmitter estimation in Channel-SLAM, (Chapter 5),

• investigate the possibility of using Artificial Neural Networks for radio channel
parameter estimation and compare the proposed method with the theoretical limits
and benchmark algorithms. (Chapter 6).
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2
Positioning in Single Frequency Network

The chapter studies a special transmission mode where multiple transmitters synchronously
broadcast the same signal at the same carrier frequency. Such a set of transmitters is
said to form a SFN [Ric07]. The SFN is often utilized in Digital Video Broadcasting
- Terrestrial (DVB-T) to cover a large area [ETS06]. The signal from multiple trans-
mitters are summed at the receiver antenna, causing interference. However, since the
transmitters are synchronized, a standard channel equalizer can easily suppress this in-
terference. The synchronization causes the received signal consists of correlated replicas
of the transmitted signal received with different delays.

The idea of SFN allows to cover large areas using multiple transmitters efficiently
and subsequently allows to perform positioning. Like the multipath radio channel, the
received signal in SFN consists of delayed replicas of the transmitted signal. This ob-
servation allows us to use a multipath assisted positioning technique for positioning in
an SFN. Specifically, I model the received signal as a transmitted signal propagating
through a multipath radio channel. Estimating the multipath radio channel parameters
provides a delay of individual MPCs usable for positioning using the TDoA method.
The findings presented in this chapter are already published in [KP15; NK16; NKV16;
KV18], and I use citations from these publications.

2.1 Signal Synchronization and Delay Estimation

The DVB-T is an Orthogonal Frequency Division Multiplexing (OFDM)-modulated
broadcasting service defined in [ETS15]. Usually, the 8k mode, with 8192 subcarriers, is
used. Practically speaking, only 6817 of them contain non-zero values. The duration of
one DVB-T symbol is 896µs. Each OFDM subcarrier is modulated using Binary-Phase
Shift Keying (BPSK) or Quadrature Amplitude Modulation (QAM) if the subcarrier
contains pilot or payload data, respectively. If more than one transmitter in the site is

17



Positioning in Single Frequency Network

transmitting with the same carrier frequency, the SFN is applied according to [ETS06].
A so-called Mega-Frame Initialization Packet (MIP) inserter is used to ensure standard
fulfillment.

I utilize only the pilot sequence, signals inserted for synchronization, for positioning
because it is predefined and does not change, unlike the random payload data. For
this reason, I limit the detailed signal description to pilot signal definition. The pilot
signal consists of selected OFDM subcarriers that are BPSK modulated. The Pseudo-
Random Binary Sequence (PRBS) provides a binary sequence used to modulate the
pilot subcarriers. The PRBS cyclic autocorrelation function is 2047 chips long with a
correlation maximum of 2047 and −1 elsewhere.

The pilot sequence consists of three parts defined by [ETS15]. The Transmission
Parameter Signalling (TPS) chips are mapped to the same predefined subcarriers in
each OFDM symbol and contain information related to the transmission scheme. The
Continual Pilot (CP) chips are also mapped to predefined subcarriers in every OFDM
symbol but carry no additional information. Finally, the Scattered Pilot (SP) chips are
not mapped to the same subcarriers in every OFDM symbol. One SP chip is inserted
into every 12-th subcarrier according to

SP = 3× (l mod (4)) + 12p,

p = [0, 1, . . . , 567] ,
(2.1)

where vector SP consists of SP subcarrier numbers and l is the OFDM symbol number.
Since SP repeats itself every four OFDM symbols, it is not necessary to know the
absolute value of l to obtain the SP sequence. The current l mod (4) value suffices to
create the pilot signal replica [CYY06; Che+15]. This algorithm can be described by

l = argmax
m

∥∥∥∥∥
567∑

p=0

(Rl,12p+3mP12p+3m)
(
R∗

l−1,12p+3(m−1)P
∗
12p+3(m−1)

)
∥∥∥∥∥, (2.2)

where Rl,12p+3m is the value at the 12p + 3m-th subcarrier of the l-th OFDM symbol,
and ·∗ marks complex conjugation. The P12p+3m contains the (12p+ 3m)-th value of the
PRBS. The obtained l is then applied to generate the SP sequence according to (2.1).
This algorithm tests all four possible patterns of the SP sequence and compares values
at those subcarriers in the actual and the previous OFDM symbol.

The product of the actual SP spectrum with its complex conjugated replica provides
the cyclic AutoCorrelation Function (ACF). Since the SP sequence consists only of values
1 and −1, multiplying the signal spectrum turns all the pilot subcarriers to 1. Ideally,
this leads to a sequence of ones that have a Dirac delta Discrete Fourier Transform
(DFT) identity. The DVB-T symbol duration is 896µs, but only every twelfth subcarrier
contains the SP symbol that provides the ACF estimation. Thus the resulting impulse
response duration is 74.6̄µs.

The duration of the SP sequence leads to limitations of the DVB-T-based positioning
system. The signal’s propagation time from one transmitter to any other transmitter
in SFN has to be less than half of the autocorrelation repetition period of 74.6̄µs.
Otherwise, ambiguities occur.
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The first necessary step is to choose an appropriate sampling frequency. The sym-
bol duration is TU = 896µs, and 1/TU defines the subcarrier frequency spacing. Notice
that any sampling frequency assuring an integer number of samples per symbol duration
period assures identical frequency spacing as the subcarrier frequency spacing. E.g., in
DVB-T, if the sampling frequency is an integer MHz, an integer number of subcarri-
ers is obtained. However, aliasing occurs if the sampling frequency does not cover all
nonzero subcarriers. The sampling frequency of 8 MHz is used to sample 7168 DVB-T
subcarriers, covering all 6817 nonzero subcarriers present in 8k mode.

The time and frequency synchronization of the DVB-T signal is performed using
the ML method for OFDM symbol synchronization as described in [BSB97]. However,
the OFDM modulation uses a so-called guard interval to ensure the cyclic character of
the transmitted signal s(t) and suppress the Inter-Symbol Interference (ISI). Since its
duration can vary in DVB-T, it is necessary to estimate guard interval duration (T∆)
to separate the sampled signal into individual OFDM symbols. The method for guard
interval duration estimation I proposed in [NK16] is defined by

Λ(τ) =

T∆MAX∫

0

s(t− τ) · s∗(t− τ − TU) dt,

Λ′(τ) =
dΛ(τ)

dτ
,

T∆ = max
τ

(Λ′(τ)) ,

(2.3)

where Λ(τ) is a log-likelihood function. Similarly to [BSB97], the log-likelihood function
aims to correlate the end of the OFDM symbol with its replica contained in the guard
interval. The integration interval T∆MAX is set to the maximal possible guard interval
duration. Then, the maximum of the log-likelihood function derivative estimates the T∆

using the normalized signal. The guard interval duration in the SFN does not change
often but cannot be ruled out.

When the guard interval duration is known, the ML estimation of time offset θML

and frequency offset εML is obtained according to [BSB97] as

θML = argmax
τ

Λ(τ),

εML = ∠max
τ

Λ(τ),
(2.4)

where the log-likelihood function Λ(τ) is defined by

Λ(τ) =

T∆∫

0

s(t− τ) · s∗(t− τ − TU) dt. (2.5)

The received DVB-T signal is equalized using θML and εML obtained from (2.4).
Then, the equalized DVB-T signal is separated into the individual OFDM symbols. In
the following step, the CIR (1.3) is estimated using a mismatched filter. Note that in
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SFN, the CIR includes MPCs generated by multiple transmitters. The filter impulse
response is the ideal pilot signal used in the current OFDM symbol. However, the pilot
signal’s spectrum is multiplied by a window function to obtain the mismatched filter
impulse response. The properties of different window functions are described in [Pra13].
I used a Taylor Window with two nearly constant-level sidelobes and a peak sidelobe
level of −23 dB. The mismatched filter improves the peak detection performance since
the sidelobes of the estimated CIR are suppressed. On the other hand, the main lobe
becomes wider, which decreases the time estimation precision.

Assuming static measurements, or low dynamics of the receiver movement, it is pos-
sible to average multiple OFDM symbols to improve the SNR. The proposed algorithm
uses averaging of the absolute value of the mismatched filter outputs. This technique is
also known as a noncoherent integrator [Sko08].

The critical step for the DVB-T-based positioning algorithm is to extract the TDoA
values from the estimated CIR. The TDoAs are defined as a time difference between
the signal arrival from different transmitters. This is the same as the delay between the
individual peaks in the averaged mismatched filter output. The problem is that not all
peaks in the CIR correspond to a physical DVB-T transmitter. Hence, the algorithm
needs to detect the mismatched filter output peaks caused by a DVB-T transmitter and
not by noise or other influences.

The Cell Averaging - Constant False Alarm Rate (CA-CFAR) is a standard detection
algorithm that provides satisfactory results in many real cases [Sko08]. The CA-CFAR
algorithm automatically chooses the threshold (γth), according to the actual signal level,
to maximize the detection probability (PD) with a constant false alarm probability (PFA)
using the Neyman-Pearson theorem [Kay98] given as

L (x) =
p (x;H1)

p (x;H0)
> γth, (2.6)

where H0 and H1 are the null and alternative hypotheses, respectively, and γth can be
obtained from

PFA =

∫

x:L(x)>γth

p (x;H0)dx. (2.7)

The CA-CFAR algorithm is a shift register divided into three windows with different
lengths. The content of the left and right windows is added together to obtain the
signal’s mean level, which is proportional to γth. Multiplying the signal’s mean level
by the threshold constant gives the γth. The left and right window lengths are long
enough to provide a sufficient estimation of γth. The middle window represents the
guard interval and is omitted from the threshold level estimation. The number of cells
should be long enough to cover the main lobe of the mismatched filter output. If the
value in the guard window exceeds the estimated γth, detection occurs. The peak delays
detected by the CA-CFAR algorithm are used for positioning. The proposed detection
algorithm principle is visualized in Fig. 4.
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Figure 4: Principle of the CA-CFAR algorithm used for detection of the delayed DVB-T pilot
signal replicas.

2.2 The Single Frequency Network Offset Estimation
The last problem to solve before positioning is the estimation of the offset in the SFN.
This problem was detected during the measurements of the DVB-T network in Prague
(Czech Republic). The obtained TDoA estimations at a known position would not
correspond to the measurement’s geometrical layout even if the 74.6̄µs cyclic character
of the pilot sequence was assumed. The observed misalignment does not change with
time or with measurement location. Hence, the MIP must insert a constant offset
between the synchronized transmitter time and the actual transmission start into the
SFN. The SFN offset causes the transmitter to appear further from the receiver than it
is. This section presents a method for SFN offset estimation.

Fig. 5 shows an SFN with two receivers given by vectors Rxn and two transmitters
placed at Txo. The signal propagation time multiplied by the speed of light (ctno)
gives the physical distance between the transmitter Txo and receiver Rxn. The virtual
prolonging of the receiver to transmitter distance caused by the time offset ∆o is c∆o.

It is more important to show how this phenomenon influences the detections, as
illustrated in Fig. 6.

Dnpo = −Dnop = τnp − τno (2.8)

defines the TDoA measurements as a matrix D with elements Dnpo, where the receivers
are indexed by n and transmitters by o and p. Thus, e.g., τnp indicates the pseudorange
between receiver n and transmitter p. The position of a detected peak in the mismatched
filter output gives the pseudorange τnp.

If the time offsets ∆o are known, it is possible to evaluate the signal propagation
time tno from pseudorange τno as τno = tno + ∆o and obtain the ideal time differences
given by matrix T with the elements

Tnpo = −Tnop = tnp − tno. (2.9)
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2.3. POSITION ESTIMATION

Since the receiver time is relative, only the transmitter time offset differences are
available. The time offset differences are organized in a matrix O with elements

Opo = −Oop = ∆p −∆o. (2.10)

This definition of the problem makes the offset estimation more transparent. For a
given SFN with known transmitter positions, the matrix T is identifiable using mea-
surements at known positions. The detection matrix is obtained from (2.8). Then, the
offset matrix is evaluated as O = D−T. However, suppose only one receiver position is
used. In that case, it is not possible to select the correct order of detections and assign
elements to a submatrix Dpo to correspond to the Tpo. Adding another dimension to
matrix O, including all permutations of detection to transmitter assignments, solves the
ambiguity. The elements of O are now given by

Onkpo = Dnkpo − Tnpo, (2.11)

where k is a transmitter permutation index, and D includes all permutations of detected
TDoA values similarly to O.

If multiple measurements at different locations are performed, only one permutation k
results in the same offset values in all submatrices On. This permutation gives us relative
offset values in the measured SFN and matches them to the individual transmitters. The
relative offsets slightly differ in the individual measurements because of many influences,
e.g., noise and multipath propagation. The resulting relative offset values from the
individual measurements are averaged to reduce measurement inaccuracies. The offset
estimates are used to correct the position estimation in the SFN.

2.3 Position Estimation
As noted earlier, the detection algorithm provides the TDoA measurements. For the
TDoA positioning scenario, the Newton-Raphson iterative algorithm, similar to the ToA
method described in [ME01], is used. I published the derivation of the Newton-Raphson
iterative algorithm for the TDoA positioning in [NK16].

The automatic detection algorithm described in Section 2.1 provides a local time of
the individual detections. Only the time differences between the detections are necessary
for the TDoA positioning method. Hence, the time offset between the local and global
timing in the SFN is irrelevant.

The first step of the TDoA algorithm is a conversion of the arrival time differences
to the distance differences by multiplying by the speed of light. The distance differences
are organized into the matrix with coefficients given by

dij = ∥xRx − xTx,i∥ − ∥xRx − xTx,j∥+ ϵ12, (2.12)

where xRx is a vector containing receiver coordinates, xTx,i is a vector containing coor-
dinates of the i-th transmitter, and the additive error ϵ12 is considered in the measured
time differences.
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For the iterative solver, the variables are separated into a predictive (xRx,p) and
corrective (xRx,c) part. Applying the Taylor approximation of the 1st order to distances
between the receiver and transmitters results in

∥xRx,p + xRx,c − xTx,i∥ ≈ ∥xRx,p − xTx,i∥+
(xRx,p − xTx,i)

∥xRx,p − xTx,i∥
xRx,c, (2.13)

where the second part of the equation contains the unitary direction vector defined as

1i ≡
(xRx,p − xTx,i)

∥xRx,p − xTx,i∥
. (2.14)

Now, using the direction vector (2.14) and the corrective part of the difference matrix
d given by (2.12), it is possible to write the corrective part as

dc =




1i − 1j
...

1i − 1j


xRx,c = GxRx,c. (2.15)

The geometry matrix G is generally not a square matrix. For that reason, corrective
part estimated from

xRx,c = (GTG)−1Gdc, (2.16)

requires a pseudo-inverse of GTG. In the beginning, an arbitrary initial point in the
vicinity of the network is used as a position prediction xRx,p. Then, the correction xRx,c is
computed using (2.16), and the predicted position is corrected. The algorithm is repeated
until the Euclidean norm of the correction vector is lower than a given threshold. This
algorithm quickly converges to the correct solution after several iterations. Typically,
the Euclidean norm of the correction vector is in order of 0.1 m after seven iterations
and after eight iterations in order of 1 × 10−7 m. This method estimates the receiver
position iteratively while minimizing the least square error.

2.4 Dilution of Precision
The Dilution of Precision (DoP) serves to quantify the quality of the geometry of the
transmitter-receiver constellation. The DoP coefficients are scalar measures that relate
the positioning parameter estimator variance and the variance of the estimated position.
Our study of the DoP for multiple SFNs located in Prague is published in [NKV16].

The DoP for the TDoA positioning can be obtained similarly to [ME01] as

cov(d) = Iσ2
d (2.17)

cov(xRx) = (GTG)−1σ2
d = Hσ2

d, (2.18)

where σ2
d is a variance of the TDoA estimator and G is the geometry matrix defined

in (2.15). The values on the main diagonal of the matrix H are the squared DoP
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coefficients for individual axis directions. Using the East, North, Up (ENU) coordinate
system allows for defining the East-West Dilution of Precision (EDoP) as

EDOP =
√

H11, (2.19)

where the H11 denotes the first term of the matrix diagonal. Similarly, the H22 and H33

define the North-South Dilution of Precision (NDoP) and Vertical Dilution of Precision
(VDoP), respectively. In addition to these, Horizontal Dilution of Precision (HDoP) and
General Dilution of Precision (GDoP) are defined as

HDOP =
√

H11 +H22 (2.20)

GDOP =
√
H11 +H22 +H33 . (2.21)

The expected variance of the 3D position is obtained from

σ2
pos = GDOP 2σ2

d. (2.22)

A similar equation is valid for all other DoP coefficients, e.g., HDoP for variance in the
horizontal plane, etc. Practically, a lower value of DoP brings a more accurate solution.

To visualize the system coverage, I show the analysis of the HDoP using two SFNs
available in Prague and its surroundings for for three positioning scenarios.

1. 2D solution with three transmitters on DVB-T channel 42. In Fig. 7 can be seen
that the HDoP performance is rather poor in the vicinity of the transmitter con-
stellation. All three transmitters are distributed almost in one line causing poor
geometry. Therefore the intersecting hyperbolas - lines of constant TDoA - are
nearly perpendicular in the east-west direction. Thus the NDoP is relatively low,
but EDoP is extremely high.

2. 2D solution with 4 transmitters on DVB-T channels 42 and 46. Suppose the
TDoA from DVB-T channel 46 is included (see the new transmitter in the left
part of Fig. 8.) In that case, the overall HDoP performance significantly improves,
especially in the area between the DVB-T channel 42 transmitters.

3. 3D solution with 4 transmitters on DVB-T channels 42 and 46, see Fig. 9. With
the introduction of the new transmitter also the 3D positioning is available. The
area of excellent HDoP value is not as large as in the second case.

The 3D positioning case shows the HDoP to compare it with the 2D positioning
solutions. Moreover, the GDoP value is generally high in the whole area for the 3D
positioning case because the transmitter heights are almost the same, especially when
compared to the horizontal distances. The above analyses were performed in the MAT-
LAB software and plotted in GoogleEarth using [Dav12].
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Figure 7: HDoP for 2D solution with 3 transmitters.

Figure 8: HDoP for 2D solution with 4 transmitters.

2.5 Experimental Results

The method for utilizing a DVB-T network for positioning was verified by the experi-
mental measurement of the real signal in Prague (Czech Republic). Channel 42, with a
center frequency of 642 MHz and consisting of three transmitters working in the SFN,
is an ideal choice to demonstrate the designed positioning system. Transmitters in this
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Figure 9: HDoP for 3D solution with 4 transmitters.

network are deployed nearly in one line across the city. At the north, the Ládví (Tx1)
transmitter transmits with 20 kW Effective Radiated Power (ERP). Further south from
Tx1 is the Olšanská transmitter (Tx2) with 10 kW ERP, and the Novodvorská trans-
mitter (Tx3) covers the greater southern area with 5 kW ERP. The Global Positioning
System (GPS) coordinates of the individual transmitters are shown in Table 2.1.

The measured points in this experiment are designed to minimize the influence of
signal propagation, such as diffraction and multipath, to lower transmitter offset estima-
tion error. The positions with a free line of sight from the receiver to most transmitters
are selected for this experiment. Their coordinates are shown in Table 2.1. Fig. 11
illustrates the overview of the experimental scenario. Red points mark the position of
the transmitters, and the measurement spots are blue.

The Software-Define Radio (SDR) ETTUS USRP N210, featuring a dual 14-bit
Analog-to-Digital Converter (ADC), with a sampling frequency of 100 MS/s and a
daughterboard UBX 10-6000 MHz Rx/Tx, is used as the receiver. It is possible to
connect it directly with MATLAB to download the sampled data. A marine omnidi-
rectional Glomex TV antenna serves as a receiver antenna. The block diagram of the
experimental receiver is shown in Fig. 10.

Two measurements were performed at every position and time with a sampling fre-
quency of 10 MHz, with the duration of the record corresponding to 10 OFDM symbols.
The experiment aims to estimate the offset in the SFN and use it to evaluate the correct
position of the receiver.

The measured data are processed with the presented algorithm that first finds the
duration of the guard interval and then the beginning of the OFDM symbol. Then,
the actual SP sequence is found and is used to choose the corresponding mismatched
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Figure 10: The block diagram of the experimental receiver.

Table 2.1: The coordinates of the DVB-T transmitters and the measured positions.

Transmitter Latitude ◦ Longitude ◦ Altitude
[m a.s.l.]

Tx1 (Ládví) 50.13642 14.46528 359
Tx2 (Olšanská) 50.08352 14.46910 250
Tx3 (Novodvorská) 50.01638 14.45111 305

Receiver Latitude ◦ Longitude ◦ Altitude
[m a.s.l.]

Rx1 (Parukářka) 50.08510 14.46022 300
Rx2 (Strahov) 50.08048 14.39566 330
Rx3 (Suchdol) 50.13175 14.38581 275

filter. Next, the signal is separated into individual OFDM symbols, and the guard
interval is removed. Symbols are filtered using a corresponding mismatched filter and
added together using the noncoherent integrator. The filtration is performed only on
the interval corresponding to the SP sequence duration. At this point, the pre-processed
data sequence is interpolated and processed with the CA-CFAR algorithm to obtain
detections.

The individual detections are assigned to the corresponding transmitters using ad-
ditional information from the GPS receiver. Since the DVB-T positioning system is
intended as a supplementary system in hard conditions, it is possible to assume that the
initial position is roughly known. When an outage occurs, the last known position is
used to associate the detections with the DVB-T transmitters.

A visualization of a CA-CFAR algorithm for one experimental measurement on every
position is shown in Fig. 12, Fig. 13, and Fig. 14. The red line shows filtered data, and
the threshold estimated by the CA-CFAR is blue. It is visible that many peaks caused
by multipath and noise are below the estimated threshold and are omitted, keeping the
false alert rate low.

Next, the algorithm described in Section 2.2 estimates the SFN offset. All permu-
tations of the TDoA are evaluated and stored in matrix O. Table 2.2 shows three
submatrices of On, containing all offset permutations for the n-th experiment. Each
On, corresponding to the n-th experiment, includes a single permutation k with similar
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Figure 11: The overview of the experiment scenario.
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Figure 12: The output of the CA-CFAR algorithm for the experiment at Rx1.
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Figure 13: The output of the CA-CFAR algorithm for the experiment at Rx2.
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Figure 14: The output of the CA-CFAR algorithm for the experiment at Rx3.
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Table 2.2: The evaluated offset values in submatrices On.

k O1 (Rx1) [µs] k O2 (Rx2) [µs]
1 0 12.9066 48.2440 1 0 01.0540 42.3130
2 0 00.1066 41.8440 2 0 00.1140 41.8430
3 0 29.7840 31.3666 3 0 10.0864 33.2806
4 0 18.3534 23.2700 4 0 09.5024 32.1127
5 0 16.9840 24.9666 5 0 09.1464 32.8106
6 0 10.4774 11.9534 6 0 08.5624 31.6427

k O3 (Rx3) [µs]

1 0 52.9687 68.3195
2 0 00.0487 41.8595
3 0 45.2728 76.0153
4 0 18.7641 22.9980
5 0 07.6472 57.2025
6 0 30.6939 34.1559

Table 2.3: The coordinates obtained from measurements.

Receiver Latitude ◦ Longitude ◦ HDoP Err [m]
Rx1 I 50.08507 14.46034 0.8 9
Rx1 II 50.08510 14.46018 0.8 3
Rx2 I 50.08034 14.39604 1.7 30
Rx2 II 50.08031 14.39587 1.7 22
Rx3 I 50.13175 14.38594 3.8 9
Rx3 II 50.13123 14.38721 3.7 115

values for all six experiments. In Table 2.2, this corresponds to the second line. No
other line consists of similar values. Hence, it is the most likely estimate of the SFN
offsets. The offsets obtained from the experiments are averaged and used as an offset
correction. The estimated offsets are 0.0897 µs and 41.8472 µs for the Tx1 and Tx2,
respectively. Those values are relative to the Tx3 since this method cannot obtain the
absolute transmission delay of the individual transmitters.

With the known SFN offsets, it is possible to start positioning from the data in this
SFN. The output of the positioning algorithm using the SFN offset correction is shown
in Table 2.3. The fourth column shows the HDoP estimation. The geometry matrix G
defined in (2.15) provides the HDoP estimates as

HDOP =
√

tr
(
(GTG)−1). (2.23)

This experiment aimed to confirm the assumption that constant time offsets are
applied to DVB-T transmitters. It is possible to estimate the relative values of these
offsets and use them to evaluate the correct position. Even in this small sample, it is
possible to determine that the HDoP significantly influences the positioning precision as
it changes rapidly within the area covered by the SFN.
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2.6 Outlook of the Method
The experimental results presented in this chapter show that the proposed SFN posi-
tioning algorithm can be used for position estimation in a real-life scenario where the
individual transmitters in the DVB-T network are synchronized but delayed by an un-
known offset. The similarity of the SFN principle with the modern multipath assisted
positioning approach can provide several possible improvements. First of all, the detec-
tion algorithm based on mismatched filtering is a statistically suboptimal method. When
the MPCs caused by the transmitters in the SFN are well separated, the difference be-
tween the proposed method and the optimal channel estimation approaches is negligible.
However, closely separated MPCs require using an ML or an MAP method for optimal
delay estimation. The SAGE [Fle+99] algorithm can provide good ML estimates of the
MPC parameters. However, this method is also suboptimal if the number of MPCs is
unknown. To jointly estimate the number of MPCs and their parameters requires using
the MAP estimation algorithm such as the recently proposed SLSE [HFR18]. Using
SLSE provides statistically optimal estimates of MPC delays necessary for obtaining the
TDoA values required for positioning. Moreover, the synchronization part can be omit-
ted because the knowledge of the signal structure is the only necessary information for
MPC parameter estimation. The original method is still needed to initialize the guard
interval duration and the current SP sequence.

Another improvement of the proposed method is using a sequential positioning al-
gorithm. The proposed method is a one-shot approach that estimates position but does
not utilize the information of the previous position estimates. A PF-based approach can
provide a sequential positioning algorithm outperforming the proposed one-shot method.
The PF-based approach can provide multiple advantages compared with the initial study
performed in this section. The simple data association algorithm used in this chapter
can cause ambiguities. Based on my following research [KG20], the Multiple Hypothesis
Tracking (MHT) provides an optimal data association technique, which could also be
utilized for the SFN-based positioning. The PF can jointly estimate the SFN offset and
position similarly to [KG20]. Hence, using the proposed SFN offset estimation algo-
rithm would no longer be necessary. Another advantage is that even if the offset values
are changed in the SFN, no measurements in a specified location are required prior to
positioning.
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3
Pedestrian Transition Model for

Channel-SLAM

This chapter introduces the general principle of the system evolution model, also known
as a movement model or transition model. Next, it presents a more general approach
where some of the system observation variables, also called measurements, can be directly
integrated into the transition model to improve its properties. This direct combination of
measurements and transition model is also known as a tight fusion of sensors. I propose a
tightly fused transition model to predict pedestrian movement using a handheld Inertial
Measurement Unit (IMU).

The proposed pedestrian transition model fuses the general random walk transition
model with measurements obtained from a handheld IMU using a Bayesian framework.
It is not possible to double integrate the body movement acceleration to calculate posi-
tion considering a handheld device. While walking, the pedestrian accelerates the sensor
in many directions, which influences the measurement more than the actual pedestrian’s
movement. This problem is addressed, e.g., in [Lee+13] and [KE17], where step detec-
tion and step duration are used for positioning. This approach requires the creation of
a step length estimator. When using a handheld IMU, the step length is not directly
observable. However, it is observable when the step length changes. Moreover, combin-
ing the proposed pedestrian transition model with the Channel-SLAM allows for better
tracking of the changes in the step length. I published this work in [KG20], and I use
citations from this article throughout this chapter.
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3.1 Inertial Sensor Measurements as a Control Signal
In the Bayesian framework, the Joint Probability Density Function (JPDF) of the system
state and observation is factorized into conditionally independent factors. The transition
model is usually one of the factors and is defined by a conditional PDF

p(xu,t | xu,t−1), (3.1)

where xu,t defines the system state at time step t. Using a Markov chain property, xu,t

is conditionally dependent only on the most recent system state xu,t−1.
However, the proposed pedestrian transition model uses the idea of control signals

usually used to describe the transition models of controlled robotic systems. The con-
trolled transition model can be defined as

p(xu,t | xu,t−1,ut), (3.2)

where ut represents the IMU-based control signals for the transition model.
The presented approach utilizes raw IMU measurements of angular velocities and

accelerations, performs sensor calibration, extracts yaw rate Ψ̇, and estimates a Stan-
dard Deviation (STD) of acceleration β. The time derivation of β can be utilized to
detect changes in walking style, especially if the pedestrian is standing still, increasing
or decreasing the walking pace. Finally, the pedestrian step frequency ω based on a
peak/valley step detector [KE17] is used with a step length γ to calculate the distance
walked.

The novel idea presented in this work is to approximate the position state vector
xu,t and the control signals ut by a set of particles sampled from its prior PDF. This
idea allows us to incorporate the IMU measurements directly into the movement model
as stochastic control signals and better approximate the time evolution PDF. This idea
presents a general approach allowing us to use a highly nonlinear movement model with-
out linearization and approximation by Gaussian distributions. Incorporating ut does
not change the algorithm’s computational complexity scaling. Hence, the algorithm’s
computational complexity remains almost the same. At the same time, a better estimate
of the xu,t conditional PDF greatly improves the performance of the whole positioning
system.
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3.2 Complete Pedestrian Transition Model for
Channel-SLAM

The state vector of the pedestrian transition model with handheld IMU is defined as

xu,t =
[
xt, yt, vt,Ψt, bΨ̇,t, γt, bu,t

]T
, (3.3)

where xt and yt are coordinates of a pedestrian in a 2D Cartesian coordinate system, vt is
the magnitude of a pedestrian velocity vector in m/s, Ψt is the yaw of a system in radians,
bΨ̇,t is a yaw rate bias in rad/s, γt is a step length in meters, and the receiver clock bias
after multiplying by the speed of light is in bu,t. Note that the receiver clock bias is not
an observable variable when using only the IMU. The receiver clock bias is important
when combining the proposed pedestrian transition model with Channel-SLAM.

The control signal vector is defined as

ut =
[
Ψ̇t, ωt, β̇t, ξt, εt

]T
, (3.4)

where Ψ̇t is the yaw rate in rad/s, ωt is the stepping frequency in Hz, β̇t is a time
derivation of β, ξt is an ismoving flag providing a binary estimation of whether the
pedestrian is moving (True) or standing still (False). The ismoving flag is estimated
according to the STD of accelerometer measurements. The last of the control signals,
εt, is a flag indicating the validity of the control signals.

The transition model (3.2) is defined as a nonlinear vector function that separates
into a set of equations corresponding to one variable from a state vector (3.3). The set
of state equations is defined as follows

xt = xt−1 + δtvt−1cos
(
Ψt−1 + δt

(
Ψ̇t + bΨ̇,t−1

))
+

√
δ3t
3
N

(
0, σ2

wx

)
, (3.5)

yt = yt−1 + δtvt−1sin
(
Ψt−1 + δt

(
Ψ̇t + bΨ̇,t−1

))
+

√
δ3t
3
N

(
0, σ2

wy

)
, (3.6)

vt = (1− εt)

√[
vt−1cos

(
Ψt−1 + δt

(
Ψ̇t + bΨ̇,t−1

))
+
√

δtN
(
0, σ2

wx

)]2

+
[
vt−1sin

(
Ψt−1 + δt

(
Ψ̇t + bΨ̇,t−1

))
+
√
δtN

(
0, σ2

wy

)]2

+ εt

√[
ξtωtγt−1cos

(
Ψt−1 + δt

(
Ψ̇t + bΨ̇,t−1

))
+
√

δtN
(
0, σ2

wx

)]2

+
[
ξtωtγt−1sin

(
Ψt−1 + δt

(
Ψ̇t + bΨ̇,t−1

))
+
√

δtN
(
0, σ2

wy

)]2
,

(3.7)

Ψt = Ψt−1 + δt

(
Ψ̇t + bΨ̇,t−1

)
, (3.8)

bΨ̇,t = bΨ̇,t−1 +N
(
0, σ2

BS

)
, (3.9)

γt = γt−1 + cβδtβ̇t +
√

δtN
(
0, σ2

γ

)
, (3.10)

bu,t = bu,t−1 +
√
δtN

(
0, σ2

Rx

)
. (3.11)
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The model used for the position (3.5), (3.6), and velocity (3.7) is, essentially, the
White Noise Acceleration (WNA) model [BLK01] in 2D, with the only difference being
that velocity is modeled as a magnitude of velocity and angle in the direction of move-
ment. In the beginning, the white noise samples for every particle are obtained from the
Gaussian distributions with variances σ2

wx
and σ2

wy
for the x and y axes, respectively.

Then, the generated values serve as a point-wise approximation of a Gaussian distribu-
tion. The variances are obtained from the expected dynamics of a system and sampling
period using the relation

∆v ≈
√
δtσ2

wx
, (3.12)

where ∆v is the maximal expected velocity difference between two measurements, and δt
is the duration of a time step. The particle-based approximation performs a stochastic
process simulation. Hence, the particle weights automatically provide the expected
covariance of a WNA model.

Next, the velocity (3.7) is calculated by two possible relations separated by the
validity flag εt. Suppose the data provided by a step detector are not valid, then the
term (1− εt) = 1 and the previous velocity, and the random acceleration give the future
velocity. In the second case, when the pedometer data are valid, i.e., εt = 1, the step
length γt−1, pedestrian step frequency ωt, the ismoving flag ξt, and acceleration noise
give the future velocity. Note that the measured values provided in the control signals
are also represented as samples from their prior PDFs, similar to the acceleration noise
in the movement model. This doubling of the velocity update equation allows us to
predict the PDF of velocity even if the data provided by the IMU are not valid.

The prediction of yaw is given by (3.8). It is based on a Micro-Electro-Mechanical
System (MEMS) gyroscope measurement model using Angle Random Walk (ARW) and
Bias Stability (BS) [Woo07] to sample from its prior PDF. The ARW represents the
STD of angle noise after the integration, usually in ◦/

√
hr. The manufacturer of the

sensor provides this value. Then the prior PDF of the angular velocity measurement Ψ̇t

in (3.8) is given by

Ψ̇t =
ˇ̇Ψt +

π

180
√
3600

1√
δt
N

(
0, σ2

ARW

)
, (3.13)

where the ˇ̇Ψt is the measured yaw rate value in rad/s obtained from a gyroscope after
the sensor calibration. The check symbol “ ”̌ is used to mark values provided by the
IMU after calibration. The second parameter of the gyroscope measurement model, the
BS, is included in a yaw rate bias estimator in (3.9). Suppose the calibration took place
at the beginning of a measurement. In that case, the assumption that the calibrated
bias of a yaw rate is a zero-mean random number with Gaussian distribution and the
STD σBS in rad/s holds.

The estimation of step length is provided in (3.10), where the prediction of the step
length in the following time step is modeled as a random variable given by the old value
γt−1 and Gaussian zero-mean distributed noise with the STD

√
δtσγ. The last part of the

step update equation is linked with the IMU measurement and walking pace estimation
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[KE17], where β̇t is obtained as

β̇t =
ˇ̇βt + δtN

(
0, σ2

β̈

)
, (3.14)

where σβ̈ is chosen high enough to cover the errors of ˇ̇βt, which is the estimated derivative
of β̌t provided by the step counting algorithm as

ˇ̇βt =
β̌t − β̌t−1

δt
, (3.15)

where function β̌t is an estimation of the acceleration STD obtained by filtering the
measured acceleration by a low pass Butterworth filter.

(3.10) models the change of step length as a value proportional to the change of
acceleration STD with proportionality constant cβ. This simplification of an unknown
dependence between the accelerometer measurement and the actual change of the step
length is possible when assuming a random distribution of the error of such mapping,
as shown in (3.14).

Finally, the time bias of a receiver is predicted by (3.11). The receiver bias is modeled
as a Wiener process with an STD

√
δtσRx.

The velocity update (3.7) used information extracted from the IMU measurement,
but its PDFs had not yet been provided. The measured pedestrian step frequency ωt is
a Gaussian distributed random number defined as

ωt = ω̌t +N
(
0, σ2

ω

)
, (3.16)

where ω̌t is a pedestrian step frequency value provided by the step counter algorithm.
The Probability Mass Function (PMF) of a validity flag is binomial because there

is a nonzero probability that an error in a step detector algorithm was made. The flag
should be inverted with probability pε. Then, this PMF can be expressed as

εt = ∥(u < pε)− ε̌t∥; u ∼ U (0, 1) , (3.17)

where ε̌ is the validity flag provided by the step counting algorithm, u is a uniformly
distributed random number on the interval from zero to one.

Finally, the ismoving flag PMF is obtained as

ξt =
∥∥(u < pζ)− ζ̌t

∥∥
∣∣∣
∣∣∣ (!εt) ; u ∼ U (0, 1) , (3.18)

where ζ̌t is a step detection flag provided by the step counter algorithm,
∣∣∣
∣∣∣ is the logical

or operator, and ! is the logical not operator. ζ̌t is equal to one when the actual set
of peaks and valleys detected in the measured acceleration was forming a sequence
peak-zero-valley, which marks a valid step. However, the ζ̌t flag is not valid when the
pedestrian is standing still. For this reason, ξt is given as a binomial distribution of ζ̌
with a probability of error pζ only when the control signal is valid (εt = 1). The ismoving
flag is raised otherwise.
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3.3 Performance of the Proposed Pedestrian
Transition Model

This section compares the proposed pedestrian transition model performance with the
Rician transition model originally proposed in [Gen+17]. The new pedestrian transition
model is based on the Rician transition model. However, it incorporates more informa-
tion available from the IMU measurements. The main advantage is that more dynamic
pedestrian movement is possible without the need for unreasonably high transition model
variance. The extraction of the ismoving flag from the IMU measurements allows the
pedestrian to stop suddenly and then continue walking. Since the pedestrian transition
model estimates the step length, the walking speed can be inferred when pedestrians
resume walking. The pedestrian step length is likely similar during the walk. The more
precise transition model provides a more accurate position estimation of the multipath
assisted positioning algorithm.

We used a Vicon motion capturer to track the movement of the pedestrians, hence,
obtaining the ground truth of the pedestrian movement. The Vicon motion capture
system can track the motion of the Vicon reflective marker in a room with a ground
area of approximately 7m by 4m with an accuracy below 1 cm. The Vicon reflective
marker, which the Vicon motion capturer tracked, was attached to the hand-held device.

Two scenarios are evaluated to compare the transition models. Two volunteers with
different heights and weights walked inside a room, handholding an Xsense (MTI-G-
700) IMU while the Vicon motion capturer tracked their ground truth position. The
IMU provides the calibration data, and the calibrated IMU measurements are used to
evaluate position using Rician and IMU transition models.

Fig. 15 shows the room’s layout where the experiments took place, the ground truth
trajectories of the walking pedestrian, and the expectation of the predicted position PDF
estimated based on the Rician and IMU transition models. A cross marks the start of
the trajectory, and the arrow marks the end. The first trajectory in Fig. 15a contains two
short walking interruptions. It is visible that the IMU transition model follows the actual
trajectory closely, while the Rician transition model overshoots the actual trajectory
already in the first turn. The measured data shows that both volunteers slow down before
every turn. From the movement model, it seems that both volunteers keep the pedestrian
step frequency similar but shorten their steps. The velocity estimation based on step
length is not part of the formal Rician transition model. Hence, it cannot recognize the
sudden change in velocity and overshoots the actual trajectory. The volunteer increased
his walking pace right after the second turn, which is again successfully recognized by
the new transition model. On the other hand, the Rician transition model cannot track
the velocity change itself. This mismatch between the true and transition model velocity
causes the Rician transition model to undershoot the actual trajectory. In contrast, the
new IMU transition model keeps with the ground truth trajectory.

Similar behavior is observed in the second trajectory. Moreover, the pedestrian
stopped at position [1.0, 0.1] during this walk and waited for approximately 10 seconds
before resuming the walk. Compared to the new IMU transition model, the Rician
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(b) Scenario number two.

Figure 15: The comparison of the IMU and Rician transition models for two different pedestrian
walking scenarios inside a room.
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transition model cannot recognize that the pedestrian stopped. Thus, a huge error is
accumulated during the standing still period.

Fig. 16 evaluates the performance of the compared transition models. The solid
and dotted lines illustrate the first and the second scenarios, respectively. Fig. 16a
shows the evolution of Root-Mean-Square Error (RMSE) during the walk. Note that
the RMSE axis has a logarithmic scale. The RMSE for the proposed IMU transition
model significantly outperforms the Rician transition model or both scenarios. The first
scenario has a similar RMSE towards the end of the walk. The RMSE of the Rician
transition model visibly decreases after 65 seconds of the experiment. After the second
loop, the Rician transition model position is ahead of the true position, but then the
pedestrian increases his pace for a short time. Since the Rician transition model does
not observe the speed increase, the ground truth trajectory catches up with the Rician
transition model, canceling its high RMSE. The IMU transition model outperforms the
Rician transition model over the whole period for the second trajectory. Moreover,
a significant RMSE is accumulated between 70 and 80 seconds. The IMU transition
model recognized that the pedestrian was standing still while the Rician transition model
continued with the same speed.

Fig. 16b shows the overall performance of both transition models using an empirical
Cumulative Distribution Function (CDF). Extra tics in the plot highlight the 90% con-
fidence intervals. Note that the transition model variance causes the RMSE to increase
over time. Hence, the 90% confidence interval increases with the experiment duration.
This is not an issue since the duration of both experiments was the same.

The expected position provided by the new IMU transition model follows the ground
truth better than for the Rician transition model. Hence, setting a lower WNA variance
in (3.5) and (3.6) decreases the RMSE of the transition model. The smaller transition
model variance consequently improves the precision of the Bayesian positioning algo-
rithm combining the transition model prediction with the system observation, which is
the aim of the proposed IMU transition model.
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Figure 16: The evaluation of the IMU transition model performance compared to the Rician
transition model. The solid and dotted lines illustrate the first and the second scenarios,
respectively.
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4
Stochastic Data Association for Channel-SLAM

The main idea of multipath assisted positioning algorithms is that VTs are assumed
to be static while the receiver is moving. Hence, it is a typical example of a SLAM,
where the algorithm tracks the receiver position and simultaneously builds a map of
VTs. However, the multipath assisted positioning algorithms require every observed
radio channel MPC associated with a VT. The association of the observed MPCs with
the corresponding VTs is a challenging problem. Most channel parameter estimators
are snapshot-based algorithms, e.g. [Fle+99; HFR18]; thus, MPCs are not associated
with previous observations of VTs. Using snapshot-based methods requires associating
the observed MPCs with corresponding VTs in each time step. Channel estimation
approaches like [Jos+12] track the MPCs over time but can suffer from outages. Hence,
the stochastic data association is required even if the approach in [Jos+12] is utilized.

This chapter presents a stochastic data association method for multipath assisted
positioning. The proposed stochastic data association method is based on the MHT
[BL95], which allows uncertainty in the associations using a PF-based approximation of
the data association PMF. Not only that the soft data association approach can recover
from a wrong association, but it can also recognize an association error caused by the
sequential radio channel estimator algorithm.

The derivation and results presented in this chapter are based on the article [KG20]
I published. This chapter uses citations from [KG20].

4.1 Derivation of the Algorithm

This section outlines the essential steps of the proposed algorithm derivation, whose
goal is to estimate the system’s position xRx,0:t. The concatenation of the system’s
position and other state parameters θ defines the system’s state. θ contains parameters
of the transition model. The pedestrian transition model described in Chapter 3 can be
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assumed as a transition model. So, the system state is

xu,0:t =
[
xT
Rx,0:t,θ

T
0:t

]T
. (4.1)

The VT positions and the constant propagation length offsets must be estimated si-
multaneously to benefit from a multipath radio channel. Thus, the VTs’ system state

xv,1:L 0:t =
[
xT
Tx,1:L 0:t, bv,1:L 0:t

]T (4.2)
concatenates the position of L VTs with constant propagation length offsets, where
xTx,1:L 0:t gives the cartesian position coordinates of all VTs for the whole duration until
t, and bv,1:L 0:t defines the additional propagation distances as in Section 1.3.

The whole system is the concatenation of a receiver state with all VTs states denoted
as

x0:t =
[
xT
u,0:t,x

T
v,1:L 0:t

]T
. (4.3)

The current state xt is dependent on the previous states x0:t−1 and collected evidence.
This work assumes two sources of evidence: the parameters of the MPCs estimated by
KEST from s1:t concatenated in measurement vector

z1:t = [τ0 1:t, . . . , τm 1:t, . . . , τM−1 1:t]
T , (4.4)

and the output of the IMU after calibration and processing, which is then used as a
control signal u1:t as described in Chapter 3. Furthermore, a data association vector n1:t

is used, which matches the individual MPCs with the corresponding VTs in the system
state. Otherwise stated, the data association vector ni t is an integer linking measurement
zi t with xv,ni t t. Assume, for example, that the measurement vector consists of three
delays zt = [1.4, 2.5, 4.4]T, and the Channel-SLAM currently consists of five VTs. If the
first delay is associated with the second VT in xv, t, the second delay with the fifth VT,
and the third delay with the first VT, the data association vector would be nt = [2, 5, 1]T.

Estimating the PDF of state x0:t at the same time as the data association results in
calculating a JPDF conditioned on the collected evidence

p(x0:t,n1:t | z1:t,u1:t), (4.5)

sometimes referred to as a posterior or belief function bel (x0:t,n1:t).
The derivation of the proposed positioning algorithm is based on the previous work

[Gen+16a; Gen+17]. In contrast, this work uses n1:t directly during the whole derivation,
which is necessary for the data association algorithm. This approach results in a slightly
different derivation, but the main ideas of Channel-SLAM are preserved.

The first step during the derivation is to factorize the state posterior defined in (4.5)
as

data association posterior︷ ︸︸ ︷
p(n1:t | x0:t, z1:t,u1:t)

state posterior︷ ︸︸ ︷
p(x0:t | z1:t,u1:t) =

data association posterior︷ ︸︸ ︷
p(n1:t | x0:t, z1:t,u1:t)

system state posterior︷ ︸︸ ︷
p(xu,0:t | z1:t,u1:t)∏

ℓ

p(xv,ℓ 0:t | xu,0:t, z1:t,u1:t)︸ ︷︷ ︸
ℓ-th VT state posterior

.

(4.6)
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Figure 17: Graphical representation of the Rao-Blackwellized Particle Filter, where system
state xu,t is represented by superordinate PF, while for each system state particle x

(k)
u,t , there is

a set of independent subordinate PFs representing the state of the individual VTs. The state
of the p-th particle of the ℓ-th VT linked with the k-th system particle is given by x

(k p)
v,ℓ t .

In the beginning, the posterior is factorized into the data association posterior and
the state posterior using the product rule. The latter posterior is modified using the same
rule to separate the state posterior into the system’s xu,0:t and VTs’ xv,1:L 0:t posteriors.
The last product term in (4.6) is obtained using the independence between the individual
MPCs in the wireless channel. We can exploit this conditional independence to represent
the system’s state by a superordinate PF and each VT by the set of subordinate PFs.
This concept is shown in Fig. 17, where each of the K particles representing xu,t is
assigned with the set of subordinate PFs representing L VTs. This separation into
the set of conditionally independent posteriors is also known as a RBPF. For further
information about the RBPF in Channel-SLAM, see [Gen+16a; Gen+17].

A closer examination of the first two terms on the r.h.s. of (4.6) reveals that it is a
product of a data association and system state beliefs. Bayes’ and product rule rewrite
the term above as

bel (n1:t) bel (xu,0:t) =ηp(zt | nt,xt)p(nt | nt−1)

p(zt | xu,t, zt−1)p(xu,t | xu,t−1,ut)

bel (n1:t−1) bel (xu,0:t−1) ,

(4.7)

where η is a normalizing constant given by the measurement prior. It is sufficient to
perform normalization to obtain η. The derivation assumes that the current measure-
ment vector zt is conditionally independent of all previous system states x0:t−1 and data
associations n0:t−1. If the first-order Hidden Markov Model (HMM) assumption holds,
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the current state xu,t depends only on xu,t−1 and current control signals ut. Similarly,
the actual data association nt only depends on the previous association nt−1. These
assumptions allow rewriting (4.7) to a sequential form

bel (xu,0:t) = ηp(xu,0)
∏

i=1:t

p(xu,i | xu,i−1,ui)p(zi | xu,0:i, z1:i−1), (4.8)

where the belief of the whole trajectory bel (xu,0:t) is obtained as a product of beliefs in
all time steps.

Usually, it is not possible to calculate the most recent belief exactly. Still, according
to [Aru+02], it is possible to approximate the desired posterior PDF function by a
posterior PMF composed of samples from a PDF with assigned weights

bel (xu,t) ≈
∑

k

w
(k)
t δ

(
xu,t − x

(k)
u,t

)
, (4.9)

where δ (·) is a Dirac delta function. The weights w
(k)
t can be obtained as a division of

the target PDF and importance PDF

w
(k)
t =

π
(
x
(k)
u,t | z1:t,u1:t,n1:t

)

q
(
x
(k)
u,t | z1:t,u1:t,n1:t

) , (4.10)

where the nominator is the target PDF, which ought to be approximated by particles.
The denominator is the importance PDF from which the particles are sampled.

Based on the generic particle filter [Aru+02], the algorithm shows how to calculate
the position and data association beliefs jointly. Using (4.7) as a target PDF and

p(zt | nt,xt)

MPC tracking︷ ︸︸ ︷
p(nt | nt−1)︸ ︷︷ ︸

Data association PDF

p(xu,t | xu,t−1,ut)︸ ︷︷ ︸
system state evolution PDF

(4.11)

as an importance PDF, the weight at time t is proportional to

w
(k)
t|t−1 = w

(k)
t w

(k)
t−1|t−2 , (4.12)

where
w

(k)
t ∝ p

(
zt | x(k)

u,t , zt−1

)
(4.13)

and
w

(k)
t−1|t−2 ∝ bel (n1:t−1) bel (xu,0:t−1) . (4.14)

The likelihood in (4.13) can be interpreted as a marginal PDF over transmitters xv,1:L t.
By directly using the independence between the individual MPCs and the product rule,
the marginal PDF can be written as

p
(
zt | x(k)

u,t , zt−1

)
∝

∏

ℓ

∫
p
(
zt | x(k)

u,t ,x
(k )
v,ℓ t, zt−1

)
p
(
x
(k )
v,ℓ t | x

(k)
u,t , zt−1

)
dx

(k )
v,ℓ t. (4.15)
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As in [Gen+16a], (4.15) results in

w
(k)
t|t−1 ∝

∏

ℓ

∑

p

w
(k p)
ℓ t−1|t−2p

(
zt | x(k)

u,t ,x
(k p)
v,ℓ t

)
, (4.16)

where the measurement likelihood function is calculated using samples approximating
the transmitter position x

(k p)
v,ℓ t weighted by w

(k p)
ℓ t−1 according to the multivariate PDF with

a specified kernel function as in the regularized PF [Aru+02].

4.2 Pruned Multiple Hypothesis Tracking Filter
The previous section derives the PF-based approximation of the position and data associ-
ation JPDF. However, it must be stressed that this approximation only fits for sampling
from the importance PDF defined by (4.11), where the last term is the transition model
described in Chapter 3. This section focuses on the first two terms, p(zt | nt,xt), and
p(nt | nt−1), and proposes a method for sampling from

p(zt | nt,xt)p(nt | nt−1). (4.17)

The terminology used in this work is related to [BL95], where the reader can find a
comprehensive description of the data association problem, including practical examples.
A brief introduction of the terminology used in this section is in order.

The measurement is assumed to be information provided by a detector when a de-
tection condition is fulfilled. Thus, it is not the whole set of measured values, only its
subset which fulfills certain conditions, e.g., the strength of the signal or the number
of occurrences in the number of consecutive measurements (m-of-n). In this case, the
KEST algorithm serves as a detector and tracker providing us with estimations of MPC
parameters. We use measurement vector zt defined in (4.4) as measurements.

Even after being processed by the detector, some values in zt can be caused by
undesirable effects such as the thermal noise of the receiver or interference with other
systems operating in the same radio frequency band. Such values of zt are called false
alarms. A value in zt, which is not a false alarm, is called detection. In other words,
detection is a measurement caused by the target. The target is observed as an MPC
caused by an LoS signal, a wall reflection, a scatterer, or any combination of possibly
multiple signal reflections and scatterings. The continuous observation of the target is
called a track. Finally, the set of false alarm measurements is called clutter.

The proposed algorithm is based on the MHT data association algorithm, and its
derivation can be found in [BL95]. The premise of the MHT is to assume data associa-
tion as a random variable and filter it using Bayesian filtration techniques. However, it
requires an exhaustive search over the entire space of possible associations. The number
of possible associations increases exponentially with the number of targets, which ren-
ders the MHT computationally infeasible in general. The MHT algorithm derivation is
outlined to demonstrate how the data association algorithm is similar to MHT, how the
reduction of computational complexity is achieved, and how much it costs.
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First, I define several statistics based on data association nt, which will be advanta-
geous for further derivations:

• The track indicator

T i =

{
1; if zi t is caused by a tracked MPC
0; otherwise

(4.18)

indicates that the i-th element of the measurement vector zt originates from one
of the already observed MPCs.

• The new target indicator

νi =

{
1; if zi t is caused by a new MPC
0; otherwise

(4.19)

indicates that zi t originates from an MPC, which was not yet observed, and the
algorithm must create a new track.

• The detection indicator

δℓ =

{
1; if xv,ℓ t is detected at t

0; otherwise
(4.20)

tells whether the MPC linked with VTℓ is in the current measurement vector zt.

Note that sums T =
∑

i T i, and ν =
∑

i νi provide the number of targets in zt. Then,
the number of false alarms is denoted by

ϕ = |zt| − T − ν, (4.21)

where |·| is cardinality.
The product rule is utilized to derive the data association posterior PDF from (4.6)

as
p(n1:t | x0:t, z1:t,u1:t) = ηp(zt | nt,xt)p(nt | nt−1)bel (n1:t−1) , (4.22)

where the independent variables are dropped assuming first-order HMM. Notice that
(4.22) is equivalent to the data association belief bel (n1:t) from (4.7).

The first PDF on the r.h.s. of (4.22) is the likelihood function and can be evaluated
using indicators (4.18), (4.19), and (4.20) as

p(zt | nt,xt) = V −ϕ

|zt|∏

i=1

p(zi t)
νi [p(zi t | xu,t,xv,ni t t)]

T i , (4.23)

where ni t index the ℓ-th VT. In cases when zi t is not associated with the ℓ-th VT, the
likelihood is given by a uniform PDF in a volume of interest V . Thus, for an unassociated
element of zt, the likelihood is V −1.
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The second term p(nt | nt−1) in (4.22), which can be interpreted as the evolution of a
data association state, is assumed to be independent of the previous step p(nt | nt−1) =
p(nt) when the KEST labels are unavailable. In this case, the data association algorithm
can calculate only the prior p(nt) of data association.

When the data association algorithm obtains a measurement vector of cardinality
|zt|, it needs to label each delay in zt as either one of the previously observed VTs, or
newly observed VT, or a false alarm.

The possible label assignments, how to assign |zt| measurements with |zt| − ϕ VTs1,
are equally probable. However, one must evaluate how many unique label assignments
can be composed to calculate the value of p(nt).

Using the summed indicator functions T , ν, and ϕ, and the fact they are fully defined
by nt, according to Section 6.3 in [BL95], it is possible to write

p(nt) =p(nt, T (nt) , ν (nt) , ϕ (nt))

=p(nt | T (nt) , ν (nt) , ϕ (nt))p(T (nt) , ν (nt) , ϕ (nt)),
(4.24)

where the conditional term in (4.24) is calculated based on combinatorics. The number
of possibilities of how to assign |zt| measurements with T previously observed targets is
the number of permutations. The remaining possibilities are the combinations of how to
label the remaining ν + ϕ measurements as either a new track or a false alarm. Finally,
the last term in (4.24) is modeled using clutter models.

However, the KEST provides its label estimate yielding additional information

p(nt | nt−1), (4.25)

that benefits the data association algorithm. The idea is to use the label of the MPC
provided by the KEST algorithm as a simple hard decision data association and use
the soft decision data association algorithm only to resolve the remaining MPCs. This
approach reduces the calculational complexity of the data association algorithm.

The individual MPCs might not always be visible, causing outages to occur. A
tracking algorithm resolves a short outage, but a more extended outage causes the MPC
to disappear during the tracking. The KEST algorithm initializes a new track when a
new MPC appears and assigns a unique label. The KEST does not assume re-tracking.
Hence, the KEST removes a tracked MPC from its state when it disappears for several
consecutive radio channel measurements. We refer to removing the MPC from a KEST
state as the KEST outage. The most common cause of the KEST outage is shadowing
the signal path or the signal propagation distance exceeding the transmitter’s range. For
details on how the KEST algorithm decides which MPC to remove, see [Jos+12].

It is not possible to use only the KEST labels directly as a data association for two
reasons:

• After an outage in KEST, the label of MPC is dropped, and when the MPC
originating from the same VT reappears, it is assigned a new label. Hence, the

1Note that if the number of false alarms in measurement vector zt is ϕ, then the number of VTs in
zt is |zt| − ϕ.
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Channel-SLAM would initialize a new VT even though the same VT has already
been observed.

• Due to the “natural” data association used in KEST [Jos+12], the measurement
can be assigned an incorrect KF causing an association error. Every error in
KEST’s association would cause a hard decision error leading to the divergence of
the positioning algorithm.

Hence, if available, the proposed approach uses a KEST-based association to shape the
data association PMF as p(nt | nt−1). Otherwise, it remains independent of history
nt−1 [BL95]. When the label of the i-th MPC provided by KEST is the same as the
label previously linked with any of the VTs, the algorithm links it again with the same
VT. This is assured by setting p(nt | nt−1) = 0 otherwise. We illustrate this in an
example: Vector zt−1 consists of three measurements with labels Lt−1 = [11, 22, 33].
The measurements were assigned as VT 2, 3, and 1; nt−1 = [2, 3, 1]. In the following
time step, zt consists of four measurements with Lt = [11, 44, 55, 22]. Since labels 11
and 22 were observed in the previous time step and are still observed in the current time
step, the data association trusts the KEST algorithm and sets n1 t = 2 and n4 t = 3. The
probability of any nt violating the previous association is assumed to be zero. Hence,
(4.22) does not need to be evaluated for associations n1 t ̸= 2 and n4 t ̸= 3, which
significantly reduces computational complexity.

Using the KEST labels significantly decreases the number of possible nt for which
(4.22) needs to be calculated. Only the newly occurring labels need to be handled.
At this moment, the data association algorithm becomes suboptimal because the small
probability that KEST is tracking an errant path is approximated by zero. An algorithm
resolving possible association errors in the KEST is proposed at the end of this section.

Finally, the remaining unassociated measurements in a subset of zt, indicated by
z′t, must be associated with the corresponding VTs. As shown by the derivation in
Section 4.1, sampling from (4.11) allows estimation of the system state JPDF. Therefore
one needs to obtain samples from

p(zt | nt,xt)p(nt | nt−1). (4.26)

Now, assuming all elements of zt labeled with the same labels as the previously observed
VTs are already assigned together, then (4.26) is proportional to

p(z′t | n′
t,x

′
t)p(n

′
t), (4.27)

where the VTs associated with elements of zt are omitted from xt to obtain subsets,
marked by an apostrophe, excluding already assigned data. Because of this, the remain-
ing associations are independent of history, and p(nt | nt−1) becomes an association prior
p(n′

t).
Essentially, the number of elements in z′t is usually zero, and rarely is it greater

than one. It means that, in most cases, data association is resolved solely by the KEST
algorithm. When the association according to (4.27) is needed, its complexity usually
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reduces to assigning one measurement with one of the currently unassigned VTs from
x′
t, with a new VT while creating xv,L+1 t, or with a false alarm. However, when |z′t| > 1,

the algorithm resolves its elements one by one, decreasing the space’s size to search for
each resolved element of z′t.

In other words, evaluating the PMF using (4.22) provides a subset of the most
likely nt while setting p(nt) = 0 for all others nt. The association is sampled from
the obtained PMF. Since the association is sampled for each superordinate particle
separately, the algorithm is a soft decision data association algorithm related to the
MHT filter. Omitting the unlikely combinations of nt is also known as pruning [BL95].

The algorithm associates a single element of z′i t at a time. Hence, the sampling from
(4.27) is done as follows. First, calculate

p(z′i t | n′
i t,x

′
t)p(n

′
i t) (4.28)

for every possible value of n′
i t = 1 : L′, where L′ is the number of unassociated VTs.

Then, sample the desired number of particles from this PMF using a systematic resam-
pling scheme [KLZ13]. Finally, remove z′i t and x′

v,n′
i t t

from z′t and x′
t. This process is

repeated while |z′t| > 0.
To evaluate (4.28) still needs a solution for the prior PMF p(n′

i t), e.g., in [BL95].
However, the proposed data association algorithm does not calculate associations jointly.
Hence, the prior PMF is uniform for association with one of the older, currently unas-
sociated VTs. Then, the probability that the z′i t is a false alarm is given by a constant
probability of false alarm PFA. Similarly, the PMF of a new target occurrence is the
probability of a new target PN. This can be written as

p(n′
i t) =





PFA; i = −1
PN; i = 0

1− PFA − PN

|z′t|
; else.

(4.29)

Joint data association requires modeling the false alarm and the new target occur-
rence as Poisson distributed random variables. Also, the number of possible associations
would increase exponentially with the number of elements of z′t, rendering the joint data
association into an extremely computationally demanding algorithm.

The final part addresses the situation where the KEST algorithm can make an in-
correct data association. A KEST association error occurs when different targets cause
almost identical observations. This situation typically occurs when the pedestrian moves
close to a wall, corners, or scatterer. Then the LoS delay is almost identical to the delay
of MPC caused by the reflection from a nearby obstacle. This problem is especially severe
if AoA information is unavailable. Using AoA information, the algorithms [Ulm+17] and
[Thr+04] can resolve overlapping MPCs delays. For these methods, the data association
provided by KEST labeling can be sufficient since the approximation, p(nt | nt−1) = 0,
is nearly true.

However, the proposed algorithm uses low-cost hardware without the AoA capability.
Therefore, the data association algorithm cannot ignore the KEST association error. The
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data association algorithm performs stochastic tests to keep or discard the associated
tracks based on the association error probability

p(kp)
err = 1− 1

P
√
2πQ

P∑

p=1

p
(
zt | x(k)

u,t ,x
(k p)
v,ℓ t

)
, (4.30)

where P is the number of particles used to approximate the ℓ-th transmitter xv,ℓ t, and
Q is the delay measurement variance. Note that this solution uses only the current time
step likelihood since the RBPF weight normalization does not conserve track likelihood
information. Using the current step likelihood results in a pessimistic association error
probability. Therefore, the MHT decreases the number of discarded tracks using the
power operation in the track discard condition

u <
(
p(kp)
err

)cerr
; u ∼ U (0, 1) , (4.31)

where u is a number generated from a uniform distribution U (0, 1) on the interval from
zero to one. cerr is a constant improving the algorithm’s robustness without the necessity
of increasing the number of particles.

4.3 Performance Using Stochastic Data Association
The measurements were conducted using an UWB system based on the Decawave
DWM1000 anchor using a two-way-ranging method (see [GU17]). The Decawave DWM-
1000 ToA estimation precision is 10 cm. The measurement setup consists of one static
UWB anchor and a hand-held device carried by a walking pedestrian. The hand-held
device includes a UWB tag, an Xsense IMU (MTI-G-700), and a laptop that stores
the IMU and UWB measurement data. The UWB system is configured to a band-
width of 500MHz and a carrier frequency of 3.9GHz for the measurements. The De-
cawave DWM1000 anchor can provide the measured CIR in addition to the ranging
information.

The measurement took place in a rectangular room with support pillars on one side.
Two different volunteers performed the experiment. Both volunteers were changing speed
and completely stopped, at least once for a short period during the walk. The duration
of each experiment was 140 seconds. Fig. 18 shows the environment layout, the ground
truth of the pedestrian movement, the UWB anchor position indicated by VT1, and the
VT positions VT2–VT6.

During the experiment, the Vicon motion capture system captured the ground truth
of the pedestrian movement, similarly to Section 3. The handheld Xsense (MTI-G-700)
captured the IMU measurements. Finally, the Decawave DWM1000 anchors provided
the CIR measurements. The positioning was carried out offline using the collected data.

Evaluations of Precision Based on a Simulation

The performed simulation shows the performance of the proposed data association algo-
rithm. The simulation assumes one physical transmitter, three wall reflections, and two

52



4.3. PERFORMANCE USING STOCHASTIC DATA ASSOCIATION

−10 −5 0 5 10

−10

−5

0

VT1

VT3

VT4

VT2

VT5VT6

y [m]

x
[m

]

Ground truth 1 xu,t

Ground truth 2 xu,t

VT

Figure 18: The environment layout with the ground truth of the pedestrian movement during
the performed experiments. The cross and arrow mark the beginning and end of the experi-
mental trajectory, respectively. The blue crosses mark the positions of six virtual transmitters.
VT1 is the position of the physical transmitter. VT2–VT4 are caused by the reflections from
the room walls. VT5–VT6 are caused by scattering the transmitted signal on the room support
pillars.

scatterers. Based on the geometry, the positions of the VTs are obtained as described
in Section 1.3. The measurement vector z1:t is simulated as a noisy signal propagation
distance between the VT and the ground truth position xGT

u,1:t, including the additional
propagation length bv, t for scatterers VT5–VT6. The assumed noise of z1:t is normally
distributed with STD σn = 0.1 m, corresponding to the precision of the UWB system
based on the Decawave DWM1000 anchor.

As with the real experiment, the simulation assumes outages in the MPCs observa-
tion. Similarly as in an actual KEST-based estimation, the simulator generates a new
KEST label after an outage. The probability of the MPC outage is selected for each
MPC separately to achieve visibility for a desired percentage of the time. The outage
duration is generated as a uniformly distributed random number between zero and 10
seconds U (0, 10) when an outage occurs. The percentage of visibility was selected 0.8,
0.7, 0.6, 0.5, 0.4, and 0.3 for MPC1–MPC6 respectively.

The movement model uses the recorded IMU measurements as input because creating
an IMU measurement simulator for a walking pedestrian is not part of this work. The
IMU measurements serve as control signals for the movement model, see Chapter 3.
The trajectory recorded by the Vicon motion capturer serves as the ground truth of the
pedestrian movement xGT

u,1:t for the simulation of z1:t and the precision evaluation. This
approach shows the performance of the proposed Channel-SLAM, including the data
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Table 4.1: Parameters used for the evaluation of the simulations.

K 2000 cP 1000
Q 0.36m2 σwx 0.15m/s3/2

σwy 0.15m/s3/2 σBS 10 deg/h
σγ 5 · 10−3m/s3/2 σRx 1 · 10−3m/s1/2

σARW 10 ◦/
√
hr σβ̈ 1 · 10−4m/s4

σω 1 · 10−4Hz pε 1 · 10−3

pζ 1 · 10−3 cerr 3.8

association, compared to the state-of-the-art method presented in [Gen+17].
Table 4.1 summarizes the values of the parameters used in the simulation. The

parameters of the movement model fit all the measured scenarios.
The STD of the Decawave DWM1000 anchor ToA estimation is 10 cm. However,

the STD of the MPC delay estimate is higher due to a low SNR of the reflections. We
set the MPC variance Q = 0.36m2 for the experiments. Therefore, the simulation uses
the same value.

The bias stability of the Xsense IMU (MTI-G-700) gyroscope is 10◦/h, which is
directly used as the movement model parameter σBS. Similarly, the noise density of the
IMU gyroscope is 0.01◦/s/

√
Hz, which corresponds to the angular random walk of 6◦/h

when a 100 Hz bandwidth is assumed. The parameter tuning showed that the increased
value σARW = 10 ◦/

√
hr yields better performance.

The parameters linked with the pedestrian velocity (σwx , σwy , σγ, σβ̈, and σω) are
set to envelop the walking dynamics similar to the WNA model [BLK01]. However,
when the chosen parameters are too large, the deviation of the superordinate particles
is also large, resulting in a high number of modes of the estimated posterior PDF, which
significantly decreases the precision.

Fig. 19 shows an example of the simulated CIRs for recorded scenario number one.
The random outages of the noisy MPC observations provide a short time track similar
to an actual MPC parameter estimation provided by KEST. The simulation is simplified
by using a constant amplitude for all MPCs because Channel-SLAM does not directly
use the amplitude information.

Fig. 20 shows the recorded ground truth of the pedestrian movement, one realization
of the Channel-SLAM using the proposed stochastic data association algorithm and
pedestrian transition model, and one realization of the state-of-the-art Channel-SLAM
without the stochastic data association and with the Rician transition model. The
position estimators use simulated MPC parameters. The transition models use IMU
measurements. Fig. 20a and Fig. 20b show the first and the second scenario, respectively.

Fig. 21 compares the performance of the Channel-SLAM using the proposed stochas-
tic data association algorithm and pedestrian transition model with the state-of-the-art
approach without the stochastic data association and with the Rician transition model.
The solid and dotted lines illustrate the first and second scenarios, respectively.

Fig. 21a shows the RMSE evolution throughout the experiments. In contrast to
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Figure 19: The simulated CIR with ground truth MPCs for scenario number one. The MPC
outage is designed to achieve the time percentage of visibility 0.8, 0.7, 0.6, 0.5, 0.4, and 0.3 for
MPC1–MPC6, respectively. The simulation does not include the magnitude of the measured
impulse response but only the delays.

the formal state-of-the-art, the RMSE of the proposed algorithm never exceeds 1m for
either scenario. The positioning algorithm with the Rician transition model accumulates
significant RMSE due to sudden pedestrian speed changes. The RMSE can be more than
three times better for the proposed Channel-SLAM. The decrease of the RMSE visible
in the state-of-the-art approach after 60 s and 120 s of the first experiment is caused
by the significant bias between the actual and estimated speed after a sudden change
in the pedestrian’s walking style. The velocity bias can cause the movement model to
catch up with the actual position causing the unintuitive behavior where the RMSE
decreases. This is a severe problem since the model misalignment causes a significant
bias between the estimated posterior PDF and the optimal posterior PDF obtained if
the positioning algorithm correctly incorporates available information. The result of
such a biased posterior PDF is that the positioning algorithm is not aware of its true
precision, which could lead to severe damage. The newly proposed approach minimizes
the posterior PDF bias by using a pedestrian transition model that models the specific
nature of the pedestrian walk better than the Rician transition model.

The empirical CDFs in Fig. 21b show the overall comparison of the proposed Channel-
SLAM with the state-of-the-art approach. The precision of the proposed algorithm out-
performs the state-of-the-art approach in each simulated experiment. The additional
grid lines mark the 90% confidence interval of the RMSE for each plot. For the first sce-
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(a) The simulation of scenario number one.
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(b) The simulation of scenario number two.

Figure 20: The layout of testing scenarios and the comparison of the performance of the
Channel-SLAM using the proposed stochastic data association algorithm and pedestrian tran-
sition model with the state-of-the-art Channel-SLAM without the stochastic data association
and with the Rician transition model. The position estimators use simulated MPC parameters.
The transition models use IMU measurements.
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(a) The RMSE comparison throughout the experiment duration.
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(b) The RMSE empirical CDF over the runs of the simulation. The additional grid lines mark the 90%
confidence interval for each plot.

Figure 21: The comparison of the performance of the Channel-SLAM using the proposed
stochastic data association algorithm and pedestrian transition model with the state-of-the-art
Channel-SLAM without the stochastic data association and with the Rician transition model.
The solid and dotted lines illustrate the first and the second scenarios, respectively. The position
estimators use simulated MPC parameters. The transition models use IMU measurements.
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nario, the 90% confidence interval of the proposed algorithm’s RMSE is ±0.58m, while
for state-of-the-art, it is ±1.32m, and ±1.21m is achieved using only the IMU-based
movement model. For the second scenario, the 90% confidence interval of the proposed
algorithm’s RMSE is ±0.67m, while for state-of-the-art, it is ±1.05m, and ±1.03m is
achieved using only the IMU-based movement model.

The algorithms’ computational complexity depends not only on the setting of the
algorithm parameters but also on the number of the MPCs, values of the MPC param-
eters, and the number of KEST outages. The algorithms implemented in MATLAB
R2018b and executed on a desktop computer took, on average, 96.6min and 91.3min
for the proposed and the state-of-the-art algorithms, respectively, for one run of the
first scenario. For the second scenario, 73.4min and 71.5min for the proposed and the
state-of-the-art algorithm, respectively.

Comparing the proposed Channel-SLAM with the state-of-the-art approach shows
that the data association capability and the pedestrian transition model yield signifi-
cantly better position estimation performance.

Evaluations of Precision Based on Measurement

This section compares the precision achieved by the Channel-SLAM using the proposed
stochastic data association algorithm and pedestrian transition model with the state-
of-the-art Channel-SLAM without the stochastic data association and with the Rician
transition model [Gen+17]. The MPCs extracted from the CIR using the KEST algo-
rithm are used to evaluate the position estimation precision. The CIR is measured using
one low-cost Decawave DWM1000 anchor.

Fig. 23 shows the recorded ground truth of the pedestrian movement, one realization
of the Channel-SLAM using the proposed stochastic data association algorithm and
pedestrian transition model, and one realization of the state-of-the-art Channel-SLAM
without the stochastic data association and with the Rician transition model. The
position estimators use estimated MPC parameters obtained from measured CIR using
one Decawave DWM1000 anchor placed at position VT1. Fig. 23a and Fig. 23b show
the first and the second scenario, respectively. The parameters used in the experiment
are the same as the parameters used for the simulation, given in Table 4.1.

Fig. 22 shows the output of the KEST algorithm estimating the parameters of the
MPCs from the recorded CIR during experiment scenario number one. The scatter plot
color map indicates the estimated MPC magnitude. Additionally, based on the ground
truth of the pedestrian movement, the scatter plot shows the calculated theoretical
delay of the MPCs MPC1–MPC6 originating from VT1–VT6, respectively. The scatter
plot shows more than the six MPCs. Those additional MPCs might be caused by
multiple reflections of the transmitted signal and by other scatterers. For the sake of
plot readability, the plot shows only MPC1–MPC6. However, the positioning algorithm
utilizes all of the available MPCs.

We can see that the calculated theoretical delay indicated by the dashed lines in
Fig. 22 matches the KEST estimate when detectable. However, the MPCs are often
distorted and cannot be tracked all the time reliably. Hence, the algorithm must be ro-
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Figure 22: Comparison of the estimated CIR with the ground truth MPCs originating from
VTs for scenario number one. The magnitude of the estimated CIR ∥αℓt∥ is shown by the
scatter plot color. The receiver provides the amplitude measurement as a 16-bit number. The
individual MPCs can be easily lost due to shadowing by the pedestrian’s body and by other
obstacles.

bust to deal with outages occurring even more often than for the professional broadband
channel sounder used in [Gen+17] when low-cost hardware is used.

Additionally, KEST may associate incorrect MPCs during the tracking. For example,
this is visible at t = 35 s, where MPC3 is wrongly assigned, and its delay decreases
towards MPC2. Since only MPC1 and MPC3 are observed at that point, this faulty
assignment would cause a significant positioning error by steering the estimated position
sideways.

However, this wrongly tracked MPC is successfully recognized by the KEST error de-
tection algorithm described in Section 4.2, and the KEST-based association is dropped.
The effect of this algorithm is apparent in scenario one, marked using solid lines, in
Fig. 24a, where the RMSE of the state-of-the-art algorithm starts to increase. In con-
trast, the RMSE of the proposed data association algorithm starts to decrease shortly
after.

The proposed Channel-SLAM improves the precision of the position estimation, as
already mentioned in the previous paragraph. This is depicted in Fig. 24a, where the
comparison of the state-of-the-art approach with the proposed Channel-SLAM approach
is illustrated using the RMSE. The solid and dotted lines illustrate the first and the
second scenarios, respectively. The RMSE of the proposed algorithm never exceeds 1m
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(a) The evaluation of scenario number one.
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(b) The evaluation of scenario number two.

Figure 23: The layout of testing scenarios and the comparison of the performance of the
Channel-SLAM using the proposed stochastic data association algorithm and pedestrian tran-
sition model with the state-of-the-art Channel-SLAM without the stochastic data association
and with the Rician transition model. The position estimators use estimated MPC parameters
obtained from measured CIR using one Decawave DWM1000 anchor placed at position VT1.
The transition models use IMU measurements.
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(b) The RMSE empirical CDF over the runs of the simulation. The additional grid lines mark the 90%
confidence interval for each plot.

Figure 24: The comparison of the performance of the Channel-SLAM using the proposed
stochastic data association algorithm and pedestrian transition model with the state-of-the-art
Channel-SLAM without the stochastic data association and with the Rician transition model.
The position estimators use estimated MPC parameters obtained from measured CIR. The
solid and dotted lines illustrate the first and the second scenarios, respectively.
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for both scenarios, unlike the state-of-the-art approach exceeding 1m in both scenarios.
The empirical CDFs in Fig. 24b shows the overall comparison of the proposed

Channel-SLAM with the state-of-the-art approach. The precision of the proposed algo-
rithm outperforms the state-of-the-art approach in each experiment.

The additional grid lines mark the 90% confidence interval of the RMSE for each
plot. For the first scenario, the 90% confidence interval of the proposed algorithm’s
RMSE is ±0.81m, while for state-of-the-art, it is ±1.31m. For the second scenario,
the 90% confidence interval of the proposed algorithm’s RMSE is ±0.80m, while for
state-of-the-art, it is ±1.50m.

The average duration of one run for the first scenario is 54.5min for the proposed
and 48.1min for the state-of-the-art algorithm. For the second scenario, 59.2min and
53.9min for the proposed and the state-of-the-art algorithm, respectively.

The comparison of the proposed Channel-SLAM with the state-of-the-art approach
shows that the data association capability proposed in this work yields significantly
better precision in the position estimation.

When the low-cost Decawave DWM1000 anchor is used, the MPCs are observed for a
lower percentage of the time, and the outage can last longer compared to the professional
broadband channel sounder used in [Gen+17]. During the KEST outage, the variance of
system position increases, and when the MPCs re-occur, the initialization process creates
new subordinate particle filters to start estimating the VT again. However, the variance
of the system position is reflected in the variance of the VT via the initialization process.
Thus, re-occurring VTs cannot improve the position estimation when the state-of-the-art
approach is used for positioning. On the other hand, if the data association is performed
and some of the system position particles are associated with a previously observed VT,
the variance of the position estimation decreases immediately. This process can recover
the precision after an MPC outage.
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5
Gaussian Mixture Model for Virtual

Transmitter Estimation

This chapter aims to improve the speed and scalability of the state-of-the-art Channel-
SLAM positioning algorithm [KG20]. The Channel-SLAM is based on a RBPF [Dou+00].
Its computational complexity depends linearly on the number of particles. I propose a
method that allows decreasing the required number of particles significantly.

I present a novel idea to represent the VTs by a GMM rather than by a PF [Aru+02].
The proposed method learns the GMM parameters online. The efficient learning schedule
allows initializing VTs using orderly less GMM components than a PF would require.
Moreover, I propose a learning schedule that efficiently releases and reuses computational
resources, which further improves the speed of the Channel-SLAM.

This chapter describes the findings I published in [KG21]. Hence, I use citations
from this publication throughout this chapter.

5.1 Modeling Virtual Transmitter with a Gaussian
Mixture Model

Since the VT posterior PDF is nongaussian and, in most cases, a multimodal, its exact
evaluation is impossible. Approximative methods provide a solution to this problem. I
propose a GMM-based approximation of the VT posterior PDF in this work. Generally,
the GMM allows a tractable approximation of an arbitrary PDF [AS72]. The calculation
power and available memory limit the maximum possible GMM order, limiting the PDF
approximation precision.

The system state at time step t is obtained from (4.1) as

xu,t =
[
xT
Rx,t,θ

T
t

]T
. (5.1)
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The state of ℓ-th VT at time step t is obtained from (4.2) as

xv,ℓ t =
[
xT
Tx,ℓ t, bv,ℓ t

]T
. (5.2)

The GMM approximating the VT’s PDF is defined as

p(xv,ℓ t) ≈
P∑

p=1

w
( p)
ℓ t|t−1N

(
x
( p)
v,ℓ t,Σℓ t

)
, (5.3)

where each mixture component is defined by a Gaussian distribution with a mean x
( p)
v,ℓ t,

covariance matrix Σℓ t, and mixture weight w
( p)
ℓ t|t−1.

The GMM-based VT approximation is a two-step process. In the beginning, the VT’s
prior PDF is approximated by the GMM. The algorithm uses each new VT observation
zi t to update the GMM, estimating the posterior PDF.

A simple method to approximate the VT is to draw a set of samples from its prior
PDF and use it as the mean values of the GMM components. The covariance matrix
of each component is the same and is selected according to desired precision of the
approximation. However, the smaller the covariance matrix, the larger the GMM order
must be.

Before defining the VT’s prior PDF, a short discussion is necessary. Prior the first
VT observation, a uniform distribution inside a sphere centered at xRx,t would define
the prior VT PDF. Since its radius is infinite, it is impossible to approximate such PDF
by sampling a finite number of components from it. The transmitter’s range reduces
this radius. However, the required number of components is cubic in the range defining
the prior PDF sphere diameter. Moreover, most of the prior PDF sphere volume would
have almost zero likelihood after the first observation. The calculation load of such
an approach is infeasible even for today’s computers. An alternative method used in
this work leverages the fact that the posterior PDF after the first observation has a
closed-form solution.

Looking at the observation likelihood

p(zi t | xu,t,xv,ℓ t) =
1√
2πQ

e−
(zi t−∥xRx,t−xTx,ℓ t∥−bv,ℓ t)

2

2Q , (5.4)

one can notice that a right circular cone defines the equiprobable plane. The right
circular cone is given by

∥xRx,t − xTx,ℓ t∥2 = (zi t − bv,ℓ t)
2 . (5.5)

Assuming the VT’s prior PDF as a sphere with a positive radius centered at xRx,t gives
posterior PDF in the same format as (5.4) but constraining bv,ℓ t to be nonnegative.
Also, the posterior PDF has a different normalization constant than (5.4).

This observation motivates an efficient VT initialization that directly draws samples
from the posterior PDF obtained after the first observation. In detail, the algorithm

64



5.1. MODELING VIRTUAL TRANSMITTER WITH A GAUSSIAN MIXTURE
MODEL

draws the required number of samples of xTx,ℓ t uniformly inside a circle centered at
xRx,t. The first observation defines the circle radius. Since the observation is assumed
to be a gaussian distributed random variable

zi t = N (µzi t , Q) (5.6)

with mean µzi t and variance Q, it is sufficient to draw samples inside a circle with a radius
zi t + 5

√
Q to ensure the correct VT position is inside with a probability higher than

99.9999%. Finally, each position sample is appended with the additional propagation
distance given by

bv,ℓ t = zi t − ∥xRx,t − xTx,ℓ t∥, (5.7)

where for p-th sample of VT position x
( p)
Tx,ℓ t the corresponding sample of the additional

propagation distance b( p)v,ℓ t is obtained using random values of zi t drawn from (5.6). This
method provides samples of xv,ℓ t distributed according to the posterior PDF calculated
after the first observation.

Up to this point, the VT approximation is similar to the state-of-the-art approach
[KG20]. The main difference is that the Regularized Particle Filter (RPF) [Aru+02]
used in [KG20] introduces a Brownian movement to VT particles during the resampling
of a PF. Since the state-of-the-art Channel-SLAM requires the stationary VTs, the
Brownian movement violates this condition. Setting the RPF kernel sufficiently small
that the Brownian movement is negligible compared to the xRx,t movement solves this
problem. However, the number of required RPF particles grows with 1/σ2, where σ2 is
the variance of the Brownian movement. Hence, a compromise between the number of
particles and the validity of the approximation must be made. In general, the number
of required particles is significant and does not allow real-time processing.

On the other hand, the GMM-based approach assumes stationary particles precisely
according to the Channel-SLAM derivation. The mean values are sampled as described
above. The weight of components is initialized as

w
( p)
ℓ t|t−1 =

1

P
. (5.8)

The initial position covariance Σℓ t of each component is constant and is proportional to
the sample estimate of the position covariance matrix

Σ̂xTx,ℓ t
=

∑

p

w
( p)
ℓ t|t−1

(
x
( p)
Tx,ℓ t − µ̂xTx,ℓ t

)(
x
( p)
Tx,ℓ t − µ̂xTx,ℓ t

)T
, (5.9)

where the estimated mean is given by

µ̂xTx,ℓ t
=

∑

p

w
( p)
ℓ t|t−1x

( p)
Tx,ℓ t. (5.10)

The variance of the additional propagation distance σ2
bv,ℓ t

is set to zero to reflect the
stationarity of VTs.
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The Channel-SLAM aims mainly for position estimation using the VT position in-
formation. Keeping this goal in mind, after initializing a new VT, it provides minimum
information for the position estimation. After more information about the VT’s state
is collected, the VT posterior PDF starts to support the position estimation. From
the positioning point of view, it does not matter if a newly initialized VT’s lack of in-
formation is encoded by a large number of particles approximating an almost uniform
distribution or by a low order GMM with large covariance of its components. However,
from a computational complexity point of view, the GMM can be orderly faster since
the number of components is small compared to the RPF.

Rather than tracking the posterior PDF as precisely as possible using RPF, the GMM
starts with a coarser approximation of the posterior PDF and learns the posterior PDF
by sequentially incorporating new observations. The GMM sequential learning process
is related to RPF in a sense it calculates posterior weights and performs resampling.
However, it uses an exploration technique in the resampling step to learn the posterior
PDF sequentially without introducing a Brownian movement to its components.

5.2 Gaussian Mixture Model Resampling
Like [KG20], the systematic resampling scheme [Aru+02] provides a set of new GMM
components by drawing the components with the probability corresponding to their
weights w

( p)
ℓ t|t−1. However, the components are not drawn multiple times during the

systematic resampling step. The proposed algorithm draws each component not more
than once and assigns it a weight corresponding to the required occurrences. Hence, the
PDF obtained by this resampling is equivalent to that obtained by systematic resampling
but has fewer components.

The key idea is to reuse the resources released by resampling without repetition for
exploration to improve the posterior PDF approximation and reduce the PF’s degeneracy
phenomenon. Sampling from the GMM with P unq unique components obtained during
the resampling without repetition provides P add exploration samples. Assigning the P add

samples with a constant weight, appending with P unq components, and normalizing the
new set of P = P add + P unq weights produces a new GMM approximating the VT
posterior PDF.

Setting the p-th GMM component position covariance to (5.9) results in a covariance
decreasing as the GMM becomes more sure about the VT position. However, setting
the b

( p)
v,ℓ t variance proportional to its sample-based estimate would produce an overly

pessimistic model. Rather than that, one can use (5.7) to define the nonlinear model
between the VT position and the b

( p)
v,ℓ t . In other words, the b

( p)
v,ℓ t and x

( p)
Tx,ℓ t should

reflect that the x
( p)
v,ℓ t is always close to the surface of the right cone that defines VT’s

prior PDF as in Section 5.1. Following the VT stationarity given by the Channel-SLAM
derivation, the variance b

( p)
v,ℓ t is set to zero.

The P add exploration samples are sampled from the GMM while assuring the explo-
ration samples would be in the vicinity of the VT’s prior PDF. The sampling from a
GMM consists of three steps. First, a p-th GMM component x( p)

Tx,ℓ t is selected with prob-
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ability w
( p)
ℓ t|t−1. Then, one sample x

(new)
v,ℓ t is drawn from a gaussian distribution defined

by the parameters of the p-th GMM component. Finally, the b
(new)
v,ℓ t value is updated

according to
b
(new)
v,ℓ t = b

( p)
v,ℓ t +

∥∥∥xRx,t − x
( p)
Tx,ℓ t

∥∥∥−
∥∥∥xRx,t − x

(new)
Tx,ℓ t

∥∥∥. (5.11)

To demonstrate, sampling a x
(new)
v,ℓ t where, σ2

b
(new)
v,ℓ t

= 0 shifts x( p)
v,ℓ t in a plane of constant

b
( p)
v,ℓ t , which might no longer be a point on the prior PDF right cone’s surface given by

(5.5) at the time step of the first VT observation. (5.11) shifts x(new)
v,ℓ t in the bv,ℓ direction

back on the surface of the prior PDF.
The presented exploration schedule provides new GMM components, which are both

close to a current posterior PDF’s areas of high probability and near the surface of the
right cone, defining the VT’s prior PDF from which the initial set of GMM components
was sampled.

Thanks to this approach, the new VT can be initialized with a significantly sub-
sampled prior PDF and still find the correct VT position by exploring the prior PDF
during the positioning. A disadvantage of this approach is that the new components do
not carry information from the previous measurements. Hence, it is not a statistically
optimal approach. The optimal approach requires evaluating the likelihood of this new
component for all previous measurements that present a high computational load and
requires storing the whole measurement history.

The last observation concerns the rate of exploration. The exploration step is done
only when resampling is required. When only a handful of components are present
after resampling, which manifests the degenerative behavior and poor posterior PDF
approximation, the number of released resources for exploration is large. Hence the
poorer the posterior PDF representation, the stronger the exploration. The algorithm
automatically determines how strong the exploration should be. Interestingly, it follows
the intuition that more exploration is necessary when the VT posterior PDF poorly
reflects the actual posterior PDF.

5.3 Performance of the Gaussian Mixture Model
To show the advantage of the presented method, I compare it with the method [KG20],
which is referenced as a state-of-the-art approach throughout this chapter. I use simula-
tions of a band-limited multipath radio channel. Each simulation assumes one physical
transmitter and five reflections. The WNA movement model [BLK01] simulates the
system trajectory. I assume that a channel parameter estimator approaches the CRLB
when processing the received ranging waveform. The noisy delay estimates serve as an
input for the algorithms. Finally, I assume outages of the MPC tracking. The MPC
outage occurs when the amplitude of the MPC decreases below some threshold. I use 3
dB above the noise level as a threshold.

The evaluation compares the proposed algorithm with the state-of-the-art approach
for different particle volumes initializing the VTs. The simulations are performed for ten
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Figure 25: The example of the simulated trajectory is shown in green with the marked beginning
and the end. The randomly generated VTs are marked with blue crosses, where the xTx,1 is
the physical transmitter. The figure shows the RMSE curves for two different particle volumes.

randomly generated scenarios. An example of a randomly generated scenario is shown
in Fig. 25, where the pedestrian walks inside a rectangular room for 100 seconds. All
evaluations are repeated ten times to capture the simulation and evaluation randomness.

Throughout the evaluations, the RMSE is used to compare the algorithm perfor-
mance. The delay estimation variances differ significantly since each VT has a dif-
ferent propagation loss The evaluated RMSE for each VT is normalized by its delay
STD to show the VT estimator’s performance. The system and VT position estima-
tion performance over time is shown in Fig. 26a and Fig. 26b. The plots show two
different volumes of simulated particles. The particle volume size is defined by the par-
ticles needed to approximate the system state; however, it depends on the MPC delay
and variance during the initialization. Hence, the number of particles varies between
1× 104 < Nparticles < 5× 106. The different volumes of particles for individual simula-
tions are obtained by changing one multiplicative constant, influencing the number of
particles used to initialize VT.

I assume that the initial system state is known. Hence, the initial RMSE in Fig. 26a
starts at zero and slowly increases because the VTs are not yet estimated well enough to
correct the system state prediction error. The VTs are initialized uniformly within the
whole prior PDF given by (5.5). Hence, in Fig. 26b, the VT RMSE is maximal initially
and decreases over time.

The plotted CDFs in Fig. 27 show better the performance improvement. The addi-
tional dashed plot shows the performance when the number of VT particles is increased
ten times than the minimum Nparticles ≈ 1× 104. While the state-of-the-art method still
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Figure 26: The RMSE of the system xRx,t (a) and VT position (b) was estimated using the
proposed PF resampling method marked by a blue line and the state-of-the-art Channel-SLAM
shown by a red line. The corresponding STD normalizes each VT allowing one to plot one
generalizing RMSE curve for the VTs with different observation covariance. The figures show
the RMSE curves for two different particle volumes.
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needs more particles to approach its potential, the proposed algorithm already outper-
forms the best precision achievable by the state-of-the-art algorithm.

To fully capture the sensitivity of the compared algorithms concerning the number of
particles, Fig. 28 shows the 90% confidence interval of the RMSE achievable for a given
number of particles. Fig. 28b shows that for an extremely low number of VT particles,
the RMSE converges to a common point. The lowest point is using approximately ten
particles per VT per system particle.

With the number of particles this low, the probability of converging to a correct VT
position is marginal. However, the measurements help estimate the system position even
for the lowest number of particles. When tracking the system position using only the
movement model, the RMSE is more than twice the RMSE < 2.5m achieved using VT
with the lowest number of particles.

With the increasing number of particles, the RMSE decreases faster for the proposed
algorithm than in the state-of-the-art approach due to reusing redeemed resources during
the resampling step to explore the areas where the likelihood is assumed to be significant.
The proposed algorithm allows obtaining the assumed maximal achievable precision for
orderly fewer particles. The scenario, along with the VT placement and the system
trajectory, limits the precision, making calculating the true maximal achievable precision
difficult. The maximal achievable precision is when the RMSE is no longer improving
with an increasing number of particles.

Interestingly, the proposed method can achieve better precision even for a large
volume of particles, where both algorithms would be expected to converge to the same
precision. This might be caused by the fact that the VT in the state-of-the-art approach
performs a weak Brownian movement during the kernel resampling step. In contrast,
the GMM-based method assumes static VTs as required by the Channel-SLAM and
performs exploration to approximate the posterior PDF using a low volume of particles.

The better the VT state estimate accuracy, the better the system state accuracy.
Hence, the VT precision affects the RMSE of the system state estimation depicted in
Fig. 28a similarly.
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Figure 27: The CDF of the system xRx,t (a) and VT position (b) RMSE was estimated using
the proposed PF resampling method marked by a blue line and the state-of-the-art algorithm
shown by a red line. The corresponding STD σ normalizes each VT error to be able to plot
one generalizing RMSE curve for the VTs with different observation covariance. The figures
show the RMSE curves for three different particle volumes.
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Figure 28: The comparison of the proposed and the state-of-the-art PF resampling method
RMSE achieved for a given number of particles. The 90% confidence intervals of RMSE for a
system (a) and VT (b) position are plotted.
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6
Channel Parameter Estimation Using Artificial

Neural Network

This chapter studies the possibility of using an ANN to estimate the parameters of the
multipath radio channel. The experiments using ANN for radio channel estimation are
a recent addition to the growing ecosystem of ANN applications.

One of the first experiments shows the CNN application for AoA estimation in acous-
tics systems [CH17]. This method is a dictionary-based approach, where one AoA is
extracted as an index of the output layer maximum, limiting the achievable precision
and number of possible signal sources. The latter approach in [APV18] solves the single
AoA limitation by using ANN to preprocess the received signal. The resulting pseudo-
spectrum is processed by the MUSIC algorithm to obtain multiple AoAs. Since the
number of ANN outputs does not limit the MUSIC algorithm resolution, the presented
method is no longer a dictionary-based approach.

Similar ideas are used in the following research aiming for the line spectra estimation
in [IBF19; IMF19; JLR19]. An ANN preprocesses the received signal, and the output is
then processed by classical frequency estimation algorithms like MUSIC or root-MUSIC.

For the ANN, it is a challenging problem to directly estimate desired radio channel
parameters like AoA, ToA, TDoA, or Doppler frequency. This approach was briefly
studied in [IBF19], where some open problems were highlighted, e.g., how to output a
variable number of radio channel parameters with a fixed ANN architecture and how to
compare this set of outputted parameters with the ground truth to obtain a loss function
for the ANN training. The ANN-based direct estimation of the LoS component delay in
the multipath radio channel is proposed in [HYK21].

The previous work lack comparison of achievable performance with the theoretical
limit given by CRLB. Only [JLR19] compares the performance with the CRLB, but it
uses ANN to preprocess the signal, and the frequency is estimated using the MUSIC
algorithm.
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This chapter provides a novel idea of MPC parameter estimation using convolutional
ANN architecture trained with a novel multi-loss function. The achieved results are com-
pared with the theoretical limits and state-of-the-art approaches to channel parameter
estimation.

The main contributions presented in this chapter are:

1. I compare the ANN-based estimator precision with the theoretical limit given by
the CRLB and with the benchmark algorithms approaching this theoretical limit.

2. I propose and evaluate a method to solve the problem of unknown model order.
The ANN has a fixed number of outputs, but the model order, or the number of
delays present in the signal, can be different for each radio channel measurement.
The unknown model order problem is overcome by appending the outputted delay
estimations with a set of weights. The weights are trained to reflect the probability
that the corresponding delays are active or inactive.

3. I introduce a novel loss function for the ANN training. It was found that the ANN
using the delay Mean-Square Error (MSE) loss function for training struggles to
approach the theoretical limit given by the CRLB. The proposed combination of
the delay MSE, binary cross-entropy and a loss function based on the ML radio
channel estimation technique significantly improves the ANN model performance.
It even approaches the CRLB for a radio channel with a single MPC.

4. I propose a noise regularization technique, which adds noise to the input dataset
with the same variance as the noise present in the radio channel. This technique
is comparable to using an infinite size training dataset, and it shows that it suc-
cessfully suppresses the ANN overfitting problem.

5. Finally, I propose three different methods for the data association of the ANN
outputs with the true values, which is vital for ANN training.
The first data association method uses an ordered set of true values. Hence, the
ANN needs to learn to output the delays ordered as well.
The second approach implements a suboptimal but fast data association algorithm
directly into the ANN loss function. Therefore, the ANN does not need to learn
to output the delays in a specific order.
Finally, the third approach is the optimal Munkres data association algorithm im-
plemented directly in the ANN loss function. The evaluation shows that removing
the task of correct ordering from the ANN and implementing it directly to the
ANN loss function improves the precision of the trained models. Moreover, it has
a significant impact when the model order is unknown.

6.1 Dataset Generator
This section describes the dataset generator that generates examples of the multipath
radio channel observations and the corresponding MPC parameters describing the mul-
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Table 6.1: List of all configurable parameters of the dataset generator

nMPC number of MPCs
nSa number of CIR samples

nData size of the whole dataset
SNRmin minimal SNR of MPC in dB
SNRmax maximal SNR of MPC in dB
rndVis random number of visible MPCs
minSep minimal separation between MPC delays

tipath radio channel. The generated dataset serves to train an ANN architecture to
estimate the multipath radio channel parameters from a noisy radio channel observa-
tion.

The number of MPCs is selected before generating the training dataset by the nMPC
parameter. However, it is possible to have a random number of MPCs in each generated
measurement by switching on the rndVis parameter. Then, the nMPC serves as the
maximal possible number of MPCs. The actual number of MPCs is selected randomly
and uniformly between 1 and nMPC.

The SNR of each MPC is randomly and uniformly selected between SNRmin and
SNRmax. Note that the SNR is sampled uniformly in the dB scale; hence, the SNR
distribution in the linear scale follows the log-uniform distribution.

The minSep parameter gives the minimal separation between two MPCs. This pa-
rameter is important to control or avoid the problem of two closely spaced sources
[VBC14]. The delay value sorts the true MPC parameters in the dataset in ascend-
ing order. The set of all configurable parameters in the dataset generator is given in
Table 6.1.

The measurements are generated directly from the multipath propagation model
(1.9) in the frequency domain as

S = B (τ )α+ n = e−j2πFτT (∥α∥ ⊙ e−j∠α
)
+ n, (6.1)

where F = [0, . . . ,m, . . . ,M − 1]T, delays τ (1.7) are randomly sampled from a uniform
distribution on the interval [0, 1) but assured that no pair of delays is closer than minSep,
MPC magnitudes ∥α∥ (1.8) are obtained from randomly sampled SNR, ⊙ is Hadamard
product, MPC phases ∠α are sampled from a uniform distribution on the interval [0, 2π),
and n is multivariate normally distributed noise

n ∼ N
(
0, 2π2I

)
(6.2)

with identity matrix I and rank(I) = M . Finally, the generated measurements repre-
senting the CIR are obtained from (6.1) using the IFFT. The real and imaginary parts
of the CIR are appended before being inputted to the ANN.
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6.2 Artificial Neural Network for Delay Estimation
The architecture and training of the ANN consist of many hyperparameters having a
massive impact on the achievable precision of the estimation. In this section, I describe
all the aspects taken into account when designing the ANN architecture and configuring
the training schedule of the proposed ANN. I use the TensorFlow library [Aba+15]
to design the ANN architecture in an organized manner and leverage the automatic
differentiation that simplifies the use of custom ANN loss functions. The aim is to find
an ANN architecture with minimal design choices and hyperparameters to tune while
assuring robust convergence properties.

The proposed ANN architecture consists of a Gaussian noise layer, normalization
layer, four convolutional layers, and two fully connected layers. All convolutional layers
and the second last fully connected layer use the ReLU activation function. The last
fully connected layer has twice as many outputs as the maximum expected number
of MPCs. The first nMPC outputs represent estimated delays τ̂ and use the ReLU
activation function. The remaining nMPC outputs represent estimated weights ŵ and
use a logistic sigmoid activation function

σ (x) =
1

1 + e−x
. (6.3)

The logistic sigmoid activation function assures that each weight in ŵ is scaled to
the interval (0, 1), where 0 indicates that the MPC is inactive and 1 indicates that the
MPC is active. Thus, it can be used as a probability that the corresponding delay is
active or inactive. The weights ŵ provide a simple method for coping with a changing
number of MPCs while the ANN architecture is fixed.

When the ANN architecture is large enough, consisting of enough tunable param-
eters, it assures that it can learn an arbitrary function from the training data. On
the other hand, the ANN architecture is flexible enough to memorize the training set
perfectly, which leads to severe overfitting. The standard ANN architecture usually
contains some regularization method [Bis06] to resist overfitting. However, the most
common regularization methods like weight or activity regularization, early stopping,
and dropout are hard to tune to reduce the overfitting but not to cause underfitting.

Experiments show that overfitting and underfitting is a severe problem that causes
the ANN not to get closer to the CRLB. With a significant amount of activity regu-
larization tuning, it was possible to achieve delay precision about ten times worse than
CRLB for one MPC in noise. However, assuming a different number of MPCs, or any
model change caused a significant drop in precision. Interestingly, also the batch size
influences the achievable precision. The achievable precision decreased when the batch
size was larger than 32, probably due to ANN converging to a local minimum. This
behavior is undesirable since it is not possible to fully utilize the parallelization of the
ANN using a Graphics Processing Unit (GPU).

I found that the noise regularization [Rot+19] is significantly more robust to small
changes in the ANN architecture or changes of MPCs number. Therefore, only noise
regularization is assumed in this work. Generally, the noise regularization method adds a
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small amount of Gaussian noise to the input or output of an ANN layer. The TensorFlow
layer GaussianNoise adds Gaussian noise with zero-mean and STD stdIn to the input
data.

I use a trick for the ANN training where the inputted CIR is noise-free, but then
the Gaussian noise layer adds noise with the variance set to achieve the desired SNR.
Intuitively, it can be seen as generating an infinite size training dataset since the noise
added to the noise-free CIR is different in each training epoch. Thanks to this, the
ANN is not overfitting the training data. Moreover, this approach solves the batch size
problem. Now, the batch size no longer influences the achievable precision with the
noise regularization. Thanks to the noise regularization, the training process can fully
utilize the GPU (NVIDIA GeForce GTX 980 Ti) using batch size nBatch = 258 without
getting stuck in local optima.

The Gaussian noise layer is followed by the normalization layer, which normalizes all
noisy CIRs to unit energy. This step is required. Otherwise, the model order might be
estimated based on the CIR energy, which is undesirable. Normalization of the input of
the ANN is always preferable, and the proposed normalization to the unit energy is a
logical choice for the signal processing task.

The training uses Adam [KB17] optimizer with exponential decay defining the learn-
ing rate lr at each training step as

lr = lrInit · lrRatestep/lrStep. (6.4)

The ANN loss function for the delay estimation aims to minimize MSE error between
the predicted and true delays

L (τ , τ̂ ) = (τ − τ̂ )T (τ − τ̂ ) . (6.5)

However, this straightforward error evaluation is not possible since any delay ordering
in vector τ yields the same CIR. This is a problem because, while τ is an unordered
set, the τ̂ outputted from the ANN is always an ordered set. Moreover, the number
of delays is unknown and possibly differs for each CIR, but the cardinality of the ANN
output |τ̂ | is fixed.

Setting the maximum number of output delays large enough can fix the cardinality
problem. However, the possibility of inactivating some delays is needed to allow fewer
delays than the number of ANN outputs. This is achieved by doubling the number of
ANN outputs. Half of the outputs represent delays τ̂ , and the second half represents
the activation probability or weight ŵ of each delay.

The training of an ANN architecture requires a loss function that needs to be mini-
mized. The minimization of the loss function is usually implemented using an effective
backpropagation algorithm [RHW86]. I propose and evaluate three possible solutions
for comparing the predicted delays with the training dataset to obtain a loss function
allowing reliable training of the proposed ANN.

The first and most straightforward solution is to sort the dataset delays and let the
ANN learn to output the delays sorted. Then the delay MSE loss function is

L2 = (τ − τ̂ )T ((τ − τ̂ )⊙w) + Lbce (w, ŵ) , (6.6)
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where the weights are trained using the binary cross-entropy function defined by

Lbce (w, ŵ) = − 1

|w|
(
wT log (ŵ) + (1−w)T log (1− ŵ)

)
. (6.7)

Notice that the true weight vector w is used to omit the influence of nonactive delays
in the first member on the r.h.s. of (6.6). Thanks to this, the delay estimation is not
dependent on the precision of weight estimation. Weight estimation is based on the
second part of the loss function, the second member on the r.h.s. of (6.6). This loss
function is called the ordered loss (Ord) throughout this work.

The following two proposed loss functions aim to remove the task of ordering the
delays from the ANN and encode the unordered nature of delays directly to the loss
function. The first proposal implements a suboptimal association between the members
of τ and τ̂ . It takes the first delay τ1 from τ and finds the best corresponding delay in
τ̂ as

j = argmin
ℓ

(τ1 − τ̂ℓ)
2 , (6.8)

then τ̂j is removed from τ̂ , and the process is repeated for the following members of
τ . This algorithm does not provide optimal associations between τ and τ̂ , but it scales
linearly with the model order |τ | = nMPC. Note that the same indexing is used to
evaluate weight loss. The pseudocode is in Algorithm 1. However, the actual function
can be implemented to apply over the whole batch, and (τℓ − τ̂i)

2 is evaluated only once.
The provided pseudocode aims for readability and not optimality.

The last proposal is to perform an optimal assignment of estimated delays τ̂ with
the ground truth delays τ . Finding the optimal ordering of τ , so that (6.6) is minimized
is a well-known assignment problem with exponential complexity if a naive approach is
selected. This work uses the Hungarian algorithm or the Munkres assignment algorithm,
which complexity is polynomial [Kuh55]. Specifically, I use a Python implementation
that runs in O (n3) time. 1 The text refers to the Munkres assignment algorithm-based
loss function, ordering τ as the Munkres loss (Munk).

Comparing the proposed ANN architecture performance with the CRLB, I found
that the ANN struggles to approach this theoretical limit even in a simple single MPC
scenario with a constant SNR in the whole dataset. This leads us to propose a novel
ANN loss function improving the learning convergence in the vicinity of the CRLB. The
proposed loss function is inspired by the ML solution to channel parameter estimation
in (1.15). This correlation loss is defined as

LC = −sHB (τ̂ ) α̂, (6.9)

where the amplitudes are estimated using BLUE

α̂ =
(
BH (τ̂ )B (τ̂ )

)−1
BH (τ̂ ) s. (6.10)

There are two application notes regarding the proposed correlation loss function. In
some cases, the Tensorflow cannot handle complex numbers while using GPU. Hence, all

1available: http://software.clapper.org/munkres/
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Algorithm 1: Adjacent loss (Adj )
Input: τ ,w, τ̂ , ŵ
Output: L

1 Lτ = 0, Lw = 0
2 for i = 1 : nMPC
3 j = argminℓ (τi − τ̂ℓ)

2

4 Lτ = Lτ + wi (τi − τ̂j)
2

5 Lw = Lw + Lbce (wi, ŵj)
6 τ̂ = τ̂ .remove (ℓ) // remove ℓ-th element
7 ŵ = ŵ.remove (ℓ)

8 L = Lτ + Lw/nMPC

complex-valued variables have to be implemented using real numbers. E.g., the Moore-
Penrose pseudo-inverse in (6.10) is implemented using two real-valued Moore-Penrose
pseudo-inverses as [Fal07]. Also, to improve the precision, I use the Numpy imple-
mentation of the Singular Value Decomposition (SVD) in a double-precision floating-
point rather than the Tensorflow implementation. Finally, the standard Moore-Penrose
pseudo-inverse uses a cutoff parameter to omit weak eigenvalues obtained by the SVD.
However, for correct gradient backpropagation, the weak eigenvalues are substituted by
Inf rather than zero.

Interestingly, the correlation loss function can be viewed as unsupervised learning
since it does not need the ground truth parameters. On the other hand, it cannot
be used alone for the training. If the error between the true and estimated delay is
larger than the 0.5 sampling period, the measured signal s is weakly correlated with
the estimated replica. Moreover, the first derivative of the correlation function is not
guaranteed to point towards the true delay for delay error larger than the 0.5 sampling
period of the measured signal. Hence, the ANN cannot learn to estimate delay using
only (6.9).

The use of correlation loss for ANN-based channel parameter estimation is a promis-
ing novel idea. I train the proposed ANN architecture using a total loss

L = L2 + lossW · LC . (6.11)

Combining one of the proposed loss functions with the ordering of the τ̂ and corre-
lation loss shows superior performance that was impossible to achieve using only (6.6).

6.3 Achieved Results
The main results are comparing the ANN-based channel parameter estimation method
with the theoretical limits given by CRLB and with the ML estimation method SAGE
[Fle+99] and the SLSE [HFR18]. The comparison is made in three stages with an
increasing level of generalization.
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Table 6.2: List of all configurable parameters of the ANN training schedule

nBatch batch size
stdIn STD of input regularization noise
lrInit initial learning rate
lrStep learning rate decay step
lrRate learning rate decay rate

nEpochs number of training epochs
lossFnc training loss functions
lossW weight of correlation loss function
valSplit fraction of dataset used as validation dataset

CNN
1024, (5,1) Dense

(1024)
Dense

CNN
128, (32,1)

3 x CNN
( )h τ

( )nBatch,nSa,1,2

T
T T,é ùë ûWτ

( )CnBatch,2 nMP×

( )2 nMPC×

Figure 29: The core of the ANN architecture, including dimensions, number of filters, kernel
sizes, and number of units of individual layers. The normalized noisy CIR is separated into
the real and imaginary parts along the last axis. Then, it is inputted to the first convolutional
layer as h (τ ).

In the first stage, the performance is studied while estimating the delay of a single
MPC in noise. In the second stage, the complexity is increased by adding an MPC to
the CIR. The final stage is adding the last generalization step, the unknown number of
MPCs in noise. According to Section 6.1, all MPCs are generated with a random delay,
magnitude, and phase.

All presented results are obtained using the same feed-forward ANN architecture.
The details of ANN architecture configuration are summarized in Fig. 29.

The custom normalization layer normalizes the input impulse response, including the
regularization noise, so the energy equals one. All convolutional layers and the following
dense layer use the ReLU activation function. The last dense layer uses ReLU activation
for delay outputs and sigmoid activation for weight outputs. The weight outputs are
active only for training with an unknown number of MPCs.

Also, many hyperparameters are fixed for studied cases. In this study, I focus on the
estimation of well-separated MPCs. For this reason, the minimum separation between
two delays is two samples of CIR. The study of performance for closely separated and
hence highly correlated MPCs is a target for future work. The STD of regularization
noise added during training is adding the required amount of noise to obtain the desired
MPC SNR. The decay step is set as 50 times the ratio between the training data size and
the batch size. As a result, the decay rate defines how much the learning rate decreases
every 50 epochs. The list of fixed parameters is summarized in Table 6.3.

After the training, the ANN model is saved and used to evaluate a newly generated
dataset. The same dataset is then processed using the SAGE and SLSE algorithms. Note
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Table 6.3: List of fixed parameters

nSa 64 nBatch 27

nData 217, 218 lrInit 10−4

SNRmin 15 dB lrStep 50 nData
nBatch

SNRmax 25 dB lrRate 0.9
minSep 2 nEpochs 1000

stdIn 2π/
√
2 · nSa lossW 0.1

that the SAGE algorithm cannot estimate the true number of MPCs and is therefore
provided with the number of MPCs. Hence, the SAGE algorithm [Fle+99] does not
need the model order estimation methods like AIC or MDL. The current state-of-the-art
approach to channel parameter estimation, the SLSE, is a deterministic approximation
approach, which provides MAP estimates of all channel parameters, including the model
order [HFR18]. When multiple MPCs are assumed, the Munkres algorithm [Kuh55] is
used to associate the predicted delays with their true values.

The precision evaluation is done using the PDF of error between the estimated delays
τ̂ and the true delays τ . The fair comparison for different SNR values is achieved by
normalizing the error by the corresponding

√
CRBτ̂ obtained from (1.11).

Performance for single multipath component

First, the training of the ANN using a dataset with random MPC SNR is performed.
Then, 41 datasets with SNR between 15 dB and 25 dB with 0.5 dB step are generated
to evaluate the performance. Each dataset has fixed SNR and consists of 217 impulse
responses with one random MPC delay.

The comparison of the MSE for different values of SNR is shown in Fig. 30a. The
figure shows the MSE as a function of the MPC SNR. The black line shows the theoretical
limit given by the CRLB. The blue τ̂Corr line shows the MSE achieved by the ANN
architecture trained with the combination of the correlation loss function (6.9) and the
delay MSE loss function (6.5) combined according to (6.11). The green τ̂MSE line shows
the MSE achieved by the ANN architecture trained with the delay MSE loss (6.5).
Finally, the red τ̂SLSE and yellow τ̂SAGE lines show the MSE achieved by the SLSE and
SAGE algorithms, respectively.

The SAGE and SLSE closely follow the theoretical limit given by CRLB in the whole
SNR span. The ANN architecture trained using only the delay MSE loss function does
not approach the CRLB. Moreover, with increasing SNR, the performance gap between
the CRLB and ANN is even increasing since the ANN slowly learns to estimate the
delay with the high precision achievable for the higher MPC SNR. This drawback of the
ANN-based approach is successfully mitigated using the newly proposed correlation loss
function (6.9) together with the delay MSE loss function (6.5). When using the weighted
combination of MSE and correlation losses, according to (6.11), the delay estimation of
one MPC in noise approaches the CRLB theoretical limit and is comparable with both
SAGE and SLSE algorithms.
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(a) Comparison of the MSE for different values of MPC SNR.
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normalizes the delay error obtained from all 41 datasets with different SNR values.

Figure 30: Performance comparison of the proposed ANN-based method with the CRLB the-
oretical limit, the SAGE, and SLSE algorithms for a single MPC in noise. The proposed
ANN-based method using a combination of the delay MSE and the correlation loss functions
τ̂Corr is further compared with the ANN using only the delay MSE loss function τ̂MSE for train-
ing.
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Table 6.4: Comparison of mean and variance of the proposed ANN-based estimator with the
theoretical CRLB and the benchmark approaches SAGE and SLSE for a single MPC in noise.
The overall MSE estimation is obtained as µ2 + σ2.

Method µ/
√
CRBτ̂ σ2/CRBτ̂ MSE/CRBτ̂

τ̂Ideal 0 1 1
τ̂Corr +1.5e-2 1.030 1.031
τ̂MSE -3.1e-2 1.281 1.281
τ̂SLSE +4.8e-4 1.022 1.022
τ̂SAGE +4.0e-4 1.014 1.014

If the
√
CRBτ̂ normalizes the delay estimation error, it is possible to compare the

error CDFs of all approaches independently of the SNR value. After normalizing the de-
lay estimation error by the corresponding

√
CRBτ̂ , the theoretically optimal error CDF

becomes the CDF of zero-mean , unit variance normal distribution N (µ = 0, σ2 = 1).
Fig. 30b shows the error CDF of the delay estimation approaches and compares them
with the theoretically optimal error CDF. Note that Fig. 30b uses the error rather than
the absolute value of the error because the deviation from the zero-mean value would
be better visible in the CDF when the error is not in absolute value.

The SAGE and SLSE error closely follows the theoretical error CDF. The ANN-based
estimator error also follows a normal distribution. However, it can be noticed that the
normalized error variance of the ANN-based approach using the delay MSE loss function
is larger than one. When the newly proposed correlation loss is utilized during the ANN
training, the variance decreases and is similar to the optimal benchmark methods SAGE
and SLSE.

Since the error CDF of all delay estimation methods closely follow the normal dis-
tribution, the first two moments of the error PDF normalized by

√
CRBτ̂ suffice as

the performance comparison. The mean and variance of all methods are included in
Table 6.4. The experiments show that the ANN-based approach tends to have a higher
mean delay estimation error than the classical approaches.

Usually, fine training with a reduced learning rate can decrease the mean of delay
estimation error. During the fine training, the sign of the mean changes. Hence, the
rather high mean error might be linked with the Adam optimizer overshoot issue. Using
the AMSGrad [RKK19] optimizer to improve the convergence of the Adam Optimizer
did not improve the performance.

Performance for Two Multipath Components

First, the training of the ANN using a dataset with random MPC SNR is performed.
Then, 41 datasets with SNR between 15 dB and 25 dB are generated to evaluate the
performance. Each dataset has a fixed SNR of both MPCs and consists of 215 CIRs with
two random MPC delays. The minimal delay separation is set to τ∆MIN

= 2/nSa. The
delay separation assures that the MPCs can always be distinguished as separate MPCs.
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The datasets with constant SNR show the performance for the given SNR, but it does
not capture the proper performance. In reality, each MPC in a CIR can have different
SNR. Therefore, I create an additional dataset where each MPC has a random SNR.
The SNR of each MPC is sampled uniformly in a range between 15 dB and 25 dB. The
random SNR dataset serves to evaluate the overall performance of the trained model.
The random SNR dataset consists of 218 CIRs.

The comparison of the MSE for different values of SNR is shown in Fig. 31a. The
figure shows that the SAGE and SLSE closely follow the theoretical limit given by the
CRLB in the whole SNR span. The ANN architecture trained using only the delay MSE
loss function (6.5) has again worse performance than the architecture trained using the
combination of the delay MSE and the correlation loss functions in (6.6).

Three different methods of data association during the training are compared. When
using the ordered loss marked as Ord, the ANN must learn to order the outputted delays
in ascending order.

The suboptimal data association method marked as Adj is associating each true delay
value with the best corresponding prediction one at a time. The Adj data association
method performs better than the Ord method but needs a longer training time.

The last data association method (Munk) uses an optimal Munkres algorithm to
associate the predicted delays with the true values during the training. The ANN trained
using the optimal data association provides the best performance for the cost of the
slowest training.

Even after doubling the training dataset size, none of the trained models follow the
CRLB closely. At this point, it is not apparent if further increasing the dataset size can
solve this issue or fine-tuning the model hyperparameters is required.

The random SNR dataset evaluates the performance of the trained ANN models in
a realistic scenario where each MPC has a random SNR value. The delay error of each
MPC is normalized using the corresponding

√
CRBτ̂ . Fig. 31b shows the normalized

error CDF of the delay estimation approaches and compares them with the theoretically
optimal error CDF.

The SAGE and SLSE error closely follows the theoretical error CDF given by the
N (µ = 0, σ2 = 1). The ANN-based estimator error also follows a normal distribution.
However, it can be noticed in Fig. 31b that the normalized error variance of the ANN-
based approaches is larger than one.

The quantitative performance comparison is in Table 6.5. Similar to the single MPC
experiment, the ANN-based approach tends to have a higher mean delay estimation
error than the classical approaches. Interestingly, the performance is similar for all
tested ANN-based methods. It seems that the data association provides only a small
improvement for the two MPCs scenario. However, the combination of the delay MSE
loss and the proposed correlation loss always improves the performance. Again, using
the AMSGrad [RKK19] option did not improve the convergence of the Adam Optimizer.
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normalizes the delay error obtained from all 41 datasets with different SNR values.

Figure 31: Performance comparison of the proposed ANN-based method with the CRLB theo-
retical limit, the SAGE, and SLSE algorithms for two MPCs in noise. The proposed ANN-based
method using a combination of the MSE and the correlation loss functions τ̂Corr is further com-
pared with the ANN using only the delay MSE loss function τ̂MSE during the training. Three
different methods of data association during the training are also compared.
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Table 6.5: Comparison of mean and variance of the proposed ANN-based estimator with the
theoretical CRLB and the benchmark approaches SAGE and SLSE for two MPCs in noise.
The overall MSE estimation is obtained as µ2 + σ2.

Method µ/
√
CRBτ̂ σ2/CRBτ̂ MSE/CRBτ̂

τ̂Ideal 0 1 1
τ̂Corr Munk -5.0e-2 1.319 1.321
τ̂MSE Munk -3.3e-2 1.598 1.599
τ̂Corr Adj +1.7e-2 1.408 1.408
τ̂MSE Adj -9.5e-2 1.651 1.660
τ̂Corr Ord -6.2e-2 1.377 1.381
τ̂MSE Ord +9.2e-3 1.654 1.654
τ̂SLSE -1.0e-4 1.030 1.030
τ̂SAGE +3.0e-5 1.023 1.023

Performance for an unknown number of multipath components

Similar to the previous approach, the ANN training is done using a dataset with random
MPC SNR. However, the number of MPCs is unknown and random. In general, the
number of MPCs can be arbitrary, but the number of MPCs is randomly chosen between
one and two for this first study.

The evaluation uses 41 datasets with SNR between 15 dB and 25 dB. Each dataset
has a fixed SNR of all MPCs present in the CIR and consists of 215 CIRs. The number
of MPCs is also randomly set to one or two MPCs. The minimal delay separation is set
to τ∆MIN

= 2/nSa.
As in the scenario with a fixed number of MPCs, I create an additional dataset where

each MPC has a random SNR. The SNR of each MPC is sampled uniformly in a range
between 15 dB and 25 dB. The random SNR dataset consists of 218 CIRs.

The comparison of the MSE for different values of SNR is shown in Fig. 32a. The
figure shows that the SAGE and SLSE closely follow the theoretical limit given by
the CRLB in the whole SNR span. The combination of the MSE and correlation loss
functions outperforms the ANN trained using only the delay MSE loss function. The
Adj data association method performs better than the Ord method but needs a longer
training time. Moreover, the Ord method has varying performance for different SNR
values. This inconsistency seems to be mitigated when the ANN does not need to learn
to order the MPCs on its own and uses one of the presented association methods. Since
this problem was not observed for the fixed number of MPC scenarios, it seems that
the ANN cannot associate the MPCs and estimate the model order jointly. The best
performance is again obtained using the optimal Munk association technique.

The presented performance was obtained using the training dataset with 218 CIRs.
The obtained performance is worse than the known model order setting, but it still
provides interesting precision. Even if the MSE is approximately 4.7 times larger than the
CRLB for the 25 dB SNR, the delay error STD is approximately 26.8 times smaller than
the spacing between CIR samples. This clearly shows that the ANN-based multipath
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Figure 32: Performance comparison of the proposed ANN-based method with the CRLB the-
oretical limit, the SAGE, and SLSE algorithms for an unknown number of MPCs in noise.
The proposed ANN-based method using a combination of the MSE and the correlation loss
functions τ̂Corr is further compared with the ANN using only the delay MSE loss function τ̂MSE
during the training. Three different methods of data association during the training are also
compared.

radio channel estimator provides a super-resolution performance.
Fig. 32b shows the normalized error CDF of the delay estimation methods and com-

pares them with the theoretically optimal error CDF. Again, the random SNR dataset
is used to show a realistic performance in a case where each MPC in a CIR has different
SNR. The delay error of each MPC is normalized using the corresponding

√
CRBτ̂ .

The SAGE and SLSE error closely follows the theoretical error CDF given by the
N (µ = 0, σ2 = 1). The ANN-based estimator error also follows a normal distribution.
Again, it has a larger variance than one.
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Table 6.6: Comparison of mean and variance of the proposed ANN-based estimator with the
theoretical CRLB and the benchmark approaches SAGE and SLSE for an unknown number of
MPCs in noise. The overall MSE estimation is obtained as µ2 + σ2.

Method µ/
√
CRBτ̂ σ2/CRBτ̂ MSE/CRBτ̂

τ̂Ideal 0 1 1
τ̂Corr Munk -9.1e-3 2.924 2.924
τ̂MSE Munk +1.1e-1 7.005 7.018
τ̂Corr Adj +1.9e-1 4.656 4.691
τ̂MSE Adj +4.6e-2 7.463 7.466
τ̂Corr Ord +6.0e-3 6.677 6.677
τ̂MSE Ord -3.2e-1 5.667 5.770
τ̂SLSE +9.9e-4 1.024 1.024
τ̂SAGE -5.1e-4 1.034 1.035

The quantitative performance comparison is in Table 6.5. Interestingly, the individ-
ual approaches’ performance differences are more severe than for the fixed number of
MPCs scenarios. The data association improves the performance significantly when the
number of MPCs has to be estimated by the ANN. Combining the delay MSE loss with
the proposed correlation loss function improves the performance significantly when the
optimal Munkres data association method is used.

Comparison of the calculation complexity

During the ANN training stage, the algorithm has to evaluate the loss and gradients to
update all the trained model weights. For this reason, the training step is slower than
the evaluation using the pre-trained model. Hence, I compare the speed of the ANN
approach with the benchmark methods only for the model evaluation. Additionally, I
compare the relative speed of the training for the presented training approaches with
different loss functions. Since all the trained ANN models consist of the same number of
trained parameters, the comparison shows the complexity of the different loss functions.

During the training stage, the Munkres algorithm-based data association performs
one training epoch with two MPCs approximately 31% slower than the Ord approach,
which does not perform any data association during the training. The Adj method is
only 10% slower than the Ord training method.

However, the difference changes when using the additional correlation loss function.
With the combined loss functions, the Munkres data association is approximately 17%
slower than the Ord approach, and the Adj method is 13% slower than the Ord training
method.

The training with the additional correlation loss is slower, but it provides better
performance than without it. Hence, the training with the proposed correlation loss is
preferred.

The duration of a training epoch with the maximal model order of two MPCs using
delay MSE loss and the combination of the delay MSE and correlation loss with batch
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Table 6.7: The comparison of the training epoch duration of different ANN training methods
in seconds.

Ord Adj Munk
MSE 104 115 150
MSE and Corr 144 166 174

Table 6.8: Comparison of the evaluation time of the ANN-based approach with the benchmark
methods

SLSE SAGE MSE MSE and Corr
CPU nBatch = 1 15.3 ms 2.02 ms 4.86 ms 5.02 ms
GPU nBatch = 1 4.52 ms 6.52 ms
GPU nBatch = 27 85.2 µs 106 µs
GPU nBatch = 28 69.2 µs 85.2 µs

size equal to 27 and dataset size of 218 is compared in Table 6.7.
The increase in the training complexity for a low number of MPCs is almost neg-

ligible. However, it might be preferred for a large number of MPCs to use the Adj
association method, which scales linearly with the number of MPCs.

Comparison of the evaluation time is difficult since the benchmark algorithms are
sequential optimization methods utilizing CPU, while the ANN approach leverages par-
allel computing using GPU. The strength of the ANN comes from the possibility to
evaluate multiple CIRs in parallel while evaluating a single measurement at the time
can be slow.

For this reason, I show the evaluation speed for the benchmark algorithms and the
trained ANNs. I use different batch sizes for GPU-based evaluation and a CPU to
evaluate the ANN. The average duration of processing one CIR is in Table 6.8. Using
the combination of the MSE and correlation loss is slightly slower, which should not
be since the loss function calculation is performed only during the training. The actual
implementation of the method can cause this discrepancy. However, the ANN output
ordering type does not affect the evaluation speed.
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Conclusion

This thesis proposes a new version of the Channel-SLAM, including a novel IMU-based
pedestrian transition model, a joint data association algorithm, and a GMM-based rep-
resentation of the VTs. It evaluates the precision boost achieved by the proposed im-
provements compared to the previous version of the Channel-SLAM. Also, it shows the
possibility of using the idea of multipath assisted positioning for positioning using a
SFN. Furthermore, the thesis studies the possibility of using ANNs to speed up the
radio channel parameter estimation vital for all multipath assisted positioning methods.

The main contributions of this thesis are:

• The demonstration of the usability of the multipath assisted positioning idea for
SFN in Chapter 2. Multiple transmitters transmits the same signal synchronously
in a SFN. Then, the received signal consists of multiple delayed replicas of the
transmitted signal, similarly to multipath propagation, and hence can be inter-
preted as MPCs. Thus, the channel multipath model can explain this received
signal, and the estimated MPCs are used for positioning. The presented approach
was tested using a real-case scenario using a DVB-T service. This contribution
fulfills the thesis goal: Research the possibility of positioning in Single Frequency
Network and show the equivalence with multipath assisted positioning [KP15;
NK16; NKV16; KV18].

• The novel pedestrian transition model proposed in Chapter 3. The novel pedestrian
transition model utilizes more information from the IMU than the previous version,
which only used gyroscope measurements for the heading estimation. In addition
to the gyroscope measurements, the presented novel model uses the accelerometer
and a step detection-based approach to estimate the pedestrian walking speed.
The slower divergence of the novel pedestrian transition model provides improved
convergence of the VT position estimation, which again improves the precision of
the mobile receiver position estimation. This contribution fulfills the thesis goal:
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Propose and test a novel pedestrian transition model for Channel-SLAM using
inertial sensor fusion [KG20].

• Chapter 4 contains the derivation of the joint data association for the Channel-
SLAM. The derived joint data association algorithm associating MPCs with the
previously observed VTs decreases the computational load significantly. Also, the
reusing of previously observed VTs allows for estimating its position more accu-
rately, improving the positioning precision. Moreover, the proposed approach can
detect the association error caused by the radio channel estimator. This contribu-
tion fulfills the thesis goal: Propose and verify a stochastic data association method
for tracking and associating multipath components with the Virtual Transmitters
in Channel-SLAM [KG20].

• A novel representation of the VTs by the GMM was proposed in Chapter 5. The
motivation for using the GMM machine learning technique was the fact that the
newly initiated VTs carry low information for the Channel-SLAM. Hence, the low
order GMM is sufficient early after the VT initialization. In contrast, the PF-
based VT model has to be initialized with orderly larger model order reduced over
time. The parameters of the GMM are learned sequentially from the VT obser-
vations. It was demonstrated that the GMM achieves better precision than the
PF-based VT representation while using a significantly smaller initial model or-
der. This novel approach utilizes the computational resources better because the
VT provides marginal information to the Channel-SLAM shortly after initializa-
tion. This contribution fulfills the thesis goal: Research the possibility of using a
machine learning-based methods for Virtual Transmitter estimation in Channel-
SLAM [KG21].

• With the new and faster version of the Channel-SLAM, new ways of reducing the
calculational load had to be investigated to allow a real-time application of the
Channel-SLAM. The first results presented in Chapter 6 show that utilizing ANNs
for radio channel parameter estimation can significantly decrease the calculational
load. The main strength of the ANN-based approach is the parallelization of the
MPC estimation that allows the processing of multiple CIRs simultaneously. How-
ever, the ANN can be faster than the classical radio channel estimators, even for a
single CIR processing. The thesis proposes a novel method to handle an unknown
number of MPCs present in the CIR. Also, a novel signal correlation-based loss
function is proposed to train the ANN models. The results show that the sig-
nal correlation-based loss function allows approaching the theoretical CRLB when
estimating the delay of a single MPC in a noisy CIR. The super-resolution per-
formance is achieved for an unknown number of MPCs in a noisy CIR scenario.
This contribution fulfills the thesis goal: Investigate the possibility of using Ar-
tificial Neural Networks for radio channel parameter estimation and compare the
proposed method with the theoretical limits and benchmark algorithms.

All goals of this thesis were addressed and fulfilled.
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Further steps in multipath assisted positioning with the assistance of machine learn-
ing I recommend pursuing by the successors are:

• The joint estimation of the radio channel parameters and Channel-SLAM: The
Channel-SLAM and the radio channel parameter estimation are currently inde-
pendent. The cooperation between the Channel-SLAM and the radio channel
parameter estimator can improve the performance of both.

• The pedestrian heading and walking speed used in the proposed transition model
can be insufficient for more dynamic pedestrian movement. Rather than study all
possible pedestrian movement styles and search for mathematical models, it might
be better to learn ANN serving as a pedestrian movement model from actual IMU
data. Since Bayesian filter-based multipath assisted positioning algorithms, such
as Channel-SLAM, require a stochastic transition model, Mixture Density Network
(MDN) might be used as a future stochastic pedestrian transition model.

• The initial study on using the ANNs presented in this thesis could serve as a start-
ing point for further research of model-free approaches to radio channel parameter
estimators. The attractive direction could be extending the proposed ANN from a
snapshot-based estimator to track the MPCs over time using a Recurrent Neural
Network (RNN). Another direction could be estimating the multipath radio chan-
nel with DMCs. The existence of DMCs is often ignored by the modern channel
estimation algorithms, which can decrease the precision or even cause a failure of
the channel estimation process.
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