
High Definition Mapping for Inland Waterways:

Techniques, Challenges and Prospects

Lukas HÈosch1, Alonso Llorente1, Xiangdong An1, Juan Pedro Llerena2, Daniel Medina1

AbstractÐ Inland waterway transport (IWT) is an efficient
way of mass good transportation with low energy consump-
tion and reasonable ecological impact. As for other transport
systems, there is a need for reliable advanced driver-assistance
functions and increased autonomy. In this regard, High Defini-
tion (HD) Maps play a role by enhancing vessels’ localisation
and perception capabilities. Obtaining HD Maps is an im-
portant step towards the ongoing digitalisation of water-based
transport and forms the basis for assistant systems to captains
of inland vessels or even higher automated ships. This work
discusses the workflow for HD map generation by using vessels
as information platforms (i.e., by having precise localisation and
environment-detecting perception capabilities). An architecture
for HD map generation from vessels provided with geodetic
equipment for precise localisation and environment-detecting
perception is presented. An overview on standard techniques
for HD mapping within the automobile and robotics domain
are discussed, as well as the particular challenges and needs
present for water-based applications. Finally, the conceptual use
and appropriate data exchange of HD Maps are drafted.

I. INTRODUCTION

With the volume of freight traffic increasing over the past

few years, road- and rail-borne transportation tend to reach

their capacity limits. Inland waterway transport (IWT) con-

stitutes an appealing alternative to land-based transportation.

Being a mode of carriage with a long history, IWT offers the

advantages of high safety, low energy consumption and cost-

efficiency. With the currently used large inland vessels and

comparably long transportation time, IWT is most suitable

for the transportation of bulky and heavy freight. In addition

to the efficiency of mass transportation, the reduced effect

on habitat damage of inland waterways emphasises the

environmental safety of this mode of transport.

With the goal of increasing the operation volume for IWT,

the safety on the related infrastructure needs to be ensured.

Indeed, the catastrophic effects of an important waterway

being blocked were illustrated by the container ship Ever

Given, causing severe traffic obstruction of the Suez Canal in

March 2021. Even though, the economic effects of a blocked

inland waterway may be less harmful in comparison, safe

traffic circulation on inland waterways is an important goal.

One contribution to this goal is to ensure accurate and well-

updated chart data.

Within the context of the German-national research project

AutonomSOW [1], we treat the vessel as information platform
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to provide services for predictable and networked transport

processes on inland waterways. Thus, a vessel becomes

an information platform when being able to reliably and

precisely estimate its pose and perceive its surroundings. To

that end, robust and multi-modal sensor fusion is required

to obtain: a) geo-referenced positioning and attitude via

multi-antenna Global Navigation Satellite Systems (GNSS)

and inertial measurements; b) environment perception and

relative distance measuring with sensors such as cameras,

LiDARs or RADARs. Following the data collections by the

information platform(s), the process of estimating the spatial

HD mapping can be carried out. The derived HD maps can

assist other vessels in safe navigation of the inland waterway.

In fact, the current chart data is available on online platforms.

However, this data is limited to static representation and can

only be updated after the execution of a dedicated (and costly

for the geodetic national representatives) survey campaign.

Thus, the proposed information platform processing provides

up-to-date and low-cost HD maps that can enhance the safety

operation for IWT. The overall workflow is illustrated in

Fig. 1: first, the information platform collects geo-referenced

measurements from its surrounding; then, the data is cleaned

and processed into a 3D HD maps; finally, the estimated

maps are sent to the users and the new information is

incorporated in the chart.

Fig. 1. Architectire of a selft-updating inland waterway chart. Images are
supported by [2] and [3].

The rest of the paper is organised as follows. Section II

provides an overview of recent activities and applications

regarding SLAM (Simultaneous Localisation and Mapping)

solutions for the automotive domain and discusses their

applicability to IWT. In section III approaches for geo-

referenced navigation and visual perception are presented

and their results are evaluated. Furthermore, the generation

of the BerlinIWT dataset is introduced. A final architecture

of an IWT-related mapping approach is debated in section

IV. Finally, section V gives an outlook on future activities.



II. RELATED WORK

The interest on HD maps has substantially increased along

with higher autonomy levels for vehicular applications. Thus,

the first references to digital, 3D or HD maps can be

found in the context of mobile mapping systems (MMSs)

for automobile cases [4]±[6]. From a research perspective,

one finds contributions on HD mapping in the fields of

photogrammetry, vehicular technology and robotics. This

section provides an overview on the relevant works for HD

mapping in relation to MMSs in automotive scenarios and

Simultaneous Localisation and Mapping (SLAM) in robotics.

Finally, the characteristic challenges for HD mapping at IWT

are analysed.

A. HD maps for road-based vehicles

The current HD mapping research is focused in a top-

down approach, where roads are represented as imaginary

centre lines, whom new attributes are added depending on

the complexity of the scenario. These attributes could be

traffic lights, road lines and the shape of the road in case only

static objects are considered. As the requirements increase,

new attributes are added in the map.

In the perspective of projects such as OpenStreetMap

(OSM) [7], which exemplifies the concept of Volunteered

Geographic Information (VGI), individuals actively con-

tribute their local knowledge and data to collectively con-

struct a comprehensive geo-database. The data sourced from

OSM has been employed in various applications, such as

vehicle localisation using 3D laser scanning [8].

Another example can be found in [9] which introduces the

open-source framework Lanelet2. In addition to the common

purposes in autonomous driving, localisation, and motion

planning, this work also enables potential applications of

maps to achieve highly automated driving (HAD). The

Lanelet2 map was employed in [10] for the evaluation of

semantic localisation.

B. Methods for Simultaneous Localisation and Mapping

The SLAM problem addresses the task of mapping an

unknown environment while concurrently establishing the

target’s pose within it through the use of perception systems.

Most recent activities distinguish Full SLAM from Online

SLAM [11].

• Full SLAM involves estimating all the robot states and

map computations by considering a set of all observa-

tions and controls taken from the whole path. This post-

processing procedure comes with drawbacks regarding

the computational effort.

• Online SLAM aims to estimate the robot’s path and

the map at each time step in real-time. Computational

efficiency is increased by avoiding to consider the entire

duration.

Further variables in the definition of the SLAM problem are

[11]:

• Map approach. In volumetric SLAM, the map is sam-

pled at a high resolution to achieve a realistic recon-

struction of the environment. In feature-based SLAM,

the algorithm tends to be more efficient, since only

certain objects represented in the map.

• Environment considerations. Most activities assume

static environments [12], [13], [14], where dynamic

motions are considered as noise or need to be excluded

[15]. In contrast, [16] and [17] offer dynamic SLAM

solutions.

• Exploration strategies A passive SLAM does not in-

volve path planning as an external entity has control

over the robot. In active SLAM as described by [18]

the robot actively explores its environment.

The approach of GMapping [19] is one of the most

well-known SLAM algorithms in the community. It uses

Rao-Blackwellized particle filters to construct a 2D grid

map. More recent examples for passive online SLAM

are mentioned in the following. LeGO-LOAM [20] is a

lightweight and ground-optimised LiDAR odometry and

mapping method estimating a 3D volumetric map. RTAB-

Map [21] is an open-source library that combines LiDAR

and visual information for large-scale and long-term online

mapping operations suitable for the generation of 3D volu-

metric maps as well as 2D maps. LIO-SAM [22] integrates

real-time LiDAR and IMU data to construct a 3D volumetric

map in complex environments.

C. Challenges for IWT-related SLAM

The outdoor mapping approach pursued within the Au-

tonomSOW project differs from most indoor SLAM algo-

rithms developed for robotic applications. First, IWT is an

outdoor activity and GNSS allow for global positioning such

that the mapping problem get simplified. Also, inland vessels

travel far distances in the same direction. In comparison

to road vehicles or robots, the time until known sections

are passed again is significantly longer. This may pose

challenges regarding long-term memory and recognition of

known features, as well as loop-closure techniques imple-

mented in many well-known SLAM solutions. Another chal-

lenge in IWT-related environments is the standardisation of

visual features. For instance, in automobile urban scenarios

the scan of the surrounding is classified into edges and planar

surfaces before being mapped to the appropriate key-frame.

Thus, adjacent buildings and other planar structures can

easily be recognised. Additionally, lane markings are well-

defined and consistent across different locations. On inland

waterways in contrast, the overall environment appearance

is very irregular. Most of the time, the shore is covered

with trees and smaller vegetation making the extraction of

edges and planar surfaces complicated. Complex structures

like wide bridges and waterway locks change the general

appearance of the scene. The comparably low number of

waterway locks makes it challenging to ensure generally

valid mapping in these environments. Factors like varying

water levels and large vessels moored in vicinity to the sensor

platform heavily affect the detected ranges and complicate

the recognition of known features.



III. GENERATION OF HD MAPS

The inputs for the map generation in the presented ap-

plication can be divided in two main parts: precise naviga-

tion and visual perception. Fig. 2 provides an overview of

the sensor inputs and the further processing. The Position,

Navigation and Timing Unit or PNT Unit provides geo-

referenced pose information and time synchronization. The

Perception Unit receives spatial mapping data from one or

multiple LiDAR sensors as well as camera data for semantic

scene understanding. The resulting point cloud, segmentation

solutions and estimated vehicle’s pose are finally fed to the

Map Processing step.

In our information platform, the Perception Unit uses

ROS (Robotic Operating System) as middleware and the

processing is done in Python and C++. The PNT Unit is

a DLR-developed platform that uses a C++ RT (real-time)

Framework for processing the inertial and GNSS data. The

rest of the section details the processing performed by the

three modules afore-described.

Fig. 2. Overview of the sensor inputs for HD map generation within our
information platform.

A. Geo-referenced navigation

Geo-referenced navigation is the determination of a ve-

hicle’s dynamics (position, speed and orientation) over time

with respect to a global geographic frame. GNSS and inertial

measurement unit (IMU) constitute the primary sensors used

for geo-referencing, such that GNSS allows for the global

localization of the vehicle, while IMU tracks subtle and

sudden motion and bridges short GNSS outages. By exploit-

ing GNSS carrier phase observations and correction data,

advanced techniques such as Real Time Kinematic (RTK)

and Precise Point Positioning (PPP) provide decimetre-to-

centimetre level positioning accuracy [23]±[25]. A hybridi-

sation denoted as PPP-RTK combines the conventional PPP

filtering with regional corrections and integer ambiguity res-

olution to provide quasi-instantaneous cm-accurate position-

ing even in remote locations (i.e., when base stations for RTK

processing are unavailable) [26], [27]. In other words, PPP-

RTK is based on precise satellite orbit, clock, signal biases

and optional atmospheric products from a GNSS network

of stations, represented as SSR (State State Representation)

information and then broadcast to users.

The dependencies on GNSS goes beyond positioning and

includes the provision of time and attitude information.

Thus, a GNSS receiver is used as control unit for time

synchronization (using, for instance, a local network time

protocol (NTP) for the connected sensors and subsystems),

triggering sensors and time-stamping the collected data.

Also, absolute and drift-less orientation information can be

obtained from vehicles equipped with a multi-antenna setup.

The attitude accuracy is proportional to the distance between

antennas, which becomes a limiting factor for miniaturized

platforms but it is convenient for vessels’ applications. The

joint position and attitude (JPA) [28] or the array PPP [29]

models consists on exploiting the inertial and GNSS obser-

vations across multiple antennas for an enhanced navigation

performance.

One disadvantage of GNSS-based navigation is that it is

vulnerable under a harsh environment and cannot obtain con-

tinuous positioning solutions, e.g. passing through a bridge in

Fig. 3. In the illustrated example, our research information

platform achieves sub-degree and cm-level orientation and

positioning accuracy, respectively. The estimation is based on

a multi-antenna PPP-RTK solution with inertial integration.

Fig. 3. Positioning performance for the PNT Unit on-board DLR’s vessel
AURORA. Data collection performed in Berlin, November 2022.

B. Visual perception

In the general usage of visual perception systems, the

following information levels can be distinguished from the

perspective of a user [30]:

• Physical description: pose, speed and shape of objects

• Semantic description: categories of objects



• Intention prediction: likelihood of the object’s be-

haviour.

While the level of intention prediction is mostly related to

autonomous driving, for the application of inland waterway

spatial mapping, both physical and semantic description

are required: semantic description is needed to distinguish

relevant infrastructure from other objects and classify it ap-

propriately. Providing the precise shape of objects, physical

description in required for the surveying process.

The physical description of an object is comparably easy

using point clouds derived from a LiDAR sensor. For in-

stance, Fig. 4 shows a bird’s eye view (BEV) for the data

collected by one of the platform’s LiDARs, that has been

acquired on the urban waterways of Berlin in November

2022. The height of the points is encoded in the colour-

scale. The sensor’s position is indicated by the red triangle

in position 0, 0, pointing in positive x-direction. Points are

represented following the right-hand-rule. In this scenario,

the furthermost point is located at a distance of 120 m from

the sensor, which is surprising, as it exceeds the maximum

range provided from the manufacturer. In direct vicinity to

Fig. 4. BEV projection of a Velodyne point cloud. Vessel position is (0,0),
pointing in the x-direction (red triangle). Due to the sensor mounting, some
points are located below the z-plane.

the sensor’s position, a number of closely located points

can be seen, which refer to reflections from the vessel’s

superstructures and sensor mountings. The water surface

does not provide any reflections. However, river banks and

shore structures can be distinguished on either side of the

waterway, making the determination of navigable area rather

straight-forward. Indeed, similar conditions prevail on most

inland waterways. Still, waterway crossings, wide rivers or

lakes lead to the effect that at least parts of the shore area

are not detected correctly, which can lead to problems when

distinguishing between navigable from (possibly) occluded

areas. In this plot, parts of the river banks are marked with

negative heights as the frame centre is located at the position

of the sensor, which was mounted onto the sensor platform.

Consequently, parts of the river bank are located below the

sensor position. Behind the river banks, a number of higher

points (located in the order of 10 to 30 m) can be seen.

These reflections refer to trees, bushes or buildings. In the

right part of the plot, the structures of a bridge are visible

approximately 60 m ahead of the sensor position. Beside

the edge of the bridge perpendicular to the waterway, two

more lines of points are remarkable, continuing from the

edge of the bridge into the x-direction. The associated echos

are reflected from under the bridge.

As can be seen from the point cloud in Fig 4, essential

scene understanding is indeed possible also from LiDAR

point clouds, but requires prior knowledge about the scene.

Full semantic scene understanding from point clouds only is

therefore unfeasible.

Camera-based RGB images offer rich semantic informa-

tion and can therefore be applied easily for the level of

semantic description. Stereo-cameras could also be used for

distance estimation, but exhibit lower maximum range than

LiDAR sensors and decreased accuracy performance. It is

therefore common practice to combine camera and LiDAR

sensors in order to leverage the flaws of each other [30].

Semantic segmentation describes the task of assigning every

single pixel in an image to a pre-defined class. During the

process, pixels, that belong to the same semantic class are

grouped together and assigned to the same class [31]. In the

literature, this task is also referred to as pixel-wise classi-

fication [32]. The model used in our segmentation problem

is an extension of the Deeplab algorithm, the DeeplabV3,

suggested by [33], that has been designed specifically for

semantic segmentation.

Semantic segmentation is a typical machine-learning (ML)

task. For the performance of a NN, it is crucial to carry

out the training process with a dataset of sufficient size and

variety suitable for the application. In contrast to automotive

applications, the availability of training datasets for water-

based transportation is extremely limited, especially for

semantic segmentation. Various datasets collected for inland

shipping applications aim to identify navigable areas and

therefore focus on water segmentation only [34], [35]. The

MaSTr1325 dataset [36] has been collected in the coastal

waters around Koper, Slowenia to support the develop-

ment of small unmanned surface vehicles (USV). While the

coastal, marine environment differs significantly from most

inland waterway scenes, the variety of classes provided in

MaSTr1325 is an advantage to our application. Still, as the

categories are limited to ªwaterº, ªskyº, ªobstacleº, ªvoidº,

and ªuncertainº, the dataset does not offer enough class

labels for infrastructure-related semantic segmentation.

For the first application of bridge surveying and mapping,

we are therefore currently developing our own dataset. The

goal of the BerlinIWT dataset is detailed semantic segmen-

tation of IWT-related infrastructure. For data acquisition, a

first measurement campaign has been carried out on the

urban waterways of Berlin during two days in June 2022.

From the 11 h of data, the most relevant sections have

been chosen. Sections are considered as relevant based on

a high number of bridges that have been passed, while

ensuring the largest possible variety of the captured scene



Fig. 5. Labelled example from the BerlinIWT dataset under development.
Not all of the defined classes were used in this picture.

(i.e. weather conditions, width of the waterway, distance

to the bridge). Additionally, also images recorded inside

waterway locks are selected for annotation. In total, 200

images have been chosen. For this first attempt, a small

team of four in-house annotators worked on the data for

two weeks. Depending on the complexity of the image,

the annotation of a single took between 10 and 20 min.

Revising the annotated data with the means of quality control

left 171 images that can be used for training. In order to

avoid constraints on the possible use-cases of the dataset,

a number of IWT-infrastructure related classes are defined,

such as ªbridgeº, ªriver bankº, ªwater markº (navigational

marks and aids) and ªwaterway lockº. Additionally, the

classes ªwaterº, ªskyº, ªobjectº and ªvegetationº are defined.

However, for the application in discussion, only the classes

ªwaterº, ªskyº, ªobjectº and ªbridgeº are used. Unlabelled

pixels are classified as background.

With its extremely small size, the BerlinIWT dataset alone

is not feasible for training a NN. It is therefore combined

with the mentioned MaSTr1325 dataset [36] for coastal

navigation. Further details on the exact training condi-

tions are beyond the scope of this work. Nevertheless, we

would like to emphasise the decent results achieved after

a computation time of 20 h: The mean intersection over

union (IoU) assessed on the test set amounts to 93.12 %.

The IoU is computed from the true positives divided by

the sum of true and false positives and false negatives.

The mean IoU is the value of the IoU across all classes

[37]. As the generation of the BerlinIWT dataset is an

ongoing activity, an increase of the available training data

is expected. Furthermore, the result can be improved by

further hyperparameter optimisation and longer training on

a more powerful machine. Still, the achieved results suffice

for essential semantic scene understanding required for the

described mapping purpose. Therefore, very next activities

will focus on extrinsic calibration of LiDAR and camera in

order to incorporate the segmentation solution into LiDAR

point clouds.

C. Map estimation

With all the required inputs (segmented spatial mapping

data as well as precise position and attitude information) in

place, the conditions for map generation are fulfilled. Indeed,

the acquired data from an information platform is likely to

be less precise than comparable map information collected

by professional survey teams. This drawback is expected to

be leveraged by the quantity of the measurements: the goal

is not to equip a single inland vessel with the necessary

sensors, but rather to use a sufficient amount (or if possible

even all) inland vessels as sensor platforms. On the one hand,

a large amount of sensor platforms ensures that data can be

acquired simultaneously in different places and consequently

is likely to be up to date. However, the expectation that

different sensor platforms pass through the same sections

of inland waterways multiple times is more important at

this point. This effect can be exploited to interpolate the

range measurements numerically and overcome the draw-

back of decreased accuracy. Furthermore, various surveys

of the same sections are a robust method to filter noisy

measurements and undesired artefacts, which may even allow

to use static SLAM algorithms (as described in section II-

B) in conditions with large dynamic influence. As real-time

capabilities are not required for the application Full SLAM

algorithms could be used. For the sake of computational

efficiency, also Online SLAM would be applicable. Map-

ping entire parts of the IWT-related infrastructure, the most

feasible map approach appears to be a 3D volumetric map.

Considering inland vessels as information platforms, passive

SLAM is the exploration strategy of choice.

IV. HD MAPS FOR IWT APPLICATIONS

For traditional survey methods, a qualified team and high-

precision equipment is required. Using inland vessels as

sensor platforms is a comparably cost-efficient solution for

the mapping problem. Furthermore, it is easy to ensure

undisturbed traffic circulation and flawless survey operation

at the same time.

The sensors presented in this work would be required

already to ensure the safe passage of autonomous vessels.

One of the motivations for the project of AutonomousSOW

[1] is therefore to profit from synergy effects using the

sensors required by autonomous vessels for navigation and

perception tasks for generating high-definition maps. These

high-definition maps are a further requirement for the safe

passage of possible autonomous vessels. Particularly, driver-

less systems require more detailed information than lately is

provided to captains of inland vessels.

Currently, horizontal and vertical bridge clearances are

available online from the EuRIS portal [38] and can be

downloaded in a JSON format. Bridges are assigned with

their name and an additional identifier. Their position is

encoded in the kilometre of the inland waterway where the

bridge is located. Additionally, facility data is provided as

well as the information whether the bridge is permanently

installed or can be operated for the passage of larger ships.



Straight-forward intermediate steps could focus on updat-

ing the data available on EuRIS as the data format is already

defined and available on an appropriate platform. For pro-

viding whole bridge contours, the data format of the existing

platform could be adapted in an appropriate way. Still, for

testing and validation purposes, an additional platform might

be necessary with a data format adapted as closely as possible

to the JSON representation used by EuRIS. For this purpose,

the most feasible representation of bridge contours needs

to be decided. It is desirable not to broadcast dense (and

therefore memory-intensive) 3D LiDAR point clouds. Instead

non-linear 3D polynomials could be used to approximate

the bridge contours and transfer contour information at com-

parable precision and lower memory consumption. Another

possibility of pattern representation are convex polygons.

Wrapping the bridge contours with these geometrical struc-

tures without precision losses is expected to be feasible. Still,

broadcasting 3D polygons might come with the drawback

of increased memory consumption when compared to the

polynomial representation. 2D polygons in comparison are

considered to be unfeasible for the representation of 3D

structures. As intermediate steps, assistant systems could

use up-to-date bridge contours to notify the captain in case

bridges along the planned passage appear to be dangerous to

navigation. Within the scope of this development step, the

appropriate representation, availability of the platform and

especially performance of mapping algorithms under real-

world conditions could be tested and assessed extensively.

This is strongly necessary, as various error sources need to be

considered when the LiDAR-based range information is reg-

istered into a global map. Even though, the GNSS navigation

method in place works at a high-precision standard, the po-

sition estimation can generally be deteriorated by multipath

effects, interference or intentional attacks. As the mapping

task can only be performed using the estimated position,

accuracy losses on this parameter also directly influence the

position accuracy of the detected objects. Robust and reliable

global positioning is extremely important for the use-case

described in this work as uncertainties on the global position

directly introduce uncertainties of the generated map. Finally,

LiDAR-based range determination comes with the additional,

potential error source of possible interference with other laser

sources or sunlight.

V. OUTLOOK

With this work, we present our concept of a self-updating

inland waterway chart in order to pave the way towards

the ongoing digitalisation of water-based transportation. The

process for estimating HD maps for IWT is based on

treating the surveying or participating vessels as information

platforms. Such platforms shall be equipped with PNT and

perception units, with GNSS, LiDARs and cameras being the

most prominent sensors to be used. Our current HW and SW

prototype has been presented, including the estimation tech-

niques used by our PNT and Perception units. With regards to

geo-referencing, our multi-antenna PPP-RTK solution allows

for nearly instantaneous cm- and sub-degree accuracy for

position and attitude estimates, respectively. Our Perception

Unit provides remarkable results in semantic segmentation.

The camera-based segmentation has been achieved with

comparably low-effort and can be integrated in the follow-

up perception subsystems. Still, the activities regarding the

construction of the BerlinIWT dataset will be enlarged for

more robust segmentation. A number of SLAM algorithms

have been reviewed with respect to the application of IWT-

related mapping. Meaningful combinations and adaptions

will allow to exploit the advantages of the most suitable

algorithms while leveraging their drawbacks. Finally, the

setup of an appropriate data interface has been discussed

while considering the most efficient way of transferring

spatial mapping information.

Future activities will focus on the expansion of the

BerlinIWT dataset, extrinsic calibration of the visual sensors

and the implementation of a suitable multi-sensor, multi-

modal SLAM algorithm and the setup of the data interface.

ACKNOWLEDGMENT

This work has been partially funded by the German

Federal Ministry for Digital and Transport (BMDV) project

AutonomSOW II and DLR Programmdirektion Verkehr with

the project FuturePorts.

REFERENCES

[1] A. GmbH. (2022) Projektsteckbrief autonomsow ii. [Online].
Available: https://www.autonomsow.de/autonomsow2.html

[2] B. Riveiro, P. Arias, J. Armesto, J. Caamaño, and M. Solla, ªFrom
geometry to diagnosis: Experiences of geomatics in structural engi-
neering,º Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci, vol. 39,
pp. 291±296, 2012.

[3] D. W. und Schifffahrtsverwaltung des Bundes. (2022)
Bundeswasserstraûenkarten. [Online]. Available: https://www.gdws.
wsv.bund.de/DE/service/karten/01 karten/karten-node.html

[4] C. C. Goad, ªThe ohio state university highway mapping project: the
positioning component,º in Proceedings of the 47th Annual Meeting

of The Institute of Navigation (1991), 1991, pp. 117±120.

[5] K. Novak, ªThe Ohio State University Highway Mapping System: The
Stereo Vision System Component,º in Proceedings of the 47th Annual

Meeting of The Institute of Navigation (1991), 1991, pp. 121±124.

[6] A. Geiger, J. Ziegler, and C. Stiller, ªStereoScan: Dense 3d Recon-
struction in Real-time,º in 2011 IEEE intelligent vehicles symposium

(IV). Ieee, 2011, pp. 963±968.

[7] P. Neis, D. Zielstra, and A. Zipf, ªThe street network evolution of
crowdsourced maps: Openstreetmap in germany 2007±2011,º Future

Internet, vol. 4, no. 1, pp. 1±21, 2011.

[8] P. Ruchti, B. Steder, M. Ruhnke, and W. Burgard, ªLocalization
on openstreetmap data using a 3d laser scanner,º in 2015 IEEE

International Conference on Robotics and Automation (ICRA), 2015,
pp. 5260±5265.

[9] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann,
F. Kuhnt, and M. Mayr, ªLanelet2: A high-definition map framework
for the future of automated driving,º in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC), 2018, pp.
1672±1679.

[10] J.-H. Pauls, K. Petek, F. Poggenhans, and C. Stiller, ªMonocular
localization in hd maps by combining semantic segmentation and
distance transform,º in 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2020, pp. 4595±4601.

[11] C. Stachniss, J. J. Leonard, and S. Thrun, Simultaneous

Localization and Mapping. Cham: Springer International
Publishing, 2016, pp. 1153±1176. [Online]. Available: https:
//doi.org/10.1007/978-3-319-32552-1 46

[12] A. Eliazar and R. Parr, ªDp-slam: Fast, robust simultaneous localiza-
tion and mapping without predetermined landmarks,º in IJCAI, vol. 3.
Acapulco, Mexico, 2003, pp. 1135±1142.



[13] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit et al., ªFastslam 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,º in IJCAI, vol. 3, no. 2003,
2003, pp. 1151±1156.

[14] G. Grisetti, R. KÈummerle, C. Stachniss, and W. Burgard, ªA tutorial on
graph-based slam,º IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31±43, 2010.

[15] S. Li and D. Lee, ªRgb-d slam in dynamic environments using static
point weighting,º IEEE Robotics and Automation Letters, vol. 2, no. 4,
pp. 2263±2270, 2017.

[16] Y. Fan, Q. Zhang, Y. Tang, S. Liu, and H. Han, ªBlitz-slam: A semantic
slam in dynamic environments,º Pattern Recognition, vol. 121, p.
108225, 2022.

[17] M. Henein, J. Zhang, R. Mahony, and V. Ila, ªDynamic slam: The
need for speed,º in 2020 IEEE International Conference on Robotics

and Automation (ICRA), 2020, pp. 2123±2129.

[18] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman,
L. Carlone, and J. A. Castellanos, ªA survey on active simultaneous
localization and mapping: State of the art and new frontiers,º IEEE

Transactions on Robotics, pp. 1±20, 2023.

[19] G. Grisetti, C. Stachniss, and W. Burgard, ªImproved techniques for
grid mapping with rao-blackwellized particle filters,º IEEE transac-

tions on Robotics, vol. 23, no. 1, pp. 34±46, 2007.

[20] T. Shan and B. Englot, ªLego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,º in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2018, pp. 4758±4765.

[21] M. LabbÂe and F. Michaud, ªRtab-map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale
and long-term online operation,º Journal of Field Robotics, vol. 36,
no. 2, pp. 416±446, 2019.

[22] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus,
ªLio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping,º in 2020 IEEE/RSJ international conference on intelligent

robots and systems (IROS). IEEE, 2020, pp. 5135±5142.

[23] J. Zumberge, M. Heflin, D. Jefferson, M. Watkins, and F. Webb,
ªPrecise Point Positioning for the efficient and robust analysis of
GPS data from large networks,º Journal of geophysical research: solid

earth, vol. 102, no. B3, pp. 5005±5017, 1997.

[24] R. B. Langley, ªRTK GPS,º GPS World, vol. 9, no. 9, pp. 70±76,
1998.

[25] P. J. Teunissen and O. Montenbruck, Springer handbook of global

navigation satellite systems. Springer, 2017, vol. 10.

[26] P. Teunissen and A. Khodabandeh, ªReview and principles of PPP-
RTK methods,º Journal of Geodesy, vol. 89, no. 3, pp. 217±240, 2015.

[27] X. An, R. Ziebold, and C. Lass, ªFrom RTK to PPP-RTK: towards
real-time kinematic precise point positioning to support autonomous

driving of inland waterway vessels,º GPS Solutions, vol. 27, no. 2,
p. 86, 2023.
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