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Abstract—Self-supervised pre-training bears potential to gen-
erate expressive representations from large-scale Earth observa-
tion (EO) data without human annotation. However, most existing
pre-training in the field is based on ImageNet or medium-size,
labeled remote sensing (RS) datasets. In this paper, we share an
unlabeled dataset SSL4EO-S12:

Self-Supervised Learning for Earth Observation - Sentinel-1/2

to assemble a large-scale, global, multimodal, and multi-seasonal
corpus of satellite imagery. We demonstrate SSL4EO-S12 to
succeed in self-supervised pre-training for a set of representative
methods: MoCo-v2, DINO, MAE and data2vec, and multiple
downstream applications including scene classification, semantic
segmentation and change detection. Our benchmark results prove
the effectiveness of SSL4EO-S12 compared to existing datasets.
The dataset, related source code, and pre-trained models are
available at https://github.com/zhu-xlab/SSL4EO-S12.

Index Terms—Self-supervised learning, dataset, benchmark.

I. INTRODUCTION

SELF-SUPERVISED learning (SSL) has attracted wide
attention in the remote sensing (RS) community with the

ability to learn generic representations from unlabeled data.
Numerous studies in the literature have proven the potential
of SSL in Earth observation (EO) beyond natural images [1].
Despite the focus SSL for EO receives, only limited effort
is dedicated to providing large-scale datasets and benchmarks
for pre-training. On the one hand, relying on computer vision
datasets like ImageNet [2] is not a preferred option due to
the domain gap. On the other hand, while RS datasets like
SEN12MS [3] or SeCo [4] exist, they are limited by geospatial
overlap, sparse geographical distribution, or lack diversity
in seasonal or multimodal information. Therefore, big EO-
specific datasets for unsupervised pre-training are necessary
to be developed.

In this work, we introduce a large-scale, globally distributed,
multi-temporal and multi-sensor dataset SSL4EO-S12: Self-
Supervised Learning for Earth Observation - Sentinel-1/2.
The dataset samples 250K locations around the globe, each
providing Sentinel-2 L1C, Sentinel-2 L2A, and Sentinel-1
GRD images with four snapshots from different seasons (in
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total 3 million 2640m×2640m patches). Additionally, we
guarantee optimal geospatial coverage by avoiding the overlap
of the randomly sampled locations. This renders SSL4EO-S12
the largest and most generic multi-spectral/SAR dataset in the
RS literature [5].

We demonstrate the potential of SSL4EO-S12 dataset
through a series of extensive experiments. Specifically, we
evaluate four representative SSL algorithms—namely: MoCo
[6], DINO [7], MAE [8], and data2vec [9]—on three different
downstream tasks: scene classification, semantic segmentation
and change detection. Our results indicate that pre-training
on SSL4EO-S12 improves the downstream performance com-
pared to existing datasets. Moreover, our ablation studies prove
the benefits of RS-specific data augmentations including multi-
sensor, multi-temporal and atmospheric correction.

II. RELATED WORK

Self-supervised learning Over the past years, self-supervised
learning (SSL) has reached important milestones in computer
vision, especially through contrastive methods with joint-
embedding architectures. These methods get trained to pro-
mote similarity between augmented views of the same input,
thereby enforcing invariance to data augmentation. Several
families of such methods emerge: 1) contrasting negative
samples for which the representations are encouraged to be
dissimilar [6]; 2) Knowledge distillation between an asym-
metric teacher-student network [7]; 3) redundancy reduction
among the embedding dimensions; 4) clustering latent features
to common prototypes from different views [10]. Meanwhile,
recent developments in masked image modeling (MIM) reveal
promising results in generative methods, which reconstruct the
masked input at pixel-[8] or feature-[9] level.

We benchmark four representative methods MoCo [6],
DINO [7], MAE [8], and data2vec [9] on the proposed dataset.
This way, we cover a reasonably diverse set of representative
methods from different categories: MoCo contrasts negative
samples, DINO represents a distillation method, MAE is based
on masked reconstruction, and data2Vec combines the masking
mechanism with a joint-embedding architecture.

Pre-training datasets Pre-trained models on ImageNet are
widely used for various computer vision tasks. However, this
is less appropriate in the context of RS: 1) RS images are
not object-centric; 2) there exist various types of sensors in
RS; 3) temporal effects yield variations on the ground surface.
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Fig. 1. Sample images of SSL4EO-S12 dataset assembled.

TABLE I
SUMMARY OF POPULAR MEDIUM-RESOLUTION PRE-TRAINING DATASETS IN REMOTE SENSING. LC: LAND COVER.

dataset spatial cover temporal cover modality overlap patch size # of locations # of patches
BigEarthNet [13] Europe 1 timestamp SAR/optical no 120×120 600K 1.2M
SEN12MS [3] global 1 timestamp SAR/optical/LC yes 256×256 180K 540K
SeCo [4] global 5 timestamps optical yes 264×264 200K 1M
SSL4EO-S12 global 4 timestamps SAR/optical*2 ∼no 264×264 250K 3M

Therefore, EO-specific datasets are needed to provide the
above in-domain knowledge. The literature has proven the
benefits of pre-training on existing labeled RS datasets [11,
12], yet there are limitations such as class bias, and temporal
and geographical coverage.

Consequently, there is a need for large-scale pre-training
datasets in RS. Two datasets closely related to our efforts
are SEN12MS [3] and SeCo [4]. However, SEN12MS is
limited by temporal coverage, SeCo has only optical data,
and both datasets contain strongly overlapping patches which
limit the geospatial coverage. With the above in mind, our
proposed SSL4EO-S12 dataset provides an improved spatio-
temporal coverage by sampling more locations and removing
overlapping patches, enclosing multiple seasons, and including
Sentinel-1 as well as two Sentinel-2 products (Table I).

III. SSL4EO-S12 DATASET

A. Data curation & assembly

The SSL4EO-S12 dataset (Figure 1) exploits openly avail-
able SAR/optical satellite data collected by the European
Space Agency’s Sentinel mission. Following a well-organized
baseline provided by SeCo [4], we utilize the Google Earth
Engine [14] to download and process the data. We filter image
patches to retrieve from the 10,000 most populated cities1 in
the world (top-10k) to guarantee reasonable global coverage.
To obtain diverse land cover, we sample 251,079 locations
close by the cities following a Gaussian distribution peaking
at the city center and standard deviation of 50km—assuming

1https://simplemaps.com/data/world-cities

most of the variability cast to the downtown and suburbs of
cities [4]. At each location, we download 4 images drawn from
four annual seasons to capture seasonal variation. We search
for Sentinel-2 tiles with a cloud coverage lower than 10%.
We also filter out most overlapping patches with an efficient
grid search strategy. In total, we obtain about one million S1-
GRD/S2-L1C/S2-L2A image triplets.

Data identification. The collection of SSL4EO-S12 differs
from SeCo mainly by introducing overlap filtering and multi-
ple sensors (bold below). The workflow is shown as follows:

1) Uniformly sample one city from top-10k populated cities;
2) Sample one location from a Gaussian distribution with a stan-

dard deviation of 50km around the city center;
3) Check if a 2640m×2640m image patch centered around

that location has significant overlap with previous patches.
If not, continue to 4, otherwise return to 1;

4) For a 30-day interval around four reference dates (Mar 20, Jun
21, Sep 22, Dec 21) in 2021 (additionally look for 2020 as a
buffer), check if there exist Sentinel-2 tiles with less than 10%
of cloud coverage (for both L1C and L2A) and corresponding
Sentinel-1 GRD tiles;

5) If there exist valid Sentinel-1/2 tiles close to all the four
dates, process and download them into curated image patches,
otherwise return to 1.

Overlap filtering. A simple way to check significant over-
lap between two patches is to calculate the distance between
the two centers. If the distance is smaller than 3/4 the width of
a patch, there is a non-negligible overlap (¿25%). Naively, we
need to execute this computation for every new patch relative
to all existing patches. However, this becomes inefficient when
the number of patches grows large, 250k+ for us. Therefore,

https://simplemaps.com/data/world-cities
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Fig. 2. Geographical distribution of SSL4EO-S12 dataset.

Fig. 3. Image patches without (left) and with (right) overlap filtering in Tokyo
metropolitan area. We plot red circles of radius 1.32km (132 pixels) for better
visualization.

we employ a grid search strategy to perform efficient overlap
filtering. Instead of calculating the distance to all previ-
ous patches, we distribute the patch center coordinates into
360x180 geographical longitude-latitude, one-by-one-degree
grids. For each new patch, we convert the center coordinates
into integer grid coordinates. Subsequently, we search for
existing patches within this grid cell and exclusively calculate
distances to those local patches. Assuming potential overlap
of sampled patches from distinct grid cells is statistically
negligible, we significantly reduce computing time compared
to a global overlap search. Indeed, for SSL4EO-S12 we record
an overlap for approx. 3% tiles of densely populated Tokyo,
1.5% in Chicago, and below 1% for locations such as Bejing,
Munich, Kampala, and Brasilia.
B. Data characteristics & volume

The presented SSL4EO-S12 dataset contains 251,079 glob-
ally distributed Sentinel-1 dual-pol SAR, Sentinel-2 top-of-
atmosphere multispectral, and Sentinel-2 surface reflectance
multispectral triplets over four seasonal timestamps. As of
summer 2022, SSL4EO-S12 constitutes the biggest geospatial-
temporal, multimodal dataset in terms of medium-resolution
PolSAR and multi-spectral imagery serving more than 3 mil-
lion images. The total data volume equates to an uncompressed
size of 251, 079 × 4 × [2 · 4B + (13 + 12) · 2B] × 2642 ≈
3.7TB .

Figure 2 depicts the geospatial distribution of the SSL4EO-
S12 dataset, highlighting the dense coverage across the globe.
Figure 3 depicts the effect of overlap filtering around Tokyo
area.

IV. EXPERIMENTAL SETUP

We evaluate SSL4EO-S12 dataset by self-supervised pre-
training and transfer learning on RS downstream tasks. Spe-
cific implementation details are provided in the appendix.

A. Self-supervised pre-training

We perform pre-training using four representative SSL
methods: MoCo-v2/v3 [15, 16], DINO [7], MAE [8], and
data2vec [9]. We pre-train ResNet [17] backbones with
MoCo(-v2) and DINO, and Vision Transformer (ViT) [18]
backbones for all four SSL methods listed above. Un-
less explicitly noted, Sentinel-2 L1C is used for pre-
training. To utilize multi-temporal information, we use
RandomSeasonContrast as a data augmentation strategy,
i.e., for MoCo and DINO, the input views are randomly picked
from two seasons. For MAE and data2vec, one random season
is assigned for each patch.

Pre-training one ResNet/ViT model for 100 epochs takes
7–25 hours on 4 NVIDIA A100 GPUs, as shown in Table II.

TABLE II
100 EPOCH TRAINING TIME OF THE STUDIED SSL METHODS.

MoCo DINO MAE data2vec
ResNet50 18h 25h - -
ViT-S/16 24h 25h 7h 14h

B. Transfer learning

The pre-trained models are transferred to various down-
stream tasks. For

• scene classification, we evaluate EuroSAT [19] (single-
label land cover classification), BigEarthNet [13] (multi-
label land cover classification), and So2Sat-LCZ42 [20]
(local climate zone classification, culture-10 version).

• semantic segmentation, we include DFC2020 [21] (land
cover segmentation) and OSCD [22] (change detection).

We perform commonly used linear probing (freezing the pre-
trained encoder) and fine-tuning for the downstream tasks. The
results are reported in percentage scores.

V. BENCHMARK RESULTS

A. Classification

1) Comparison of SSL methods: We first benchmark dif-
ferent SSL methods through linear probing on EuroSAT,
BigEarthNet, and So2Sat-LCZ42. As detailed in Table III, all
methods outperform random initialization (rand.init.) by
a substantial margin. As expected, linear probing on BigEarth-
Net with all labels performs worse than fully supervised train-
ing. Promisingly, the gap stays below 5%. On small datasets
like BigEarthNet with 10% labels or EuroSAT, linear probing
provides results comparable to supervised training within
approx. ±1%. The trends are slightly different for So2Sat-
LCZ42, where the training and testing sets are built upon
different cities with a challenging geographical split. Because
of this significant domain shift, adding labeled training data
does not necessarily improve the testing performance. In fact,
fitting the training data distribution does not guarantee out-of-
distribution generalization. Nevertheless, the best pre-trained
models with linear probing beat the supervised baseline by at
least 1% up to about 4%.

Furthermore, we benchmark fine-tuning results in Table IV.
All self-supervised methods outperform supervised learning
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TABLE III
LINEAR PROBING RESULTS FOR EUROSAT, BIGEARTHNET (BE) AND SO2SAT-LCZ42 (10% AND 100% LABELS). WE REPORT OVERALL ACCURACY

FOR EUROSAT AND SO2SAT-LCZ42, AND MEAN AVERAGE PRECISION (MICRO) FOR BIGEARTHNET. TWO BACKBONE NETWORKS GET TRAINED:
RESNET-50 (RN50) AND A SMALL(-S) EMBEDDING DIMENSION VISION TRANSFORMER(VIT) SUBDIVIDING INPUT PATCHES INTO 16X16 TILES(/16).

BOLD VALUES INDICATE BEST PER-COLUMN PERFORMANCE.

downstream dataset EuroSAT BE-10% BE-100% So2Sat-10% So2Sat-100%
model \ backbone RN50 ViT-S/16 RN50 ViT-S/16 RN50 ViT-S/16 RN50 ViT-S/16 RN50 ViT-S/16
rand.init. 82.0 81.3 61.0 60.0 60.0 60.0 48.8 49.3 49.0 50.2

supervised 98.0 96.7 83.4 81.3 88.7 87.4 57.5 59.7 57.5 59.3
MoCo 98.0 97.7 82.1 82.3 84.2 83.1 61.3 59.6 61.8 62.2
DINO 97.2 97.7 82.0 81.7 83.9 83.4 55.5 60.9 57.0 62.5
MAE - 94.1 - 77.5 - 78.2 - 59.5 - 60.0

data2vec - 96.9 - 77.3 - 79.4 - 58.2 - 59.7
TABLE IV

FINE-TUNING RESULTS FOR EUROSAT, BIGEARTHNET, AND SO2SAT-LCZ42. ALL BEAT supervised TRAINING, CF. TABLE III.

downstream dataset EuroSAT BE-10% BE-100% So2Sat-10% So2Sat-100%
model \ backbone RN50 ViT-S/16 RN50 ViT-S/16 RN50 ViT-S/16 RN50 ViT-S/16 RN50 ViT-S/16

MoCo 99.1 98.6 86.2 86.1 91.8 89.9 60.4 61.2 60.9 61.6
DINO 99.1 99.0 87.1 86.9 90.7 90.5 63.2 61.5 63.6 62.2
MAE - 98.7 - 84.8 - 88.9 - 60.8 - 63.9

data2vec - 99.1 - 85.6 - 90.3 - 63.2 - 64.8

with a margin from 1% to 6%. Top SSL-models score 99.1%
on EuroSAT (MoCo/DINO) and over 90% on BigEarthNet
(MoCo/DINO). Comparing linear probing and fine-tuning re-
sults, one interesting phenomenon shows up: in linear probing
contrastive methods (MoCo and DINO) consistently score
better than their image-masking (MAE and data2vec) coun-
terparts.

2) Comparison of pre-training datasets: To compare
SSL4EO-S12 with other RS pre-training datasets, we report
corresponding linear probing results pre-trained with MoCo-
v2 (ResNet50 backbone) in Table V. Similar to SSL4EO-S12,
RandomSeasonContrast is used to pick one timestamp
image for each geospatial patch in SeCo dataset. In the first
set of comparison, we use RGB bands only. SSL4EO-S12
significantly outperforms ImageNet by about 10%, SeCo by
about 6%, and SEN12MS by 1.7% to 3.5%.

TABLE V
COMPARISON OF DIFFERENT PRE-TRAINING DATASETS UNDER LINEAR

PROBING EVALUATION. italic MEANS CITED FROM THE LITERATURE.

dataset EuroSAT BE-10% BE-100%
ImageNet (RGB) [4] 86.4 70.5 71.8
SeCo (RGB) [4] 89.5 74.5 76.3
SEN12MS (RGB) 94.9 76.6 79.6
SSL4EO-S12 (RGB) 96.6 80.1 82.3
SeCo2 (all bands) 89.2 73.7 76.6
SEN12MS (all bands) 95.5 79.6 82.1
BigEarthNet (all bands) 94.4 80.6 83.9
SSL4EO-S12 (all bands) 98.0 82.1 84.2

In a second set of experiments we evaluate all multispectral
bands. Results indicate consistent performance gain as in RGB
setting comparing SSL4EO-S12 with SEN12MS and SeCo. In
addition, pre-training on SSL4EO-S12 outperforms BigEarth-
Net on itself and EuroSAT (both are EU only). This proves
SSL4EO-S12’s benefits to improve model transferability by
learning valuable knowledge from a larger scale and wider
geographical coverage.

2The available SeCo data at https://github.com/ServiceNow/
seasonal-contrast has only about 160k geographical patches (instead of
200k in the paper), which may affect our reproduced performance.

3) Comparison of different amounts of labels: Figure 4 vi-
sualizes performance results of transfer learning on BigEarth-
Net with a varying fraction of labeled samples. Compared
to the supervised baseline, self-supervised pre-training on
SSL4EO-S12 provides significant benefits when the amount of
labeled samples is limited. In fact, fine-tuning on 10% of the
labels outperforms 50%-labels supervised training; and with
ViT-S/16, fine-tuning on 50% of the labels outperforms 100%-
labels supervised training.

B. Segmentation

1) Land cover segmentation: We use DFC2020 [21] dataset
to evaluate land cover semantic segmentation. We pre-train
ResNet50 with MoCo-v2 on SSL4EO-S12 L1C products, and
fine-tune a DeepLabv3+ [23] for segmentation. Table VI lists
results with notable improvements when compared to SeCo
pre-training. However, SSL4EO-S12 performs worse than
SEN12MS in average accuracy (AA) and mean intersection
over union (mIoU). This can be expected, since DFC2020 was
built with direct reference to SEN12MS and they have similar
data distribution. Nevertheless, the results are still comparable,
proving again the transferability of the proposed dataset.

TABLE VI
DFC2020 LAND COVER SEGMENTATION RESULTS.

dataset OA AA mIoU
rand.init. 81.97 56.46 42.11

SeCo 87.31 57.05 49.68
SEN12MS 88.64 67.69 54.83

SSL4EO-S12 89.58 64.01 54.68

2) Change detection: We evaluate the pre-trained models
for change detection on the OSCD [22] dataset. We pre-
train ResNet50 with MoCo-v2 on SSL4EO-S12 L1C prod-
ucts, freeze the backbone, and fine-tune a U-Net [24] for
segmentation. The differences in feature maps between two
timestamps are input to the network. As Table VII indicates,
pre-training on SSL4EO-S12 yields superior performance in
recall and F1-score when referenced to SeCo and SEN12MS.
While SSL4EO-S12 performs worse in precision, this is due

https://github.com/ServiceNow/seasonal-contrast
https://github.com/ServiceNow/seasonal-contrast
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RN50 ViT-S/16

BE label percentage 1% 10% 50% 100%

R
N

50 Linear 75.9 82.1 82.7 84.2
Fine tune 80.3 86.2 87.7 91.8
supervised 75.7 83.4 85.2 88.7

V
iT

-S
/1

6 Linear 78.2 82.3 83.0 83.1
Fine tune 78.9 86.1 88.2 89.9
supervised 69.3 81.3 84.9 87.4

Fig. 4. BigEarthNet (BE) performance depending on amount of labels available to train downstream task. We report linear probing and fine-tuning results
with ResNet50 and ViT-S/16 encoders pre-trained using MoCo-v2.

TABLE VII
OSCD CHANGE DETECTION RESULTS.

dataset precision recall F1
rand.init. 72.31 13.75 23.10

SeCo 74.85 17.47 28.33
SEN12MS 74.67 19.26 30.62

SSL4EO-S12 70.23 23.38 35.08

to the significant class unbalance that predicting all pixels as
unchanged would result in a good precision score.

VI. ADDITIONAL STUDIES

We complete our benchmark by reporting a set of additional
results to document key characteristics of the SSL4EO-S12
dataset, namely: multi-temporal, multimodal, multi-product-
level, and data scale. For all studies, we pre-train ResNet50
with MoCo-v2 as a common setting.

A. Ablation studies

1) Benefits of multimodality: While Section V employs
only optical data for fair comparison to existing literature,
we highlight the benefits of multimodal pre-training in this
section. We integrate SAR data by early fusion, and use
RandomSensorDrop [12] as an additional data augmenta-
tion strategy. During training, the model gets fed random com-
binations of SAR/optical patches, thus learning both inner- and
inter-modality representations. Then, the pre-trained model
gets transferred to different scenarios where either both modal-
ities or a single one is available. We compare multimodal pre-
training (MM) to uni-modal pre-training (S1/2) on BigEarth-
Net. Table VIII presents results with notable improvement
of 1%–3% for 100% and 1% label splits. While single-
modality pre-training already works well for both Sentinel-
2 and Sentinel-1 data, pre-training exploiting both modalities
further improves performance.

TABLE VIII
LINEAR PROBING RESULTS OF MULTIMODAL SSL. MOCO-S1/2
REPRESENTS PRE-TRAINING WITH ONE SINGLE MODALITY, AND

MOCO-MM REPRESENTS PRE-TRAINING WITH BOTH MODALITIES.

downstr./ BE-1% BE-100%
model S1 S2 S1+S2 S1 S2 S1+S2

MoCo-S1/2 71.1 75.9 – 75.9 84.2 –
MoCo-MM 73.3 76.7 76.8 79.5 85.1 85.2
supervised 66.7 75.7 76.4 77.2 88.7 88.9

2) Ablation of seasonal information: We evaluate the effec-
tiveness of multi-temporal information by replacing seasonal
augmentation (cf. Section IV) by random season: the same
randomly selected season for the two positive views; and fixed
season: the same season for each patch during training. We
pre-train on a 50k subset of SSL4EO-S12, and evaluate on
BigEarthNet-10% and EuroSAT. Table IX clearly proves the
benefits of seasonal augmentation.

TABLE IX
LINEAR PROBING RESULTS OF MULTI-TEMPORAL ABLATION STUDY.

downstr./season BE-10% EuroSAT
fixed 75.1 93.1

random 76.7 94.0
augment 77.6 96.2

3) Atmospheric correction as data augmentation: The mo-
tivation to include Sentinel-2 L1C and L2A products in
SSL4EO-S12 is to match corresponding downstream tasks.
However, these product levels with or without atmospheric
correction can also be considered natural data augmentation
for SSL. Accordingly, we conduct an ablation study on a 50k
SSL4EO-S12 subset utilizing Sentinel-2 L1C, L2A or both
(L1C+L2A). Table X summarizes our findings: 1) models pre-
trained on the same product level as the downstream task
have a slight edge (∼ 1%) over models trained on the other
product level, and 2) pre-training on both modalities generates
a notable improvement of up to 4% compared to pre-training
on single modality.

TABLE X
LINEAR PROBING RESULTS OF DIFFERENT PRODUCT LEVELS OF

SENTINEL-2.

product BE-10% (L2A) EuroSAT (L1C)
L1C 74.0 93.1
L2A 75.1 92.0

L1C+L2A 78.0 93.8

4) Impact of pre-training scale: An aspect relevant to large-
scale data mining in Earth observation is scaling of results
with training data volume: why don’t we add more images
to SSL4EO-S12? One reason concerns computational costs.
We believe the current dataset (1M patches for each Sentinel
product) is comparable to the scale of ImageNet, and can serve
as a good baseline in remote sensing for further development.
Moreover, as observed by [25], saturating downstream perfor-
mance kicks in beyond 500k pre-training images on ImageNet,
with 250k images yielding acceptable results with as little as 1-
2% accuracy loss. We observe such a trend in our dataset, too.
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As demonstrated by Table XI, we pre-train on various amounts
of data to report linear probing results for BigEarthNet-10%.
While 50% (500K) or less pre-training data yields significant
performance drops, there’s little diminishing gaps from 75%
(750K) on. Note this saturation effect depends also on the
model size.

TABLE XI
LINEAR PROBING RESULTS ON BIGEARTHNET-10% FOR VARIOUS

SENTINEL-2 L1C PRE-TRAINING DATA SIZES.

data size 100K 250K 500K 750K 1M
accuracy (%) 64 73 78 81 82

B. Representation visualization

We qualitatively evaluate the data representations learned
from self-supervised pre-training by visualizing the latent dis-
tributions with t-SNE (Figure 5). We pre-train a ResNet50 with
MoCo-v2 on SSL4EO-S12, and transfer the frozen encoder
to EuroSAT to calculate one 128d representation vector for
each image. We then visualize all the vectors with t-SNE, and
compare the distribution with a randomly initialized encoder.

Fig. 5. t-SNE visualization of EuroSAT image representations. One color
represents one class. Left: random-encoded features; right: SSL-encoded fea-
tures. SSL-encoded features are well clustered even without label information.

VII. CONCLUSION

In this work, we present SSL4EO-S12—a large-scale mul-
timodal, multi-temporal unlabeled dataset for self-supervised
learning (SSL) in Earth observation. An extensive benchmark
on various SSL methods and remote sensing applications
proves the promising benefits of the proposed dataset.

SSL4EO-S12 has some limitations: 1) there’s little coverage
of polar regions; 2) geographical bias exists due to cloud filter-
ing; 3) it is not strictly free of geospatial overlap; 4) medium-
resolution radar and multispectral images are a limited subset
of Earth observation data. Despite these, we believe SSL4EO-
S12 renders a valuable basis to advance self-supervised pre-
training and large-scale data mining in remote sensing.
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APPENDIX-1: ADDITIONAL DATASET INFORMATION

A. Sentinel-1/2
The proposed SSL4EO-S12 dataset exploits freely available SAR/optical satellite images from European Space Agency’s

Sentinel mission (under the CC-BY license).
The Sentinel-1 mission [26] consists of two polar-orbiting satellites, equipped with C-band SAR sensors, which enables them

to acquire imagery regardless of the weather. For the Sentinel-1 images in the SSL4EO-S12 dataset, ground-range-detected
(GRD) products with both VH and VV polarization acquired in the interferometric wide swath (IW) mode were used. These
images contain the σ0 backscatter coefficient in dB scale. The image resolution is 10m.

The Sentinel-2 mission [27] comprises two polar-orbiting satellites in the same orbit, equipped with multi-spectral imaging
sensors. For Sentinel-2 images in the SSL4EO-S12 dataset, both level-1C top-of-atmosphere reflectance (13 bands) and level-
2A atmospherically corrected surface reflectance (12 bands) were included. The image resolution ranges between 10m (visible
and NIR), 20m (red edge and SWIR) and 60m (aerosols).

B. Dataset statistics
Table XII and XIII present the mean and standard deviation of each band for each product of the proposed SSL4EO-S12

dataset.

TABLE XII
STATISTICS OF SENTINEL-1 IMAGES IN THE SSL4EO-S12 DATASET.

VV VH
mean -12.59 -20.26
std 5.26 5.91

TABLE XIII
STATISTICS OF SENTINEL-2 IMAGES IN THE SSL4EO-S12 DATASET.

B1 B2 (B) B3 (G) B4 (R) B5 B6 B7 B8 B8A B9 B10 B11 B12

s2c mean 1612.9 1397.6 1322.3 1373.1 1561.0 2108.4 2390.7 2318.7 2581.0 837.7 22.0 2195.2 1537.4
std 791.0 854.3 878.7 1144.9 1127.5 1164.2 1276.0 1249.5 1345.9 577.5 47.5 1340.0 1142.9

s2a mean 756.4 889.6 1151.7 1307.6 1637.6 2212.6 2442.0 2538.9 2602.9 2666.8 - 2388.8 1821.5
std 1111.4 1159.1 1188.1 1375.2 1376.6 1358.6 1418.4 1476.4 1439.9 1582.1 - 1460.7 1352.2

C. Data storage
The SSL4EO-S12 dataset is stored in GeoTiff format for each band of each patch. The file structure is shown in Figure 6,

where s1/s2a/s2c represents Sentinel-1 / Sentinel-2 level-2A / Sentinel-2 level-1C, and t1 - t4 represent 4 seasons. Raw files
(extracted GeoTiff) occupy about 500GB/800GB/800GB disk storage for S1/S2A/S2C, and compressed tar.gz files occupy
about 450GB/500GB/500GB correspondingly. If converting to uint8 and encoding with jpeg, a lossy dataset occupies less than
50 GB for each product. We later show this won’t affect much the downstream performance.

D. Metadata
Each patch comes with a metadata file that collects the image properties of this patch. See Table XX and XXI for details.

E. Example visualization
Figure 7 visualizes an example geospatial tile of SSL4EO-S12.
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ssl4eo-s12

• s1

• 0000000

• T1

• VH.tif

• VV.tif

• metadata.json

• …

• T4

• 0251079

• s2a

• 0000000

• T1

• B1.tif

• …

• B12.tif

• metadata.json

• T4

• 0251079

• s2c

Fig. 6. SSL4EO-S12 file structure.

Fig. 7. Sample visualization of one tile from SSL4EO-S12 dataset. The rows top-down present grayscale and false-color imagery based on the Sentinel-1
GRD product, Sentinel-2 level-1C, and Sentinel-2 level-2A multispectral data with corresponding columns representing the four seasons spring, summer, fall,
and winter from left to right.
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APPENDIX-2: IMPLEMENTATION DETAILS

A. Pre-training
We use Sentinel-2 level-1C images for the main pre-training experiments, which are pre-processed by converting to uint8

for efficiency (divided by 10000 and multiplied by 255, see Section VII-B5). We use 4 NVIDIA A100 GPUs with a total
batch size of 256 for all the pre-training experiments. For the main experiments, we pre-train ResNet50 or Vit-S/16 for 100
epochs. Training time varies between different methods from 7 (MAE) to 25 (DINO) hours. The total experiments (including
parameter tuning) take about 70k core hours (1400 GPU hours).

1) MoCo: We pre-train the MoCo-v2/v3 models using their default settings following the publicly available repository
(https://github.com/facebookresearch/moco and https://github.com/facebookresearch/moco-v3). We use RandomResizedCrop,
RandomBrightness/Contrast (to have a partial color jittering for multiple bands), RandomGrayscale, RandomGaussianBlur,
RandomHorizontalFlip and RandomSeasonContrast as data augmentations. For MoCo-v2 (ResNet50), we use SGD
optimizer and cosine learning rate schedule with a learning rate 0.03. For MoCo-v3 (ViT-S/16), we use AdamW optimizer and
cosine schedule with a learning rate 1.5e-4.

2) DINO: We pre-train the DINO models using its default settings following the publicly available repository (https:
//github.com/facebookresearch/dino). The data augmentations include those of MoCo, as well as additional Multi-Crop and
Solarization. For ResNet50, we use SGD optimizer and cosine learning rate schedule with a learning rate 0.03. For ViT-S/16,
we use AdamW optimizer and cosine learning rate schedule with a learning rate 1.5e-4.

3) MAE: We pre-train the MAE models using its default settings following the publicly available repository (https:
//github.com/facebookresearch/mae). The mask ratio is set to 0.7. The data augmentations include RandomResizedCrop,
RandomHorizontalFlip and RandomSeason. We use AdamW optimizer and cosine learning rate schedule with a learning
rate 1.5e-4.

4) data2vec: We pre-train the data2vec models using its default settings following the publicly available repository
(https://github.com/facebookresearch/fairseq/tree/main/examples/data2vec). The data augmentations include Resize/CenterCrop,
RandomHorizontalFlip and RandomSeason. We use AdamW optimizer and cosine learning rate schedule with a learning rate
1e-3.

B. Downstream tasks
Below are additional implementation details for the downstream tasks.

1) EuroSAT: We split EuroSAT into 21600 training and 5400 testing images for evaluation. The data augmentations are
RandomResizedCrop/RandomHorizontalFlip for training, and Resize/CenterCrop for testing. We resize the images to 224x224
for better performance (see Section VII-B5). The batch size is 256. We use CrossEntropyLoss and SGD optimizer with step
decay learning rate (divided by 10 at epoch 60 and 80) for 100 epochs. We use simple grid search strategy to find suitable
learning rates for linear probing and fine-tuning.

2) BigEarthNet: We use 311667 training and 103944 testing images from BigEarthNet for evaluation. Different settings of
the amount of labels affect only the training split. The data augmentations are RandomResizedCrop/RandomHorizontalFlip for
training, and Resize/CenterCrop for testing. We use a cropping scale of 0.8 to avoid strong occlusions (BigEarthNet is a multi-
label dataset). We resize the images to 224x224 for better performance. The batch size is 256. We use MultiLabelSoftMarginLoss
and SGD optimizer with step decay learning rate (divided by 10 at epochs 60 and 80) for 100 epochs. We use a simple grid
search strategy to find suitable learning rates for linear probing and fine-tuning.

3) So2Sat-LCZ42: We use 352366 training and 24119 testing Sentinel-2 images from So2Sat-LCZ42 for evaluation. Different
settings of the amount of labels affect only the training split. We use the culture-10 version of So2Sat-LCZ42: the training
data and the testing data are from different cities. The data augmentations are RandomResizedCrop/RandomHorizontalFlip for
training, and Resize/CenterCrop for testing. We resize the images to 224x224 for better performance. The batch size is 256.
We use CrossEntropyLoss and SGD optimizer with step decay learning rate (divided by 10 at epochs 60 and 80) for 100
epochs. We use a simple grid search strategy to find suitable learning rates for linear probing and fine-tuning.

4) DFC2020: We use 5128 training and 986 testing Sentinel-2 images from DFC2020 dataset for evaluation. The batch
size is set to 8 and we train the models for 50 epochs. We use CrossEntropyLoss and SGD optimizer with momentum 0.9 and
weight decay 5e-4. The initial learning rate is 1e-3, which is decayed by a factor of 0.9 in every epoch until 1e-4.

5) OSCD: This dataset is composed of 24 pairs of multispectral images from Sentinel-2 in total. Following [22], we use 14
of them for training, and the rest for testing. In fine-tuning stage, we adopt settings similar to those in [4]. That is, the original
images are split into non-overlapping patches of 96 × 96 pixels as inputs, which leads to 827 and 285 patches for training and
testing, respectively. The batch size is set to 32, and we in total train 50 epochs. We use Adam optimizer with a weight decay
of 1e-4. The initial learning rate is 1e-3, and decreases exponentially with a multiplicative factor of 0.95 for every epoch. The
resulting models are evaluated on the whole test set for overall precision, recall and F1 score (with a default threshold 0.5).

https://github.com/facebookresearch/moco
https://github.com/facebookresearch/moco-v3
https://github.com/facebookresearch/dino
https://github.com/facebookresearch/dino
https://github.com/facebookresearch/mae
https://github.com/facebookresearch/mae
https://github.com/facebookresearch/fairseq/tree/main/examples/data2vec
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APPENDIX-3: ADDITIONAL EXPERIMENTAL RESULTS

A. Effect of data pre-processing

We show the influence of data pre-processing (for pre-training) in Table XIV, where int16 means 16 bits raw input, uint8
means compressed 8 bits input (divided by 10000 and multiplied by 255), uint8-n means normalization by mean and standard
deviation, and L2A/L1C means with/without atmospheric correction. The results show similar performance between 16 bit and
8 bit, supporting compressed input as it saves a lot of storage space and computing time. The results also show comparable
performance for L1C and L2A, as well as for the use of normalization. Therefore, in our main experiments, we use level-1C,
uint8, unnormalized data for pre-training.

TABLE XIV
EFFECTS OF PRE-PROCESSING FOR PRETRAINING. WE PRE-TRAIN A RESNET50 WITH MOCO-V2 ON A 50K SUBSET FOR EFFICIENCY AND REPORT

LINEAR PROBING RESULTS.

BE-10% (L2A) EuroSAT (L1C)
int16 uint8 uint8-n int16 uint8 uint8-n

L2A 73.9 73.9 75.6 85.2 86.6 -
L1C 73.8 74 - 86.2 87.7 85.1

B. Effect of input image size

We analyze the impact of image resolution on pre-training and transfer learning in Table XV. We clearly observe the
advantage of upsampling the input image size. Therefore, in our main experiments, we upscale the downstream input images
to 224x224 for better performance.

TABLE XV
EFFECTS OF INPUT SIZE OF DOWNSTREAM TASKS. WE PRE-TRAIN RESNET50 WITH MOCO-V2 ON THE 50K SUBSET FOR EFFICIENCY AND REPORT

LINEAR PROBING RESULTS.

BE-10% EuroSAT
224 112 56 224 112 56

pretrain 224 75.1 71.1 - 93.1 89.4 89.4
pretrain 112 75.9 73.9 - 92.7 91.1 86.6
pretrain 56 73.1 70.5 70.5 89.7 89 86.4

C. Effect of MAE masking ratio

Table XVI shows the influence of masking ratios in MAE during pre-training. We find 70% to be the best masking ratio,
which is similar to natural images as reported in MAE paper, where 75% is the best. It is also promising to see that the model
still learns good representations even with 90% pixels masked.

TABLE XVI
EFFECTS OF DIFFERENT MASKING RATIOS. WE PRE-TRAIN VIT-S/16 WITH MAE ON THE 50K SUBSET FOR EFFICIENCY AND REPORT LINEAR PROBING

RESULTS ON BIGEARTHNET-10%.

Mask ratio 90% 80% 75% 70% 60% 50%
BE-10% 72 73.5 73.8 74 73.6 72.9

D. Effect of different pre-training protocols

1) Different ImageNet pre-training protocols: Table XVII shows a comparison of different ImageNet pre-training protocols.
We pre-train ResNet50 with MoCo-v2 for self-supervised pre-training, and report fine-tuning results on BigEarthNet. The table
shows that ImageNet pre-training provides good representations that can be generalized well to remote sensing images with
RGB but not all bands. It can also be seen that when using RGB, self-supervised pre-training on ImageNet can further improve
the downstream performance in remote sensing compared to supervised pre-training.

2) Supervised pre-training on RS datasets: Table XVIII shows a comparison of supervised and unsupervised pre-training on
remote sensing datasets. We do supervised pre-training on BigEarthNet and self-supervised pre-training (MoCo-v2, ResNet50)
on both BigEarthNet and SSL4EO-S12. We evaluate the pre-trained models on EuroSAT. The results show that self-supervised
pre-training outperforms supervised pre-training on remote sensing data.
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TABLE XVII
SUMMARY OF DIFFERENT IMAGENET PRE-TRAINING PROTOCOLS.

downstr./ All optical bands RGB
pre-train BE-10% BE-100% BE-10% BE-100%

Supervised 83.4 88.7 69.5 79.0
ImageNet (Sup) 82.5 89.5 80.0 86.7
ImageNet (SSL) 82.5 89.4 81.9 90.8

SSL4EO-S12 (SSL) 86.2 91.8 82.7 90.9

TABLE XVIII
A COMPARISON OF DIFFERENT PRE-TRAINING PROTOCOLS ON REMOTE SENSING DATASETS AND EVALUATED ON EUROSAT.

downstr./ Linear probing Fine-tuning
pre-train 10% 100% 10% 100%

BigEarthNet (Sup) 80.3 89.3 94.2 98.7
BigEarthNet (SSL) 90.7 94.4 96.3 98.9
SSL4EO-S12 (SSL) 92.7 98.0 96.9 99.1

E. Additional dataset comparison results
Table XIX reports fine-tuning results pre-trained on different datasets in complement to the main paper. A difference most

notable is ImageNet’s catch-up in performance compared to the other geospatial pre-training datasets. However, a ∼ 5% margin
when compared to SSL4EO-S12 persists. The observed is a characteristic feature of the data domain gap: while pre-training on
ImageNet learns good representations, the weights’ distribution is shifted towards natural images, which can be further adjusted
to remote sensing data with fine-tuning. We note that fine-tuning is more computationally expensive compared to linear probing,
and Table XIX demonstrate: pre-training on SSL4EO-S12 outperforms all other datasets for downstream classification.

TABLE XIX
COMPARISON OF DIFFERENT PRE-TRAINING DATASETS UNDER FINE-TUNING EVALUATION.

dataset EuroSAT BE-10% BE-100% So2Sat-10% So2Sat-100%
ImageNet (RGB) 96.5 80.0 86.7 - -
SeCo (RGB) - 80.2 86.1 - -
SSL4EO-S12 (RGB) 98.0 82.7 90.9 - -
BigEarthNet (MS) 98.9 85.5 89.3 53.0 53.0
SSL4EO-S12 (MS) 99.1 86.2 91.8 60.4 60.9
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APPENDIX-4: METADATA

TABLE XX
METADATA SENTINEL-1 GRD[14].

Name Type Description
GRD Post Processing facility country STRING Name of the country where the facility is located. This element is configurable within the IPF.
GRD Post Processing facility name STRING Name of the facility where the processing step was performed. This element is configurable within the

IPF.
GRD Post Processing facility organisation STRING Name of the organisation responsible for the facility. This element is configurable within the IPF.
GRD Post Processing facility site STRING Geographical location of the facility. This element is configurable within the IPF.
GRD Post Processing software name STRING Name of the software.
GRD Post Processing software version STRING Software version identification.
GRD Post Processing start DOUBLE Processing start time.
GRD Post Processing stop DOUBLE Processing stop time.
SLC Processing facility country STRING Name of the country where the facility is located. This element is configurable within the IPF.
SLC Processing facility name STRING Name of the facility where the processing step was performed. This element is configurable within the

IPF.
SLC Processing facility organisation STRING Name of the organisation responsible for the facility. This element is configurable within the IPF.
SLC Processing facility site STRING Geographical location of the facility. This element is configurable within the IPF.
SLC Processing software name STRING Name of the software.
SLC Processing software version STRING Software version identification.
SLC Processing start DOUBLE Processing start time.
SLC Processing stop DOUBLE Processing stop time.
S1TBX Calibration Operator version STRING Sentinel-1 Toolbox calibration tool version.
S1TBX SAR Processing version STRING Sentinel-1 Toolbox SAR processing tool version.
SNAP Graph Processing Framework GPF version STRING Sentinel Application Platform (SNAP) version.
startTimeANX DOUBLE Sensing start time of the input data relative to the ascending node crossing. This is a count of the time

elapsed since the orbit ascending node crossing [ms].
stopTimeANX DOUBLE Sensing stop time of the input data relative to the ascending node crossing. This is a count of the time

elapsed since the orbit ascending node crossing [ms].
nssdcIdentifier STRING Uniquely identifies the mission according to standards defined by the World Data Center for Satellite

Information (WDC-SI), available here.
familyName STRING The full mission name. E.g. “SENTINEL-1”
platform number STRING The alphanumeric identifier of the platform within the mission.
instrument STRING Information related to the instrument on the platform to which acquired the data.
instrumentMode STRING IW (Interferometric Wide Swath), EW (Extra Wide Swath) or SM (Strip Map)
instrumentSwath STRING List of the swaths contained within a product. Most products will contain only one swath, except for

TOPS SLC products which include 3 or 5 swaths.
orbitNumber start DOUBLE Absolute orbit number of the oldest line within the image data.
orbitNumber stop DOUBLE Absolute orbit number of the most recent line within the image data.
relativeOrbitNumber start DOUBLE Relative orbit number of the oldest line within the image data.
relativeOrbitNumber stop DOUBLE Relative orbit number of the most recent line within the image data.
cycleNumber DOUBLE Absolute sequence number of the mission cycle to which the oldest image data applies.
phaseIdentifier DOUBLE Id of the mission phase to which the oldest image data applies.
orbitProperties pass STRING Direction of the orbit (’ASCENDING’ or ’DESCENDING’) for the oldest image data in the product (the

start of the product).
orbitProperties ascendingNodeTime DOUBLE UTC time of the ascending node of the orbit. This element is present for all products except ASAR L2

OCN products which are generated from an ASAR L1 input.
resolution STRING H for high or M for medium.
resolution meters DOUBLE Resolution in meters.
instrumentConfigurationID DOUBLE The instrument configuration ID (Radar database ID) for this data.
missionDataTakeID DOUBLE Unique ID of the datatake within the mission.
transmitterReceiverPolarisation DOUBLE Transmit/Receive polarisation for the data. There is one element for each Tx/Rx combination: [”VV”],

[”HH”], [”VV”, ”VH”], or [”HH”, ”HV”].
productClass STRING Output product class “A” for Annotation or “S” for Standard.
productClassDescription STRING Textual description of the output product class.
productComposition STRING The composition type of this product: ”Individual”, ”Slice”, or ”Assembled”.
productType STRING The product type (correction level) of this product.
productTimelinessCategory STRING Describes the required timeliness of the processing. One of: NRT-10m, NRT-1h, NRT-3h, Fast-24h, Off-

line, or Reprocessing
sliceProductFlag STRING True if this is a slice from a larger product or false if this is a complete product.
segmentStartTime DOUBLE Sensing start time of the segment to which this slice belongs. This field is only present if sliceProductFlag

= true
sliceNumber DOUBLE Absolute slice number of this slice starting at 1. This field is only present if sliceProductFlag = true.
totalSlices DOUBLE Total number of slices in the complete data take. This field is only present if sliceProductFlag = true.
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TABLE XXI
METADATA SENTINEL-2 L1C[14].

Name Type Description
AOT RETRIEVAL ACCURACY DOUBLE Accuracy of Aerosol Optical thickness model
CLOUDY PIXEL PERCENTAGE DOUBLE Granule-specific cloudy pixel percentage taken from the original metadata
CLOUD COVERAGE ASSESSMENT DOUBLE Cloudy pixel percentage for the whole archive that contains this granule. Taken from the original metadata
CLOUDY SHADOW PERCENTAGE DOUBLE Percentage of pixels classified as cloud shadow
DARK FEATURES PERCENTAGE DOUBLE Percentage of pixels classified as dark features or shadows
DATASTRIP ID STRING Unique identifier of the datastrip Product Data Item (PDI)
DATATAKE IDENTIFIER STRING Uniquely identifies a given Datatake. The ID contains the Sentinel-2 satellite, start date and time, absolute orbit number,

and processing baseline.
DATATAKE TYPE STRING MSI operation mode
DEGRADED MSI DATA PERCENTAGE DOUBLE Percentage of degraded MSI and ancillary data
FORMAT CORRECTNESS STRING Synthesis of the On-Line Quality Control (OLQC) checks performed at granule (Product Syntax) and datastrip (Product

Syntax and DS Consistency) levels
GENERAL QUALITY STRING Synthesis of the OLQC checks performed at the datastrip level (Relative Orbit Number)
GENERATION TIME DOUBLE Product generation time
GEOMETRIC QUALITY STRING Synthesis of the OLQC checks performed at the datastrip level (Attitude Quality Indicator)
GRANULE ID STRING Unique identifier of the granule PDI (PDI ID)
HIGH PROBA CLOUDS PERCENTAGE DOUBLE Percentage of pixels classified as high probability clouds
MEAN INCIDENCE AZIMUTH ANGLE B1 DOUBLE Mean value containing viewing incidence azimuth angle average for band B1 and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B2 DOUBLE Mean value containing viewing incidence azimuth angle average for band B2 and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B3 DOUBLE Mean value containing viewing incidence azimuth angle average for band B3 and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B4 DOUBLE Mean value containing viewing incidence azimuth angle average for band B4 and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B5 DOUBLE Mean value containing viewing incidence azimuth angle average for band B5 and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B6 DOUBLE Mean value containing viewing incidence azimuth angle average for band B6 and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B7 DOUBLE Mean value containing viewing incidence azimuth angle average for band B7 and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B8 DOUBLE Mean value containing viewing incidence azimuth angle average for band B8 and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B8A DOUBLE Mean value containing viewing incidence azimuth angle average for band B8a and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B9 DOUBLE Mean value containing viewing incidence azimuth angle average for band B9 and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B10 DOUBLE Mean value containing viewing incidence azimuth angle average for band B10 and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B11 DOUBLE Mean value containing viewing incidence azimuth angle average for band B11 and for all detectors
MEAN INCIDENCE AZIMUTH ANGLE B12 DOUBLE Mean value containing viewing incidence azimuth angle average for band B12 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B1 DOUBLE Mean value containing viewing incidence zenith angle average for band B1 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B2 DOUBLE Mean value containing viewing incidence zenith angle average for band B2 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B3 DOUBLE Mean value containing viewing incidence zenith angle average for band B3 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B4 DOUBLE Mean value containing viewing incidence zenith angle average for band B4 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B5 DOUBLE Mean value containing viewing incidence zenith angle average for band B5 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B6 DOUBLE Mean value containing viewing incidence zenith angle average for band B6 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B7 DOUBLE Mean value containing viewing incidence zenith angle average for band B7 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B8 DOUBLE Mean value containing viewing incidence zenith angle average for band B8 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B8A DOUBLE Mean value containing viewing incidence zenith angle average for band B8a and for all detectors
MEAN INCIDENCE ZENITH ANGLE B9 DOUBLE Mean value containing viewing incidence zenith angle average for band B9 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B10 DOUBLE Mean value containing viewing incidence zenith angle average for band B10 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B11 DOUBLE Mean value containing viewing incidence zenith angle average for band B11 and for all detectors
MEAN INCIDENCE ZENITH ANGLE B12 DOUBLE Mean value containing viewing incidence zenith angle average for band B12 and for all detectors
MEAN SOLAR AZIMUTH ANGLE DOUBLE Mean value containing sun azimuth angle average for all bands and detectors
MEAN SOLAR ZENITH ANGLE DOUBLE Mean value containing sun zenith angle average for all bands and detectors
MEDIUM PROBA CLOUDS PERCENTAGE DOUBLE Percentage of pixels classified as medium probability clouds
MGRS TILE STRING US-Military Grid Reference System (MGRS) tile
NODATA PIXEL PERCENTAGE DOUBLE Percentage of No Data pixels
NOT VEGETATED PERCENTAGE DOUBLE Percentage of pixels classified as non-vegetated
PROCESSING BASELINE STRING Configuration baseline used at the time of the product generation in terms of processor software version and major Ground

Image Processing Parameters (GIPP) version
PRODUCT ID STRING The full id of the original Sentinel-2 product
RADIATIVE TRANSFER ACCURACY DOUBLE Accuracy of radiative transfer model
RADIOMETRIC QUALITY STRING Based on the OLQC reports contained in the Datastrips/QI DATA with RADIOMETRIC QUALITY checklist name
REFLECTANCE CONVERSION CORRECTION DOUBLE Earth-Sun distance correction factor
SATURATED DEFECTIVE PIXEL PERCENTAGE DOUBLE Percentage of saturated or defective pixels
SENSING ORBIT DIRECTION STRING Imaging orbit direction
SENSING ORBIT NUMBER DOUBLE Imaging orbit number
SENSOR QUALITY STRING Synthesis of the OLQC checks performed at granule (Missing Lines, Corrupted ISP, and Sensing Time) and datastrip

(Degraded SAD and Datation Model) levels
SOLAR IRRADIANCE B1 DOUBLE Mean solar exoatmospheric irradiance for band B1
SOLAR IRRADIANCE B2 DOUBLE Mean solar exoatmospheric irradiance for band B2
SOLAR IRRADIANCE B3 DOUBLE Mean solar exoatmospheric irradiance for band B3
SOLAR IRRADIANCE B4 DOUBLE Mean solar exoatmospheric irradiance for band B4
SOLAR IRRADIANCE B5 DOUBLE Mean solar exoatmospheric irradiance for band B5
SOLAR IRRADIANCE B6 DOUBLE Mean solar exoatmospheric irradiance for band B6
SOLAR IRRADIANCE B7 DOUBLE Mean solar exoatmospheric irradiance for band B7
SOLAR IRRADIANCE B8 DOUBLE Mean solar exoatmospheric irradiance for band B8
SOLAR IRRADIANCE B8A DOUBLE Mean solar exoatmospheric irradiance for band B8a
SOLAR IRRADIANCE B9 DOUBLE Mean solar exoatmospheric irradiance for band B9
SOLAR IRRADIANCE B10 DOUBLE Mean solar exoatmospheric irradiance for band B10
SOLAR IRRADIANCE B11 DOUBLE Mean solar exoatmospheric irradiance for band B11
SOLAR IRRADIANCE B12 DOUBLE Mean solar exoatmospheric irradiance for band B12
SNOW ICE PERCENTAGE DOUBLE Percentage of pixels classified as snow or ice
SPACECRAFT NAME STRING Sentinel-2 spacecraft name: Sentinel-2A, Sentinel-2B
THIN CIRRUS PERCENTAGE DOUBLE Percentage of pixels classified as thin cirrus clouds
UNCLASSIFIED PERCENTAGE DOUBLE Percentage of unclassified pixels
VEGETATION PERCENTAGE DOUBLE Percentage of pixels classified as vegetation
WATER PERCENTAGE DOUBLE Percentage of pixels classified as water
WATER VAPOUR RETRIEVAL ACCURACY DOUBLE Declared accuracy of the Water Vapor model
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DATASHEETS FOR DATASETS

Here we answer the questions outlined in the datasheets for datasets paper by Gebru et al. [28].

A. Motivation

For what purpose was the dataset created? The dataset was created for unsupervised pre-training in Earth observation.
By integrating global coverage, multiple modalities and multiple timestamps, the dataset is intended to serve for diverse
applications in remote sensing. The dataset fills the gap between multiple existing pre-training datasets, e.g. domain gap of
ImageNet, regional coverage of BigEarthNet [13], single modality of SeCo [4], single timestamp of SEN12MS [3], and patch
overlap of both SEN12MS and SeCo.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution,
organization)? The dataset was created by the lab ”Data Science in Earth Observation” at Technical University of Munich
and German Aerospace Center.

Who funded the creation of the dataset? The creation of the dataset was funded by the Helmholtz Association through
the Framework of Helmholtz AI (grant number: ZT-I-PF-5-01) - Local Unit “Munich Unit @Aeronautics, Space and Transport
(MASTr)”. The computing resources for benchmark experiments were supported by the Helmholtz Association’s Initiative and
Networking Fund on the HAICORE@FZJ partition.

B. Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? This dataset
only contains satellite images. In addition we provide meta-data for these images, which contain information about data
acquisition.

How many instances are there in total (of each type, if appropriate)? The dataset contains 251079 geographical patches,
each patch including 3 product types and 4 seasons. In total there are 1M patches each for Sentinel-1 GRD, Sentinel-2 L1C
and Sentinel-2 L2A, resulting in 1.5TB as three tar.gz files.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set?
The dataset is a sample of all Sentinel-1/2 satellite images. While the dataset can still be extended, we make it as representative
as possible by ensuring global coverage, multiple modalities and multiple timestamps.

What data does each instance consist of? Sentinel-1/2 images along with meta-data captured from the space.
Is there a label or target associated with each instance? No, our dataset is unlabeled. However, each patch is bound with

geographical location and acquisition time, thus a match to other labeled maps is possible.
Is any information missing from individual instances? No.
Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? Not

applicable, though geographic location / acquisition time / product type / other properties can be extracted if needed.
Are there recommended data splits (e.g., training, development/validation, testing)? The dataset is intended for

unsupervised pre-training. Users are free to use either the full split or a subset (either a subset of modalities or a subset
of geographical patches) based on their targeted applications.

Are there any errors, sources of noise, or redundancies in the dataset? Yes, as mentioned in the data collection section,
there are two kinds of noise/redundancies: first, potential overlap around grid cell boundaries; second, potential noise of clouds
from inaccurate cloud filtering.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other
datasets)? The dataset is self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or
by doctor-patient confidentiality, data that includes the content of individuals’ non-public communications)? No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise
cause anxiety? No.

Does the dataset identify any subpopulations (e.g., by age, gender)? No.
Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in combination

with other data) from the dataset? No.
Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals race or ethnic

origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health
data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history)?
No.
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C. Collection process

How was the data associated with each instance acquired? The data was collected from the publicly available Sentinel-1/2
database.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor, manual human
curation, software program, software API)? Google Earth Engine with Python were used to collect the data.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)? The patch locations are Gaussian sampled around a city center (50km) which is uniformly
sampled from top-10k populated cities across the globe. The timestamps are sampled from four seasons (dates around Mar
20th, Jun 21st, Sep 22nd and Dec 21st) in the year 2020/2021.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)? The data was automatically collected and verified by the authors.

Over what timeframe was the data collected? The data was collected by the authors between February and March 2022.
The images within the dataset were captured in the year 2020/2021.

Were any ethical review processes conducted (e.g., by an institutional review board)? No.
Did you collect the data from the individuals in question directly, or obtain it via third parties or other sources (e.g.,

websites)? The data was collected from open sources.
Were the individuals in question notified about the data collection? N/A.
Did the individuals in question consent to the collection and use of their data? N/A.
If consent was obtained, were the consenting individuals provided with a mechanism to revoke their consent in the

future or for certain uses? N/A.
Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data protection impact

analysis) been conducted? N/A.

D. Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-speech
tagging, SIFT feature extraction, removal of instances, processing of missing values)? The data was pre-processed online
during the collection/downloading process: filtering out cloudy patches and overlapping patches. No further pre-processing was
done.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future
uses)? No. The cloudy and overlapping patches were removed before downloading.

Is the software used to preprocess/clean/label the instances available? Yes, we use Google Earth Engine with Python
which is freely available.

E. Uses

Has the dataset been used for any tasks already? In this paper we use the dataset to benchmark several self-supervised
methods on several downstream tasks.

Is there a repository that links to any or all papers or systems that use the dataset? Yes we will organize and maintain
all related information at https://github.com/zhu-xlab/SSL4EO-S12.

What (other) tasks could the dataset be used for? The main function of this dataset is to provide a pre-training dataset
for both the study of self-supervised learning, and specific downstream applications. The dataset can also be used as a baseline
for further pre-training datasets in Earth observation. In addition, the dataset can be used directly for applications like image
retrieval, domain adaptation and style transfer.

Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled
that might impact future uses? We do not unify the orbiting (ascending/descending) of Sentinel-1 data, which should be
taken into consideration for SAR related applications. However, the orbiting information can be found in the meta-data and
the dataset can be further processed for targeting applications.

Are there tasks for which the dataset should not be used? The authors are not aware of any specific task that should be
avoided.

F. Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? Yes, the dataset is publicly available.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The dataset is distributed as tarball
on mediaTUM. Access to the dataset can be found at https://github.com/zhu-xlab/SSL4EO-S12.

When will the dataset be distributed? Starting from June 2022.

https://github.com/zhu-xlab/SSL4EO-S12
https://github.com/zhu-xlab/SSL4EO-S12
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Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable
terms of use (ToU)? CC-BY.

Have any third parties imposed IP-based or other restrictions on the data associated with the instances? No.
Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? No.

G. Maintenance

Who is supporting/hosting/maintaining the dataset? The dataset is hosted by mediaTUM and supported/maintained by
the authors.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The authors can be
reached at their email addresses: {yi.wang, nassim.aitalibraham, conrad.albrecht, chenying.liu}@dlr.de, and {zhitong.xiong,
xiaoxiang.zhu}@tum.de.

Is there an erratum? If errors are found an erratum will be added.
Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? Any updates will

be posted and the dataset will be versioned.
If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances

(e.g., were individuals in question told that their data would be retained for a fixed period of time and then deleted)?
N/A.

Will older versions of the dataset continue to be supported/hosted/maintained? Depending on the updates (if there are),
we will either continue hosting the older versions or make a clear update log that older versions can be generated from the
newest version.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so? Yes,
please feel free to reach out to us.

H. Author statement of responsibility

The authors confirm all responsibility in case of violation of rights and confirm the licence associated with the dataset.



ACCEPTED BY IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2023 18

REFERENCES

[3] Michael Schmitt et al. “SEN12MS – a curated dataset of georeferenced multi-spectral Sentinel-1/2 imagery for deep learning and
data fusion”. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019.
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