SIZING AND OPTIMIZATION OF FIXED PITCH RPM-CONTROLLED ROTORS AT MULTIPLE DESIGN POINTS FOR PASSENGER-GRADE MULTIROTOR CONFIGURATIONS

Kagan Atci, Peter Weiand

German Aerospace Center (DLR) Institute of Flight Systems, Rotorcraft Department Braunschweig, Germany

72nd German Aerospace Congress (DLRK)

Stuttgart, Germany September 19 - 21, 2023

Contents

- 1. Introduction
- 2. Framework
- 3. Design Point Optimization
- 4. Optimized Rotor Sizing
 - Disc Loading Variation
 - Blade Loading Variation
 - Discussion

5. Conclusions

Introduction The UAM Concept Vehicle

DLR Guiding Concept 4 (LK4S2a): The Medical Personnel Deployment Vehicle

- Objective: Rapid transport of the Emergency Physician during a first line emergency service
- Multirotor / Lift + Cruise configuration
 - 4 main rotors MR, 2 pusher rotors PR
 - Electrically driven rpm control (fixed pitch)
 - Initial design mass: 1000 kg
- Control modes
 - VFM: Vertical Flight Mode
 - Vehicle control only by MR
 - PR inactive
 - HFM: Horizontal Flight Mode
 - **PR** for forward thrust and yaw compensation
 - MR for vertical thrust, roll and pitch control

Main Rotors - MR Pusher Rotors - PR

Introduction Requirements and Design Goals

Performance requirements

- Straight forward flight in HFM
- Weight (F_G) compensation merely by distributed T_{MR} at all times $\rightarrow T_{MR} = 250 \text{ kg} \cdot 9.806 \text{ m/s}^2 = 2450 \text{ N}$
- Flow conditions of MR
 - **VFM:** Axial stream (V_i)
 - **HFM:** High tangential freestream (V_{∞})
- Design goals of MR

Design Goal 1 – Min. required power in forward flight (P^*)

Design Goal 2 – Satisfying the predefined design parameters in hover

- Blade element theory needed.
- Blade local pitch angle distribution has to be optimized for minimum power!

Flow Conditions

Rotor Sizing and Optimization Framework *Process Overview*

- Objective: Finding the optimum blade pitch distribution that fulfills the design goals
- Input
 - Rotor Design parameters
 - Fixed design parameters
 - Variable design (sizing) parameters
 - Optimization parameters (*blade twist and collective*)
 - Design (trim) points
- Parameter sweep loop: Stacking of datasets containing the input parameters and the output data from aeromechanical analysis
- Functional evaluation: Predefined design goals of MR
- **Output**: Optimization parameters of which the blade geometry is fulfilling the functional evaluation

Rotor Sizing and Optimization Framework Rotor Geometry Parameterization

1) Fixed Design Parameters

Parameter	Symbol	Unit	Value
Design thrust	Т	Ν	2450
Blade number	N_b	—	3
Hover tip speed	$v_{tip} = \Omega R$	m/s	150
Root cutout	r_R	_	0.2
Blade airfoil	NACA 23012		

2) Variable Design (Sizing) Parameters

Parameter	Symbol	Unit	Value
Disc loading	DL	N/m ²	200
^L > Radius	$R \sim 1/\sqrt{DL}$	m	1.97
Blade loading	$BL = C_T / \sigma$	_	0.08
L> Chord	$c \sim 1/((\Omega R)^2 BL)$	m	0.187

3) Optimization Parameters

Parameter	Symbol	Unit	Range
Root section pitch	$ heta_r$	ο	[5,45]
Tip section pitch	$ heta_t$	o	[5,25]
Linear blade twist	$ heta_{tw}$	°/R	
L> Collective at 0.75R	$ heta_{.75}$	o	

Kagan Atci > DLR - Institute of Flight Systems > 72. Deutscher Luft- und Raumfahrtkongress, 21.09.2023

Rotor Sizing and Optimization Framework *Aeromechanical Analysis*

Isolated rotor trim in wind tunnel setting

Trim Points	Description	V_∞ in km/h	<i>H</i> in m
DP1	Hover @ VFM	0	0
DP2	Cruise @ HFM	150	500

- Output parameters
 - Rotor power components P_i , P_0
 - Blade loading C_T/σ
 - Blade tip speed ΩR
- Computations using HOST (Airbus Helicopters)
 - Numerical discretization with 20 blade elements
 - Pitt & Peters inflow model
 - No rotor interactions
 - Newton-Raphson method

Isolated Rotor in Wind Tunnel Setting

- **Fixed DoF**: $T_{MR} = 2450 \text{ N}$
- Free DoF: Ω
- Iteration of Ω until $T_{MR} = 2450 \text{ N}$

Blade Element Discretization

B1

DP1 Optimum

Design Point Optimization

Kagan Atci > DLR - Institute of Flight Systems > 72. Deutscher Luft- und Raumfahrtkongress, 21.09.2023

Design Goal 1: P* = min[P(DP2)]

- In hover, all blades require almost identical power
- Profile power is the main cause for the power surge
- B2 requires the lowest power in DP2 with a slightly higher power requirement in ~DP1

Design Goal 1: P* = min[P(DP2)]

- In hover, all blades require almost identical power
- Profile power is the main cause for the power surge
- B2 requires the lowest power in DP2 with a slightly higher power requirement in ~DP1
- Design Goal 2: $\Omega R = v_{Tip}$ and $C_T / \sigma = BL$ at DP1
 - B2 has the highest tip speed at ~DP1, gradually decreasing towards DP2
 - Still lower than $v_{tip} = 150 \text{ m/s}$

Design Goal 1: P* = min[P(DP2)]

- In hover, all blades require almost identical power
- Profile power is the main cause for the power surge
- B2 requires the lowest power in DP2 with a slightly higher power requirement in ~DP1
- **Design Goal 2:** $\Omega R = v_{Tip}$ and $C_T / \sigma = BL$ at **DP1**
 - B2 has the highest tip speed at ~DP1, gradually decreasing towards DP2
 - Still lower than $v_{tip} = 150 \text{ m/s}$
 - Blade optimization alters C_T and therefore Ω

$$\frac{\boldsymbol{C}_{\boldsymbol{T}}}{\sigma} = \frac{T}{\rho \left(\boldsymbol{\Omega} R\right) N_b c R}$$

B1	DP1 Optimum	
B2	DP2 Optimum	
B01 , B02 , B03	Intermediate Blades	

Design Goal 1: P* = min[P(DP2)]

- In hover, all blades require almost identical power
- Profile power is the main cause for the power surge
- B2 requires the lowest power in DP2 with a slightly higher power requirement in ~DP1

Y • Design Goal 2: $\Omega R = v_{Tip}$ and $C_T / \sigma = BL$ at DP1

- B2 has the highest tip speed at ~DP1, gradually decreasing towards DP2
- Still lower than $v_{tip} = 150 \text{ m/s}$
- Blade optimization alters C_T and therefore Ω

$$\frac{\boldsymbol{C_T}}{\sigma} = \frac{T}{\rho (\boldsymbol{\Omega} R) N_b c R}$$

B2 has to be resized and reoptimized!

B1	DP1 Optimum	
B2	DP2 Optimum	
B01 , B02, B03	Intermediate Blades	F D

LR

Optimized Rotor Sizing *Disc Loading Variation*

- Optimized rotor sizing: variation of the sizing parameters (*DL* and *BL*) and optimizing with respect to Design Goal 1
- *DL* sweep between 200 N/m² and 600 N/m², $\Delta DL = 25 \text{ N/m}^2$
- With $DL \uparrow$

13

– Blade dimensions $R\downarrow, \sigma\uparrow$, $c\uparrow$

Optimized Rotor Sizing *Disc Loading Variation*

- Optimized rotor sizing: variation of the sizing parameters (*DL* and *BL*) and optimizing with respect to Design Goal 1
- *DL* sweep between 200 N/m² and 600 N/m², $\Delta DL = 25 \text{ N/m}^2$
- With $DL \uparrow$
 - Blade dimensions $R\downarrow, \sigma\uparrow$, $c\uparrow$
 - Blade twist $\theta_{.75}$ -, θ_{tw} \uparrow

Optimized Rotor Sizing *Disc Loading Variation*

- Optimized rotor sizing: variation of the sizing parameters (*DL* and *BL*) and optimizing with respect to Design Goal 1
- *DL* sweep between 200 N/m² and 600 N/m², $\Delta DL = 25 \text{ N/m}^2$
- With $DL \uparrow$
 - Blade dimensions $R\downarrow, \sigma\uparrow, c\uparrow$
 - Blade twist $\theta_{.75}$ -, θ_{tw} \uparrow
 - $\mathbf{DP1} \qquad \qquad c_T/\sigma \downarrow, \Omega \uparrow$
 - **DP2** $c_T/\sigma\downarrow, \Omega\uparrow$
- Design Goal 2: $\Omega R = v_{Tip}$ and $C_T / \sigma = BL$ at DP1

Reached at $DL = 600 \text{ N/m}^2$

Optimized Rotor Sizing *Blade Loading Variation*

- Optimized rotor sizing: variation of the sizing parameters (*DL* and *BL*) and optimizing with respect to Design Goal 1
- *BL* sweep between 0.06 and 0.16, $\Delta BL = 0.01$
- With $BL \uparrow$

16

- Blade dimensions $R -, \sigma \downarrow, c \downarrow$

Optimized Rotor Sizing *Blade Loading Variation*

- Optimized rotor sizing: variation of the sizing parameters (*DL* and *BL*) and optimizing with respect to Design Goal 1
- *BL* sweep between 0.06 and 0.16, $\Delta BL = 0.01$
- With $BL \uparrow$

- Blade dimensions $R -, \sigma \downarrow, c \downarrow$
- Blade twist $\theta_{.75}\downarrow, \theta_{tw}\uparrow$

Optimized Rotor Sizing *Blade Loading Variation*

- Optimized rotor sizing: variation of the sizing parameters (*DL* and *BL*) and optimizing with respect to Design Goal 1
- *BL* sweep between 0.06 and 0.16, $\Delta BL = 0.01$
- With $BL \uparrow$
 - Blade dimensions $R -, \sigma \downarrow, c \downarrow$
 - Blade twist $\theta_{.75}\downarrow, \theta_{tw}\uparrow$
 - $\mathbf{DP1} \qquad \qquad c_T / \sigma \uparrow \downarrow, \, \Omega \uparrow$
 - **DP2** $c_T/\sigma\downarrow, \Omega\uparrow$
- **Design Goal 2:** $\Omega R = v_{Tip}$ and $C_T / \sigma = BL$ at **DP1**

Reached at BL = 0.125

It is preferable to size the rotor through blade loading.

Increasing disc loading results in higher power (radius is changed).

Optimized Rotor Sizing *Discussion*

Disc loading variation is less sensitive to Design Goal 2 (Start: 200 N/m^2 , End: 600 N/m^2 - 16 steps).

19

Optimized Rotor Sizing *Discussion*

- Disc loading variation is less sensitive to Design Goal 2 (Start: 200 N/m², End: 600 N/m² 16 steps).
- Increasing disc loading results in higher power (radius is changed).
- It is preferable to size the rotor through blade loading.

Conclusions

Summary

- There exists a combination of linear twist and blade collective, where the global minimum power is found
- Optimizing blade twist with respect to forward flight causes the rotor to deviate from hover design tip speed
- The rotor has to be iteratively resized and optimized until both design goals are satisfied
- Sizing through blade loading provides quicker solutions with negligible changes in the rotor power

Outlook

- Implementation of an optimization module, which automatically finds a rotor geometry satisfying the two introduced design goals
- Integration of the fixed pitch rotor modeling framework to design process of the Medical Personnel Deployment Vehicle
- Study of the constrained design optimization for fixed pitch rotors
- Analysis of dynamic loads acting on the rotor hub

THANK YOU FOR YOUR ATTENTION!

Kagan Atci kagan.atci@dlr.de Peter Weiand peter.weiand@dlr.de

German Aerospace Center (DLR)

Institute of Flight Systems | Rotorcraft Department Lilienthalplatz 7 | D-38108 Braunschweig

Appendix Blade Angle of Attack Distribution

