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ABSTRACT

Aims. Our research focuses on developing a high-precision and relatively high-resolution shape model of Phobos.
Methods. We employed advanced photogrammetric techniques combined with novel computer vision methods to reconstruct the 3D
shape of Phobos from nearly 900 Mars Express/SRC and Viking Orbiter images. This research also involved a comparison of the newly
developed shape model with previous models to identify differences for future missions.
Results. This shape model was used to generate new measurements of the volume (5740 ± 30) km3, the surface area (1629 ± 8) km2,
and the bulk density (1847± 11) kg m−3 of Phobos. By comparing our reconstructed shape model with prior models, we have identified
key differences, especially in areas such as the Opik crater and near the Shklovsky crater. These findings highlight critical areas that
warrant further investigation in future missions dedicated to exploring Phobos.

Key words. methods: data analysis – techniques: image processing – planets and satellites: individual: Phobos –
planets and satellites: surfaces

1. Introduction

The reconstruction of 3D models is a central focus in mis-
sions exploring small celestial bodies. The determination of a
3D shape representation, which ideally combines intricate detail,
precision, and comprehensiveness, is fundamental for conduct-
ing thorough cartography and scientific analyses of these cosmic
entities (Preusker et al. 2017). Phobos is one of the two natural
satellites of Mars and has consistently intrigued planetary sci-
entists. Its irregular, potato-like shape has sparked compelling
questions about its origin, evolution, and composition. This dis-
tinctive shape, combined with the prevalence of impact craters
and distinct grooves on its surface, has inspired a variety of
hypotheses about its formation (Basilevsky et al. 2014). Precise
cartography and careful reconstruction are crucial in furthering
scientific inquiries related to Phobos, providing vital insights for
understanding this unique celestial body.

Historically, Phobos shape models were largely approx-
imations, such as triaxial ellipsoids or spherical harmonics
models (Duxbury 1974, 1991; Simonelli et al. 1993; Thomas
1989; Turner 1978). The first detailed shape model of Pho-
bos was created by Willner et al. (2010). They employed
stereo-photogrammetric (SPG) processing on Mars Express
(MEX)/Super Resolution Channel (SRC) images to develop a
new global control point network. This led to the creation of

⋆ The shape models are available at the CDS via anonymous
ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/684/A89

a spherical harmonic model of Phobos with degree and order
17, based on network control points. Subsequently, Willner et al.
(2014) extended the image dataset using stereo-photogrammetric
methods to derive a global digital terrain model (DTM) with
a resolution of 100 m pixel−1 and a spherical harmonic model
with degree and order 45. Gaskell (2011) and Ernst et al. (2023)
focused on reconstructing shape models of Phobos using stereo-
photoclinometry (SPC). This method facilitated the integration
of data with varying resolutions and the continuous updating of
shape models with new imagery, culminating in a comprehensive
solution for the positioning of maplet centers, and the location
and rotation of the celestial body (Al Asad et al. 2021; Barnouin
et al. 2020; Gaskell et al. 2008, 2023).

In comparison to the stereo-photogrammetric results of
Willner et al. (2014), the stereo-photoclinometric findings of
Gaskell (2011) and Ernst et al. (2023) demonstrated a better
albedo consistency and significant details. This enhancement
can be attributed to the assumptions inherent in the stereo-
photoclinometric surface reflection model. The photogrammet-
ric shape model of Phobos, created by Willner et al. (2010,
2014), exhibits a marginally higher level of accuracy than the
models of Gaskell (2011) and Ernst et al. (2023). Because the
high-resolution images of Phobos from the MEX/SRC have been
updated as recently as 2019, the availability of updated images
underscores the opportunity to enhance the shape model recon-
struction. In light of future missions such as the Martian moons
eXploration (MMX), which aim for a more comprehensive
explorations and sample return objectives, there is a press-
ing need for an updated shape model (Kuramoto et al. 2022).
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An enhanced shape model, offering improved precision and
resolution, could be of assistance in identifying potential landing
sites and enabling comprehensive geological studies.

Our approach, while similar to the stereo-photogrammetric
methods used by Willner et al. (2010, 2014), incorporates
advanced computer vision techniques, which sets it apart from
previous efforts. In this paper, we detail the refinement of the
photogrammetric 3D reconstruction process that we have under-
taken, which has led to the development of a high-precision and
relatively high-resolution shape model of Phobos. This shape
model not only updates some of the physical characteristics of
Phobos, but also sets a foundation for more targeted exploratory
missions. By analyzing the differences between various exist-
ing models, we have pinpointed key areas that hold promise for
future exploration of Phobos.

2. Image data

A plethora of Mars spacecraft has acquired images of Phobos
over the course of their explorations. In the 1970s, Viking 1
and 2 provided some of the earliest comprehensive views of this
Martian moon (Duxbury 1989). Owing to the eccentric orbital
design and flexible maneuverability of MEX, an extensive num-
ber of detailed observations of Phobos has been realized (Pätzold
et al. 2016). Considering the importance of a comprehensive
coverage for the reconstruction of a global shape model, we pre-
dominantly used image data from MEX, augmented by images
from the Viking Orbiters (VO).

The MEX spacecraft is equipped with two imaging systems,
the High Resolution Stereo Camera (HRSC), and the Super Res-
olution Channel (SRC). Although the SRC is integrated with the
HRSC, it functions as a discrete 1024 × 1024 framing camera
(with an effective pixel area of 1008 × 1018), which stands apart
from the HRSC line-scan configuration (Oberst et al. 2008).
Featuring its separate optics and a lengthier focal length of
988.5 mm, the SRC is particularly advantageous for the high-
precision reconstruction of global shape models. The image
resolution also plays a critical role in determining the accuracy
of the resultant 3D shape model; the finer resolution equates
to the enhanced accuracy. With a consistent focal length and
pixel size, the image resolution bears a relation to the flight
altitude (Zimmerman et al. 2020). The pertinent formula is
expressed as

R =
c × H

f
, (1)

where R is the image resolution, c is the camera pixel size, H
is the flight altitude, and f is the focal length. Using Eq. (1),
we filtered the SRC images using a threshold of 5600 km,
resulting in a final image set with a resolution of 25 m. The
latest Phobos shape reconstruction work comes from Ernst et al.
(2023). According to the image list they provided, we learned
that the latest SRC image they used was acquired in 2016.
Our image dataset comprises a total of 129 images generated
after this specified date, again with an average resolution of
approximately 25 m. Many of these images were captured under
favorable lighting conditions. This aspect is anticipated to pos-
itively impact our subsequent photogrammetric reconstruction
efforts.

The SRC images encompassed approximately 80% of the
Phobos surface, and VO images were used to address coverage

deficiencies in the remainder, predominantly, the trailing hemi-
sphere. While the average resolution of VO images is 20 m,
their quality is substantially compromised by reseau marks and
noise, necessitating preliminary preprocessing (Wellman et al.
1976). We removed these reseau marks, and in response to the
prevalent salt and pepper noise, applied the BM3D (Dabov et al.
2007) method for mild denoising to enhance the efficiency of
the ensuing image-matching process. We conducted a thorough
screening of MEX/SRC and VO images and eliminated those
that were significantly impacted by noise or excessive blurri-
ness. This process resulted in an initial dataset comprising 920
SRC images and 36 VO images. This means fewer images than
were used in Ernst et al. (2023). In contrast with the image
matching in stereo-photogrammetry, the overall reconstruction
completeness of stereo-clinometry increases with the available
inconsistent illuminations (Liu & Wu 2020; Kirk 1987).

3. Methods

Using advanced computer vision technologies, we propose a
method aimed at reconstructing a detailed high-precision 3D
shape model of Phobos. This method encompasses two primary
stages: initially, aerial triangulation is used to obtain a sparse
point cloud of the Phobos surface, followed by a transformation
of this point cloud to a mesh. The procedural flowchart, depicted
in Fig. 1, sequentially outlines these stages.

3.1. Image matching

Image-matching techniques are crucial for identifying conju-
gate points across multiple images. They are categorized into
intensity-based and feature-based techniques. Intensity-based
methods, also known as area-based methods, compute similarity
measurements within sliding rectangular windows of the pixel
intensity. Although intensity-based methods are mature, they
often struggle with geometric distortions and variations in illu-
mination and sensor differences (Ma et al. 2021). In contrast,
feature-based matching methods, which are more suitable for
spacecraft images with geometric changes and diverse illumi-
nation conditions, focus on accurate feature point detection and
matching (Li et al. 2022). We employed SuperPoint (DeTone
et al. 2018) for the detection and SuperGlue (Sarlin et al. 2020)
for the matching, providing an edge over several classic feature-
based methods, such as the scale-invariant feature transform
(SIFT; Lowe 2004), D2Net (Dusmanu et al. 2019), and R2D2
(Revaud et al. 2019), particularly in handling geometric dis-
tortions, variations in illumination, and scenarios with a low
signal-to-noise ratio (Brockers et al. 2022; Wan et al. 2022;
Zheng et al. 2022).

Feature point detection is crucial for image matching, and its
effectiveness is greatly enhanced by deep learning, particularly
through convolutional neural networks (CNNs; Alzubaidi et al.
2021; Xu et al. 2020). The accuracy of these algorithms intrin-
sically relies on ground-truth data, often annotated by experts
(Bojanić et al. 2019). Our preference was for SuperPoint, a
self-supervised method that combines key point detection and
description, which is well suited for tasks such as planetary
image processing. The dual-network structure of SuperPoint
includes the base detector for identifying corner points (these
points merely serve as preliminary feature point candidates
and not as final outputs) and the SuperPoint network for the
final feature point determination, using the diverse MS-COCO
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Fig. 1. Flowchart of our reconstruction process.

2014 dataset for training (Lin et al. 2014). Training SuperPoint
involves three steps: training the base detector on a synthetic
dataset, applying homographic adaptation to real images for the
self-labeling of interest points, and using geometric transforma-
tions to identify final feature points and descriptors.

Following the detection of feature points from images, it
becomes crucial to determine the correspondences between
these points. This is achieved by assessing the similarities of
descriptors, a process often referred to as feature point match-
ing. The establishment of reliable and accurate correspondences
between images poses a considerable challenge, particularly in
planetary images that have varying viewpoints and scales. We
chose the SuperGlue matching algorithm for its advanced atten-
tion mechanism, enhancing its ability to accurately match feature
points.

SuperGlue combines an attentional graph neural network
(GNN; Vaswani et al. 2017) and a Sinkhorn (Cuturi 2013;
Knight 2008) algorithm to solve the optimal transport problem,
mimicking a human-like trial and error matching process. This
process involves two stages: self-attention, and cross-attention,
which together create matching vectors encapsulating features
and descriptors. The Sinkhorn algorithm is then applied to these
vectors to maximize their similarities, efficiently identifying
the conjugate points between images. Through these processes,
SuperGlue effectively determines the conjugate points between
images.

3.2. Bundle adjustment

After the completion of image matching, the next step is to
carry out bundle adjustment. This process aims to minimize the
reprojection error of corresponding image rays in 3D space by
adjusting the intrinsic camera parameters along with the associ-
ated positional and rotational data (Agarwal et al. 2010; Wu et al.
2011). This involves forming stereo models through the conver-
gence of image rays at the reconstruction target (Yastikli 2007).
Each image is matched to maximize the number of conjugate

points for establishing stereo models. We incorporated multiple
images into a stereo model only when a single image contained
sufficient feature points that aligned with the feature points in at
least two other images.

In traditional photogrammetric bundle adjustment, control
information such as the initial camera position and orientation
is crucial for the high-precision integration of stereo models.
However, the existing control networks of Phobos, also derived
photogrammetrically (Oberst et al. 2014; Willner et al. 2010), are
not applicable for our photogrammetric bundle adjustment pro-
cess. Therefore, our stereo model adjustments mainly depended
on the SRC positions and orientations, posing challenges under
geometric constraints and highlighting the need for accurate and
robust image matching. The prior datasets for position and orien-
tation were sourced from the SPICE kernels (Acton 1996). These
kernels define the alignment of the Phobos body-fixed coordinate
system relative to the J2000.0 frame and include state informa-
tion of the MEX throughout its mission, detailing the placement
of individual payloads on the spacecraft (Costa 2013; Scholten
et al. 2005). Our primary reference for selecting and using these
kernels was MEX_OPS_V321_20230405_001.TM, which was
created by the European Space Agency (ESA). Through the
SPICE built-in interface, we extracted the positional and orien-
tational information of the SRC camera relative to the Phobos
body-fixed coordinate frame.

3.3. Point cloud to mesh

After photogrammetric bundle adjustment, a denser 3D point
cloud is necessary for a precise shape reconstruction because
it is insufficient to rely on sparse point clouds to characterize
a shape. Dense matching is required to establish dense point
clouds based on the image data at the pixel level. For this pur-
pose, we employed the PatchMatch algorithm, which creates
refined depth maps from the initial sparse point cloud. These
maps were then filtered and merged into a dense point cloud
(Shen 2013). We chose PatchMatch because it is efficient and the
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resulting dense point cloud is very precise, and it provides depth
maps with acceptable error levels (Barnes et al. 2009; Bleyer
et al. 2011).

While the dense point cloud provides a spatial outline of the
Phobos shape, it lacks detailed visual representation. To make
this more practical we transformed this point cloud into a trian-
gular irregular network (TIN). This process is often referred to
as point cloud networking. We opted not to represent the shape
model in the form of DTM due to the requirements for sub-
sequent texture mapping. We used the Delaunay triangulation
method to connect points and form an irregular triangular mesh
(Tsai 1993). It is vital in this mesh formation that the triangles do
not overlap and interconnect seamlessly. Additionally, it may be
necessary to adjust the original 3D surface points for mesh align-
ment, meaning that the triangle vertices post-construction might
slightly differ from those in the original dense point cloud. The
resulting mesh model thus offers a more effective representation
of the Phobos shape.

The 3D mesh model we derived from the surface of Pho-
bos depicted its shape with considerable accuracy. Nevertheless,
the model lacked the detailed textures of the surface, high-
lighting the necessity of texture mapping. Each model facet,
corresponding to images from various viewpoints, requires high-
quality images selected based on orthogonality and resolution
for an effective texture mapping (Li & Cheng 2015). Color
adjustments are needed in areas with luminance disparities to
maintain uniformity. We integrated Real-ESRGAN, a super-
resolution algorighm based on generative adversarial networks
(GAN; Wang et al. 2021), which enhanced the texture mapping
by addressing issues such as blur and noise. For SRC and VO
images with lower resolution, the super-resolution function of
Real-ESRGAN can elevate the quality and detail of the texture
mapping.

4. Results

In this research, we present and critically assess the results
of three interrelated processes: image matching, bundle adjust-
ment, and the transformation from point cloud to mesh model.
These processes are cascaded: the quality of the image match-
ing directly influences the subsequent bundle adjustment; the
accuracy of the sparse point cloud generated through bundle
adjustment plays a pivotal role in determining the precision of
the final shape mesh model; and this shape model is instrumen-
tal in deriving specific physical parameters of Phobos, such as its
volume and bulk density.

Our method for validating the image-matching performance
of SuperPoint and SuperGlue on Phobos imagery is explained
from two fundamental perspectives. The first perspective dis-
cusses our preference for feature-based image-matching methods
over the intensity-based alternatives. The second part elaborates
on the reasons for selecting SuperPoint and SuperGlue from
among various feature-based approaches.

Willner et al. (2010, 2014) employed two different intensity-
based matching methods to create a DTM of Phobos using
HRSC line-scan images. The process involved initially identi-
fying conjugate points at the pixel level using the normalized
cross-correlation (NCC) method (Heinrichs et al. 2007; Tsai &
Lin 2003). This step was followed by the application of least-
squares image matching to refine the accuracy to the subpixel
level (Ackermann 1984; Bethmann & Luhmann 2010). This
workflow proves particularly effective for HRSC images, as each

scan line in these images contains position and orientation infor-
mation. This allows for a more dynamic search within adjacent
scan lines, which not only simplifies the search process, but also
improves its precision. However, the efficiency of this method
diminishes for extensive sets of frame images such as those from
SRC and VOs because the rectangular search window is sensi-
tive to rotation and scaling variations. In addition, the matching
results are also subject to the size of the search window: an exces-
sively large window may result in unnecessary computations
in areas with fewer targeted points and additional false-match
results, while a window that is too small might fail to capture
sufficient grayscale information around the targeted points, lead-
ing to no matches or potential mismatches (Fan et al. 2010). We
conducted NCC and least-squares image matching on two SRC
images, setting the search window size to 9 pixels, the step size to
50 (to sparsify the matched points for clarity), and the threshold
to 0.98.

Despite setting a relatively high threshold of 0.98, we
observed a significant number of mismatches. We speculate that
this may be attributed to factors such as noise interference, along
with rotation and scaling differences between the images. In con-
trast, feature-based image-matching methods often demonstrate
robustness across various conditions, including scaling, rotation,
and low signal-to-noise ratios. In addition to the SuperPoint and
SuperGlue we employed, one of the most classic alternatives is
scale-invariant feature transform (SIFT) and Brute Force. The
SIFT (Lowe 2004) method is particularly noted for its preci-
sion and rotational invariance, making it a prominent approach in
feature point detection. Brute Force offers reliable feature point
matching without regard to computational efficiency. To assess
the image matching efficacy of SuperPoint and SuperGlue on
Phobos images, we performed both qualitative and quantitative
evaluations and compared them with the SIFT and Brute Force
method (as illustrated in Fig. 2).

Figure 2 illustrates the distribution of key points for different
feature-based image-matching algorithms. Using the SuperPoint
and SuperGlue method, we extracted 953 and 878 key points,
resulting in a total of 285 matched conjugate pairs. In compar-
ison, the SIFT and Brute Force approach yielded less optimal
outcomes, with 629 and 256 extracted key points and 143
matched conjugate formed pairs. Additionally, a considerable
number of mismatches were observed with the SIFT and Brute
Force method, indicating that further filtering of feature points is
required.

Following the image-matching phase, we advanced to bun-
dle adjustment. In this process, a total of 865 SRC images and
26 VO images were interconnected through stereo models, with
each surface point being observable in an average of 3.4 images.
The enhanced feature point detection and matching processes
contributed positively to the accuracy of the bundle adjustment:
the average reprojection error is 0.628 pixels, and the maximum
error is 2.976 pixels. As shown in Fig. 3, the surface points with a
poorer accuracy are mainly located in craters and in the trailing
hemisphere, which can likely be a contribution of the stronger
VO image coverage in this area.

The calculated reprojection error, in conjunction with the
resolution of the image dataset employed in our study, sug-
gests an overall positional accuracy of approximately 16.2 m.
This compares favorably with the accuracy of 36 m reported by
Ernst et al. (2023) for their shape model, whose dataset has a
representative resolution of 20 m. We recommend study of the
relevant SPC-derived metrics discussed in Ernst et al. (2023) and
Al Asad et al. (2021). Willner et al. (2014) did not specify the
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(a) Result of SuperPoint+SuperGlue

(b) Result of SIFT+Brute Force

Fig. 2. Comparison of image matching between SuperPoint and SuperGlue and SIFT and Brute Force (HC046_0003_SR2, left, and
HC069_0004_SR2, right). (a) Results of SuperPoint and SuperGlue. (b) Results of SIFT and Brute Force.

Fig. 3. Three views of the reprojection error distribution.

accuracy of their model in the publication. The Phobos control
network also use photogrammetric methods, in which Willner
et al. (2014) participated, however, has an accuracy of 13 m, as
detailed in Burmeister et al. (2018). Control points are special

surface points that are more easily reidentified through image
matching in a larger number of images than on average. Con-
sequently, the accuracy of the control points is better than that
of the general surface points. We also cautiously infer that the
accuracy of our shape model may outperform that of Willner
et al. (2014), although the exact margin is not quantified. All this
means that the positional accuracy of our shape model is better
than in other current models.

Figure 4 shows our reconstructed untextured and textured
shape models of Phobos. These models feature 171 863 ver-
tices and 341 724 facets, which numerically slightly exceed
the 137 439 vertices and 274 874 facets of the model by
Willner et al. (2014). Our shape model and that of Willner et al.
(2014) are both numerically inferior to the 1 579 014 vertices and
3 145 728 facets of the shape model of Ernst et al. (2023). This
discrepancy arises because the stereo-photoclinometric method
computes the surface gradient of Phobos on a pixel-by-pixel
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Table 1. Shape model parameters of Phobos.

Volume (km3) Surface area (km2) Bulk density (kg m−3) (a)

Willner et al. (2014) 5742 ± 35 1640 1846 ± 12
Ernst et al. (2023) 5695 ± 32 1640 ± 8 1861 ± 11
Chen et al. (this study) (b) 5740 ± 30 1629 ± 8 1847 ± 11

Notes. (a)Calculated based on the GM values from Yang et al. (2019). (b)Uncertainty approximated through a Monte Carlo simulation.

(a) Untextured model

(b) Textured model

Fig. 4. Six orthographic views of our shape model along the primary
axes of the body-fixed Phobos coordinate frame (the axes point toward
the viewer; north is up for the +/XY views, and +Y is up for the +/Z
views).

basis, thus offering a more detailed characterization of the shape
(Al Asad et al. 2021; Barnouin et al. 2020). In contrast, the
stereo-photogrammetric method we used, as did Willner et al.
(2014), calculates surface points based on collinearity equations
with redundant observations, leading to shape models with a
higher precision but a lower resolution. Certain parameters of
Phobos were updated, as presented in Table 1. The bulk den-
sity calculations for our shape model were based on the GM =
(0.70765 ± 0.0075) × 10−3 km3 s−2 from Yang et al. (2019). The
Phobos parameters from Willner et al. (2014) and Ernst et al.
(2023) are also provided as references.

5. Discussion

5.1. Comparisons with existing models

To validated the enhancements in our reconstructed shape model
of Phobos, a thorough evaluation of the model is essential. On
Earth or the Moon, a common and reliable validation technique
involves comparing surface point coordinates derived from the
images with those obtained from other more accurate measure-
ments, such as Global Navigation Satellite System (GNSS) or
laser systems. The root mean square error between these sets of

data is then calculated to assess the model (Benassi et al. 2017).
However, this method is not applicable to Phobos because the
existing control network for Phobos is also image based, devel-
oped through stereo-photogrammetry (Burmeister et al. 2018;
Oberst et al. 2014; Willner et al. 2014). An alternative approach
that is frequently used to reconstruct the shapes of small objects
is to compare real images with synthetic images generated from
the model under identical lighting and observational geome-
tries (Ernst et al. 2023; Jorda et al. 2016). This technique
has been effective in evaluating stereo-photoclinometric shape
models. Nevertheless, our stereo-photogrammetric method
does not yield information on the surface albedo, which
limits the applicability of this evaluation method for our
shape model.

In an alternative approach to evaluate our shape model, we
compared it with other existing models, specifically those of
Willner et al. (2014) and Ernst et al. (2023). Both Gaskell (2011)
and Ernst et al. (2023) employed the SPC method. Because the
work of Ernst et al. (2023) involved Gaskell and benefitted from
a richer dataset, we exclusively used the results from Ernst et al.
(2023) for our subsequent comparisons between the models. This
method does not directly quantify the strengths and weaknesses
of these models. However, it does facilitate an analysis of the
various shape models in terms of the regions in which notable
differences are observed. These regions of significant differences
are likely to be of particular interest and in the focus for future
detailed investigations. The metric used for this comparison is
the Hausdorff distance, which is a commonly employed tool
in computer vision for shape recognition and comparing differ-
ences between models (Aspert et al. 2002; Zhang et al. 2017;
Chen et al. 2023). The Hausdorff distance measures the maxi-
mum distance from a surface point on one model to the nearest
surface point on another model. A higher value of the Haus-
dorff distance indicates more substantial discrepancies between
the models (shown in Fig. 5).

Figure 5 presents the difference distribution between our
Phobos shape model and the models developed by Willner et al.
(2010) and Ernst et al. (2023). Because Ernst et al. (2023) did
not center their shape model, we aligned each model based on
the center of the figure for consistency. The mean differences
are 42 m and 44 m, respectively, a variance that can be consid-
ered acceptable given the positional accuracies of these models.
According to the topographic zoning outlined by Wählisch et al.
(2014), the regions exhibiting larger differences, denoted by
green areas in Fig. 5, are predominantly located in the trailing
hemisphere (the –Y view in Fig. 5). Furthermore, the regions
with the most significant differences (indicated by warm col-
ors) are also situated in the trailing hemisphere, specifically, in
the Opik crater and near the Shklovsky crater, with discrepan-
cies reaching up to 468 m and 474 m. We also compared the
Willner et al. (2014) model with the Ernst et al. (2023)
model, and the results show an overall consistency and widely
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(a) Model of Willner et al. (2014) and ours

(b) The model of Ernst et al. (2023) and ours

(c) Models of Willner et al. (2014) and Ernst et al. (2023)

Fig. 5. Six orthographic views of the differences between two shape
models along the primary axes of the body-fixed Phobos coordinate
frame (the axes point toward the viewer; north is up for the +/XY views,
and +Y is up for the +/Z views).

distributed differences in the trailing hemisphere. The mean
difference is 47 m, and the maximum difference is 347 m.

5.2. Analyses of the differences

The reason for these pronounced differences in the trailing hemi-
sphere is primarily the uneven coverage of the MEX/SRC images
and the constraints of the VO images. The highly elliptical orbit
of MEX is nearly perpendicular to Phobos. This significantly
enhances observations of this Martian moon. This advanta-
geous positioning facilitates capturing detailed images of the
far side of Phobos for MEX/SRC, particularly its anti-Mars
hemisphere. Nevertheless, because Phobos is tidally locked to
Mars, unfavorable illuminations of the trailing side of Phobos

Fig. 6. Schematic of the Phobos and MEX orbits and SRC imaging.

ensue, particularly during close encounters with MEX. Addi-
tionally, the limited slew capabilities of the HRSC/SRC further
complicate observations (Gwinner et al. 2016; Jacobson 2010).
Consequently, as Fig. 6 illustrates, the SRC frequently captures
images of the trailing hemisphere from increased distances and
the resolution of images in these regions generally exceeds 50 m,
affecting the accuracy of the bundle adjustment.

The VO images provide high-resolution coverage of the trail-
ing hemisphere of Phobos. However, the presence of reseau
marks and image noise in these images still poses challenges
to the accuracy of the shape model (Wellman et al. 1976). It is
crucial to handle these marks and noise with the utmost care,
as shape reconstruction fundamentally involves converting 2D
spacecraft image information into 3D spatial information about
the celestial object. Any preprocessing of the images unavoid-
ably results in a reduction of this vital information (Ballabeni
et al. 2015; Szeliski 2022). Furthermore, the limited quality of
the VO navigation data complicates the reconstruction process,
potentially leading to a reduced positional accuracy and even
systematic errors in areas solely covered by VO images. While
it is feasible to adjust the weights of the VO navigation data dur-
ing the bundle adjustment and to leverage MEX navigation data,
the extent of these improvements remains limited. One approach
could be to adjust the block in the first run, with the SRC infor-
mation fixed and without any VO navigation data. This would
tie all the VO navigation data together with the SRC to provide
weights for the positions and orientations of SRC and VO in the
second run.

In summary, the differences observed between different
models of the trailing hemisphere of Phobos are largely due to
the uneven coverage by MEX/SRC images and the limitations
in the quality of VO images. A promising solution to address
this situation is the execution of close orbital observations. The
upcoming MMX mission, led by the Japan Aerospace Explo-
ration Agency (JAXA), plans to land on Phobos and return
surface samples to Earth (Kuramoto et al. 2022). In the interim,
our high-precision shape model will be instrumental in aid-
ing the lander touchdown. The mission orbiter is expected to
send back wide-coverage high-resolution images, which will
significantly enhance the accuracy of the shape reconstruc-
tion. Because the trailing hemisphere of Phobos is sparsely
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grooved and these grooves are intricately linked to its forma-
tion and evolution, a detailed examination of this region could
provide valuable insights into the history of this Martian moon
(Murray & Heggie 2014).

6. Summary

In the absence of a more precise network of control points
on Phobos, the reconstruction of a 3D shape model of Pho-
bos strongly relies on robust and accurate image matching. We
refined the image-matching process, and following aerial trian-
gulation and the transformation from point cloud to mesh, suc-
cessfully derived a high-precision and relatively high-resolution
shape model of Phobos. By measuring the new shape model,
we updated some of the Phobos parameters: the volume is
(5740 ± 30) km3, the surface is (16 298) km2, and the bulk
density is (184 711) kg m−3. Our reconstructed shape model is
optimized and enhanced compared to the models of Willner
et al. (2014) and Ernst et al. (2023), achieving satisfactory pre-
cision while maintaining relatively high resolution. Through our
comparative analyses, we identified the differences between dif-
ferent shape models of Phobos. In particular, the Opik crater
and the vicinity of Shklovsky crater, where these differences are
most pronounced, will be areas of particular interest in future
explorations of Phobos.

There is potential for a further optimization of the shape
reconstruction of Phobos. For instance, a fusion of stereo-
photogrammetry and stereo-clinometry could be advantageous.
The SPC method can incorporate images from any illumination
and observation geometry, and SPG collinearity-equation-based
calculations yield more accurate surface points. This method
of fusion has previously been applied to create DTM for Mars
and the Moon (Jiang et al. 2017; Liu & Wu 2023). However, its
full potential has not yet been completely harnessed to recon-
struct small-body shape models. Finally, high-resolution images
of the trailing hemisphere of Phobos are crucial to advance the
accuracy of its shape reconstruction.
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