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RNA contact prediction by data efficient deep
learning
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On the path to full understanding of the structure-function relationship or even design of

RNA, structure prediction would offer an intriguing complement to experimental efforts. Any

deep learning on RNA structure, however, is hampered by the sparsity of labeled training

data. Utilizing the limited data available, we here focus on predicting spatial adjacencies

("contact maps”) as a proxy for 3D structure. Our model, BARNACLE, combines the utili-

zation of unlabeled data through self-supervised pre-training and efficient use of the sparse

labeled data through an XGBoost classifier. BARNACLE shows a considerable improvement

over both the established classical baseline and a deep neural network. In order to demon-

strate that our approach can be applied to tasks with similar data constraints, we show that

our findings generalize to the related setting of accessible surface area prediction.
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Utilizing the limited available high-quality annotated data
efficiently enables training deep-learning models in a
range of scientific domains. In the molecular life sciences,

the potential of complex models driven by big data has been
demonstrated recently in protein structure prediction. In this
work, we want to address the specific example of RNA contact
prediction, for which the available labeled data is orders of
magnitude smaller than for proteins. Accordingly, while there is
currently significant work and progress on protein structure
prediction, RNA has been and is receiving far less attention, in
spite of the structure and function of functional RNA as part of
the genome’s “dark matter” being just as vital and far less
understood. While explored here in the context of RNA, our
approach of applying a general machine learning technique to the
fine-tuned latent representation of a pre-trained model can be
generalized to not just other problems in molecular biology but
any field. Let us first have a more detailed look into the biological
context.

On the atomic level, life is realized via interacting biomolecules.
To understand a biomolecule’s function in detail, one must know
its specific biomolecular structure. Structure determination
techniques have enabled an increasingly detailed understanding
of nanoscale processes, yet many important biomolecules have
not yet been structurally resolved. In the last decade, protein
structure prediction techniques have increasingly complemented
experimental efforts1–9, culminating in the development of
powerful deep-learning techniques such as DeepMind’s Alpha-
Fold 2 system8 (AF2) which is already driving many
applications10–12. These techniques profit from the wealth of
well-annotated protein databases on both the structure and
sequence levels. Yet, only 1–2% of the human genome encodes
proteins and we know little about the remaining 98%, the gen-
ome’s “dark matter” which encodes, e.g., structural Ribonucleic
acids (RNA) and performs many critical regulatory functions13.

RNA are a crucial class of biomolecules which—similar to
proteins—play essential roles in many fundamental processes.
While most known as passive carrier of genetic information, RNA
has been attributed many additional biological functions. The
diversity of RNA function is so complex that it has been argued
that life itself started with RNA14. However, many noncoding
RNA still have unknown functions15 even today. Currently,
dedicated focus has been placed on RNA for technological
application16 and medical interest17, especially for the develop-
ment of vaccines in light of the ongoing COVID-19
pandemic18,19.

RNA are composed of linear strands of ribonucleotides.
Somewhat similarly to proteins, structured RNA can fold onto
itself into one or even several competing three-dimensional (3D)
structures. Given the biological and medical importance of
RNA,predicting RNA tertiary structure from their respective
nucleotide sequence would significantly boost related research.

After establishing the biological context of RNA, what can be
done in terms of structure prediction for RNA? Unfortunately,
there are many experimental wet-lab challenges20 when working
with RNA, resulting in far fewer high-quality-related sequence
and structural data than for proteins. Currently, we have only
such data for about 70 non-redundant RNA families21 compared
to >20,000 protein families8. This significant data gap makes the
direct transfer of deep-learning approaches, such as AF2, to RNA
not feasible (see below for more detail on deep-learning strate-
gies). Yet despite the sparsity of data, first successes on RNA
secondary structure prediction22 driven by machine learning
(ML) and ML-derived improved scoring functions of RNA ter-
tiary structure23 have been reported. Independent of these efforts
and motivated by predicting RNA tertiary structure from their

nucleotide sequence, predicting partial structural information in
the form of spatial contacts is an established substitute procedure.

The statistical analysis of evolutionarily closely related
sequences can (i) infer pairs of residues in spatial contact within
biomolecules24,25 and (ii) guide the prediction of biomolecular
structures when used in combination with molecular modeling
techniques26. We focus on step (i) which is hampered by high
false-positive rates or, more generally speaking, low signal-to-
noise ratios. We use this intermediate to full-structure prediction
as a proxy to evaluate self-supervised pre-training on RNA
multiple sequence alignments (MSAs). Our full code (https://
github.com/KIT-MBS/selbstaufsicht) and all model parameters
(https://zenodo.org/record/8183962) are available under permis-
sive open-source licenses.

Direct coupling analysis (DCA) is an established method for
protein27,28 and RNA24 contact prediction based on sequence
variability in the input MSAs29,30 via a Markov random field
named generalized Potts model31,32. State-of-the-art methods use
pseudo-likelihood maximization33 to fit the Potts model to an
MSA. The DCA couplings are then ranked and interpreted as
spatial contacts in the molecular structure. The major advantage
of such methods is their unsupervised nature, i.e., that they do not
need data annotation (labels) which is often cumbersome and
time-consuming. Recent efforts in protein structure prediction
have increasingly employed deep-learning strategies. As one of
the most accessible types of data in this area is genetic sequences
composed of monomers represented by letters, techniques
popularized in natural language processing can be adapted to the
biology domain. Since the last CASP competition for protein
structure prediction34, the most successful methods8,35 harness
the vast amounts of sequence and structure data36–38 to train
large end-to-end5 transformer39 models, where DeepMind’s
attention-based AF2 program is the most prominent example.
AF2 iteratively refines a protein’s atomic coordinates predicted by
its backbone and estimates its own error. This error estimation
allows for a more efficient use of unlabeled sequence data by
including high-confidence predictions of previously unlabeled
samples in the training data.

Another way to utilize unlabeled data better is self-supervised
learning. Self-supervised learning is not only used to enhance
model performance with limited labeled data available40, but also
to pre-train a model that can be adapted to a range of down-
stream tasks41. In self-supervised pre-training, the input data are
augmented and the model is tasked with recovering information
about the original input. Hence, the model is forced to learn
patterns that shape its latent representations, which are then
useful in a subsequent supervised downstream task.

Among the wide range of self-supervised tasks, common
templates include masked language modeling41 or inpainting42,
next-sentence prediction41 or jigsaws43, and contrastive
learning44, all of which are established in language or image
processing. Inpainting or hidden language modeling is one of the
most ubiquitous self-supervised training tasks. A part of the
information contained in the input sample is removed or dis-
torted before passing through the model and has to be recon-
structed from the context in the remaining sample. Jigsaw and
next-sentence-prediction train the model to recover the rela-
tionship between fragments of a sample. Contrastive tasks use
multiple, differently augmented views of the same sample to
construct structural differences between samples. The model
learns to identify whether or not two of these views originate
from the same sample. Generative—or what we call bootstrapping
—tasks create new samples or fragments using a generator, and a
discriminator model has to distinguish between generated and
original data.
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For proteins, the ESM1b45 and MSA-Transformer46 models
perform a masked language modeling task on single protein
sequences and protein MSAs, respectively. As labeled data are
much harder to come by for RNA than for proteins, establishing
robust self-supervised models has the potential to close the gap in
modeling quality between protein and RNA.

Contributors to the latest RNA-Puzzles round, a community-
wide RNA structure prediction competition, still favored tradi-
tional energy-based approaches47 augmented by machine-learned
contact prediction over purely ML-based approaches. ML for
RNA structure is usually done in one of the following ways: (i)
traditional DCA24, (ii) convolutional neural networks on single
sequences48, and (iii) convolutional neural networks on MSA-/
DCA-derived features25,49.

Our contributions to RNA contact prediction in particular and
the data sparsity often faced in ML applications for natural sci-
ences in general are:

● Fine-tuning of a downstream decision tree model through a
back-propagatable proxy model,

● self-supervised multi-task pre-training of an MSA trans-
former model for RNA (Fig. 1),

● evaluation of the impact of different upstream tasks on
contact prediction performance,

● a weakly supervised RNA contact prediction model, we call
BARNACLE,

● and publication of code and pre-trained model parameters.

The dataset we use for downstream training and evaluation of
our model is published (https://github.com/KIT-MBS/RNA-
dataset.git)21 and was previously used to train the convolutional
network CoCoNet25. It contains 57 structures in the training set
and 23 structures in the test set. The upstream dataset of MSAs is
taken from RFam50 which contains 4070 samples. We set aside
100 MSAs as an upstream validation set. A detailed description of
all data used for training can be found in Supplementary Note I
and in the respective references.

Results
Upstream. We first examine the upstream model in isolation.
Table 1 shows upstream performance and training energy con-
sumption. Since inpainting explicitly offers the model challenges
at the single residue resolution and has already been shown to be
a meaningful task, we use inpainting as the base task to be
enhanced further with a secondary task. As the jigsaw, con-
trastive, and bootstrapping tasks are used only in conjunction
with inpainting, we omit specifying the latter when combined
with another task. Table 1 shows the self-supervised performance
results for the model state with the lowest validation loss, where

we measured the validation inpainting accuracy and the sec-
ondary task accuracy, if applicable. The total loss used is always
the sum over all individual contributing task losses. A detailed
description of the unsupervised tasks applied to MSAs, including
augmentations and losses, can be found in Supplementary
Note II. Detailed model descriptions are shown in Supplementary
Tables I–IV. Training losses are shown in Supplementary Fig. 1.
The model performs best on inpainting, when it does not have to
divert resources to another task. Notably, we do not observe a
synergy of tasks, where the training signal of one task improves
performance on another.

We include energy measurements for each training run to put
the resource footprint of our approach into perspective. A single
pre-training run of 48 h consumes slightly over 50,000Wh.

Downstream. Figure 2 shows the top-L PPV and Matthew’s
correlation coefficient (MCC)51 for downstream contact predic-
tion on the test dataset. Unless stated otherwise, we always report
the micro-variant of a metric, i.e., we compute e.g., true positives
over all samples and then compute the derived metric, instead of
computing the metric for each sample and then averaging the
metric. Top-L-PPV25, i.e., the precision measured only over the L
most confident predictions in one sample assuming they are
positive predictions, is a commonly used metric for contact
prediction. Optimizing for this metric encourages the model to
make at least L predictions. Furthermore, it has the benefit of
being applicable to methods like mean-field DCA which produce
rankings instead of interpretable scores. We also report MCC
over all predictions to provide a global view and consider false
negatives as well. In addition, Supplementary Table VI with the
top-L precision with an untouched decision threshold of 0.5, as
well as global precision, recall, F1-score, and the Matthews cor-
relation coefficient, can be found in Supplementary Note VII.

The top-L precision for mean-field DCA averaged over the test
dataset is 47.4%. This was improved to 81.4% by using a small
convolutional network25 that filters out contacts based on the
scores in its local environment. The MCC achieved by the
baseline network is 25.28%. Using just the simple regression

Fig. 1 Model architecture for deep multi-task self-supervised pretext training to obtain RNA contact map candidates. Boxes represent model building
blocks, edges information flow, and brackets tensor shapes. L is the length of the sequence, E the evolutionary dimension, i.e., available alignments, N the
number of attention encoder blocks, H the number of attention heads, C the number of arrangements of the jigsaw, and D a parametric embedding
dimension.

Table 1 Pre-training (upstream) performance and energy
consumption.

Task Inpainting
accuracy

Sec. task
accuracy

Epochs Energy/Wh

Inpainting 90.4% — 2222 52,989.8
Jigsaw 83.1% 98.3 % 2264 53,837.6
Contrastive 89.9% — 1707 50,540.8
Bootstrapping 83.1% 95.1 % 2182 52,874.2
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model with a frozen backbone, the equivalent of the MSA
transformer on protein, yields models that have, at most, a
slightly better top-L precision than the DCA baseline and
sometimes below zero MCC scores.

Fine-tuning the backbone or switching to an XGBoost
downstream model makes the models competitive with the
baseline in terms of top-L precision and surpass it in MCC for
most upstream tasks. Using XGBoost consistently has a larger
impact on MCC, than fine-tuning the entire backbone model.
The best models combine both of these modifications, i.e.,
training the XGBoost model with the attention maps generated by
the fine-tuned backbone. These fine-tuned XGBoost models can
beat CoCoNet in terms of top-L precision and almost double the
MCC.

Other upstream tasks as additional pre-training signal do not
have a positive impact on downstream performance. Adding
neither contrastive nor bootstrap have a consistent and significant
impact on the downstream performance compared to inpainting
alone. Jigsaw, unfortunately degrades performance in particular
for XGBoost models trained with the not fine-tuned backbone
as input.

During downstream training, we build models for all the
mentioned metrics through early stopping to prevent overfitting.
Supplementary Section II contains more details, and Supplemen-
tary Fig. 2 shows the impact of the choice of early stopping metric
on downstream performance. In Fig. 2, we show the scores for the
best and worst model and the average over all of them. Fine-
tuned XGBoost is treated slightly differently since the fine-tuning
training is early-stopped with one metric and the XGBoost
training itself with a potentially different one. We split top-L and

global fine-tuning metrics (Loss, MCC and F1) because top-L
metrics produce better performance, not just in top-L precision
but also for global MCC. The early stopping metric of the
XGBoost training itself has only limited impact.

Supplementary Fig. 3 in Supplementary Note V shows the
importance of the attention map features in the downstream
model. Supplementary Fig. 4 in Supplementary Note VI shows
the impact MSA depth (i.e., the number of sequences in the MSA)
has on downstream performance.

Figure 3 shows the precision computed over the most confident
predictions as more contacts are included. Generally, the sharp
decline begins just before L predictions are included. The most
confident predictions of BARNACLE are more reliable than
either baseline. Just before L predictions, precision begins to
decline, with BARNACLE remaining in the lead. Figures 4 and 5
illustrate an example prediction from the test set. For this
example, most of the false positives (with one exception) are only
slightly above the threshold for the contact definition used. As

Fig. 2 Downstream model performance of different unsupervised pre-
training tasks and downstream training procedures in terms of top-L
precision and global Matthews correlation coefficient on an independent
test set. The red line shows the DCA baseline performance for PPV21,24,
the orange line the shallow neural network CoCoNet25, and the dotted blue
line the best-trained model performance. The square marker shows
respective score averaged over several models trained with different early
stopping metrics. Early stopping is performed using a small holdout set
from the training dataset. The error bars show the best and worst score. For
fine-tuned XGBoost we split top-L and global metrics used for backbone
fine-tuning. One can directly observe an improvement of both PPV and
MCC over the baseline in our approach.

Fig. 3 Macro-Top-(k ⋅ L)-precision. The light dotted lines show individual
samples in the test set. The thick lines show the average. DCA, CoCoNet,
and BARNACLE (tuned XGBoost) are shown in red, orange, and blue,
respectively. The band around the average shows the standard deviation.

Fig. 4 Contact map (PDB: 3ndb)—unfrozen vs. frozen. The upper left part
shows the top-L contact predictions for the best model with unfrozen
backbone, the lower right one for the best model with frozen backbone.
Green pixels refer to true positives, yellow to false positives, light blue to
false negatives, and dark blue to true negatives.
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they are close to a cluster of contacts in the contact map, they
should not impede structure prediction. Supplementary Figs. 5
and 6 in Supplementary Note VIII show an additional, difficult
example with more false positives. Closer analysis reveals that the
specific RNA structure is one monomer of a dimer, with many
false-positive contacts in the interaction pocket of the dimeric
binding partner.

Discussion
We demonstrated how to use self-supervised pre-training and
XGBoost models suitable for sparse labeled data to gain more
performance with limited data, despite these models not being
end-to-end trainable. We explored the efficacy of our approach
on the use case of RNA contact prediction and, in less depth, on
RNA accessible surface area prediction (cf. Supplementary
Note IV and Supplementary Table V).

Since the availability of MSA data for RNA is already limited,
one complementary approach would be to train a larger language
model on single sequences. This model would have to be larger
because it has to encode the evolutionary relationships in its
parameters, as they are no longer contained in the input data. The
original motivation for using the attention maps for contact
prediction in this way stems from the observation that they are
correlated. Other techniques from the realm of explainable AI
may be able to improve performance further or open new avenues
to use the sparse existent data more efficiently.

As in other self-supervised pre-training settings, the bulk of the
model can be adapted for other downstream applications to
reduce from-scratch training. This is especially pertinent as
monetary and environmental factors of training large models
become more relevant. Our upstream hyperparameter search
consumed upwards of 15MWh.

We would like to stress that the choice of a target downstream
metric is not a simple one. We hence report a wide range of
metrics (Precision, F1, MCC) with top-L precision being the
standard in the field. The exact choice of the downstream loss
function (we tested focal loss, dice loss, cross-entropy, cf. Sup-
plementary Note II) impacts these metrics slightly.

In conclusion, BARNACLE improves RNA contact prediction
with limited labeled data. Such contacts can be used as restraints
in tertiary structure prediction, or help to complement, interpret,
or refine structural models based on measured experimental data
from the wet-lab, such as incomplete NMR maps or data from
low-resolution techniques such as small angle scattering. Con-
sidering the large gap between known RNA sequences and
experimentally resolved tertiary structures, this represents a true
breakthrough that significantly supports all structural RNA-
related research by reducing the RNA sequence-structure gap and
increase our knowledge about the genome’s “dark matter”. On a

technical level, the BARNACLE approach might be a promising
avenue for similar label starved fields in the natural sciences.

Methods
Pre-training. We employ different types of upstream tasks such
as inpainting (or hidden language modeling), jigsaw, boot-
strapping, and contrastive augmentations. Each one of the tasks is
conceptually a self-supervised pretext task used to learn repre-
sentations and extract patterns which are then exploited in the
downstream task. In general, not every possible task is compatible
with any other task in the sense that one task’s augmentation
might impede another’s. For example, an auto-regressive task like
next-token prediction and a task requiring a global view like a
jigsaw would be difficult to train simultaneously.

Inpainting. Inpainting here is closer to masked language model-
ing, in that it is a classification task. The basic principle of
masking tokens and recovering them can be implemented in a
range of variations. The most important hyperparameters include
the fraction of all tokens to mask, which tokens should replace the
masked real tokens, and the shape of the mask (e.g., independent
tokens or adjacent columns of tokens). We compute the classi-
fication loss over all masked tokens and experimented with dif-
ferent masking schemes. For our final model, randomly sampled
individual tokens are replaced with a random legal token. As in
the protein case, masking columns of the MSA does not increase
performance. A more difficult version of the task might sample
the replacement token from the MSA profile instead of uniformly.

We observe (cf. Supplementary Note II), that inpainting pre-
training converges very slowly and inefficiently. We assume this is
due to the nature of the random mask generation. The average
sample generated during pre-training is likely not very informa-
tive for the model. Since implementing a mechanism akin to
(semi-)hard example mining is difficult without more preexisting
information, this remains a challenge.

Jigsaw. Each sequence in the MSA is split into a number of
chunks which are then shuffled according to the assigned per-
mutation. In this type of upstream task, permutations can be
applied per sequence or, alternatively, the same permutation can
be applied to the whole MSA. Other hyperparameters are the
number of chunks and the number of permitted permutations.
The model ultimately predicts the applied permutation in the
sense of multi-class classification. The jigsaw upstream task in
particular converges faster, but does not increase downstream
performance, at least in the space we explored.

Bootstrapping. Here, parts of the MSA are bootstrapped according
to the position-wise frequency distributions of tokens in the
evolutionary dimension. Two variations are implemented: The

Fig. 5 3D visualization of an RNA (PDB: 3ndb). Green dashed lines indicate correctly predicted inter-residue contacts, and yellow ones refer to false
positives.
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first one randomly replaces whole sequences by synthetically
generated sequences, the second one operates on token level. In
both cases, the fraction of replaced sequences/tokens is an addi-
tional hyperparameter. In the end, the model has to determine
which sequences/tokens are original and which were replaced, i.e.,
solve a binary classification problem.

Contrastive. Opposite to the other upstream tasks, the contrastive
task does not involve any augmentation. Instead, the model
generates one latent vector for each sequence in each MSA in the
current batch. We then maximize the cosine similarity between
sequences in the same MSA and minimize it between sequences
from different MSAs.

Downstream training. We employ two different types of models
for downstream contact prediction. Both take the attention maps
that are generated in a forward pass through the pre-trained
backbone as an input and predict a contact score for each pair
position in the map. This means, the input of a downstream
model is a vector representing a single pixel in the contact map.
The vector’s elements are collected from the respective pixel in all
heads from all attention heads before the softmax is applied. The
first model is a simple pixel-wise regression similar to the
‘unsupervised contact prediction’ in ref. 46. The second model
uses boosted decision trees.

Apart from that, we differentiate between frozen and fine-
tuned versions of both downstream models. For the frozen
versions, the backbone parameters learned during pre-training
are fixed, and only the parameters of the added downstream
models are optimized. The fine-tuned regression models, by
contrast, are optimized with respect to all parameters, including
the backbone parameters. Last, the fine-tuned XGBoost model
uses the re-trained backbone of the fine-tuned regression model
and subsequently fits the decision trees.

Logistic regression. We use a classical logistic regression approach,
where we model the log-odds of a residue pair being in contact as
a linear combination of the corresponding attention map entries.
Subsequently, the log-odds are transformed into contact prob-
abilities by applying the sigmoid function. Contrary to traditional
logistic regression, the bias parameter is omitted. This is due to
the assumption that the log-odds should be represented only as a
weighted sum of the corresponding attention values.

Boosted decision trees. Boosted decision trees are an ensemble
model assembled by multiple weak classification and regression
trees (CARTs). In comparison to a traditional decision tree, a
CART assigns a real-valued score instead of a binary decision
result to each leaf. Therefore, each CART f with L leaves and leaf
scores w 2 RL can be considered as a function f(x)=wq(x), where
x 2 Rd is a vector-valued input variable and q : Rd !
f1; 2; ¼ ; Lg models the tree structure. The ensemble model FK
consisting of K CARTs then sums up the scores corresponding to
the leaves a given input x falls in, yielding the final model score
FK ðxÞ ¼ ∑K

k¼1 f kðxÞ. For the binary classification problem at
hand, the model score is interpreted as log-odds representation,
i.e., the actual classification result can be obtained by applying the
sigmoid function, just as in logistic regression.

The ensemble model, FK, is built iteratively, adding a new tree
per iteration. In turn, each newly added tree, fk, is structured in a
way such that it reduces the deficiency of the previous model, Fk
−1, with respect to the given training data, as measured by some
differentiable loss function. The results presented in this work
were achieved using the XGBoost52 implementation of gradient-

boosted trees. For more details, we refer the reader to its
documentation.

Fine-tuning. To fine-tune the pre-trained backbone to a down-
stream task and data, we use the regression downstream model
like we would for normal downstream training, keeping the
backbone parameters unfrozen. We use early stopping with
respect to all the relevant downstream metrics to avoid over-
fitting. The fine-tuned regression model is complete at this point.
Since the XGBoost model can not be trained end-to-end with the
backbone, we choose one of the early-stopped regression fine-
tuning checkpoints as feature extractor for this new
downstream model.

Model architecture. Figure 1 shows the architecture of our model
during pre-training.

Before passing the input MSA to the neural network, a pre-
processing stage applies cropping and subsampling as well as
augmentations and generates self-supervised labels.

After this pre-processing, the MSA is fed into a sequence of
attention blocks, which represent the heart of the deep-learning
model (also referred to as backbone). Each attention block is
divided into several heads, each operating on only a subset of the
incoming data, and performs tied axial attention on it similar to
the MSA transformer46. The two most significant differences to
this model are the usage of dropout layers subsequent to the
attention operations and the replacement of the concluding single
linear layer by a two-layered multilayer perceptron (MLP) with
ReLU activation. The output of the final attention block is passed
to the task heads. These consist for the most part of a reduction
operation as task appropriate and a single linear layer and
activation. We run one upstream training on a single node with
four A100 GPUs over 48 h. In the current implementation, at
least two GPUs are required for the contrastive task as the inter-
MSA sequence distances are computed between GPU local
batches.

For the downstream contact prediction training, we concate-
nate the latent attention maps instead of using the final latent
output of the model as input for the contact task head. The
contact task head consists of either the logistic regression or
XGBoost model described earlier.

For more information on the hyperparameters and the training
procedure, we refer to Supplementary Note III.

High-performance computing environment. The experiments
were run on the tier-2 high-performance computing system
“Hochleistungsrechner Karlsruhe” (HoreKa) located at the
Steinbuch Centre for Computing (SCC), Karlsruhe Institute of
Technology. HoreKa is a distributed-memory, parallel hybrid
supercomputer with nearly 60,000 Intel Xeon Ice Lake Scalable
Processor cores, 220 TB main memory, and 668 NVIDIA A100
Tensor Core GPUs. HoreKa’s 769 compute nodes comprise
570 standard nodes, 32 high-memory nodes, and 167 accelerator
nodes, each equipped with two 38-core Intel Xeon Platinum 8368
processors at 2.4 GHz base and 3.4 GHz maximum turbo fre-
quency, 256 GB (standard) or 512 GB (high-memory and accel-
erator) local memory, a local 960 GB NVMe SSD disk, and two
network adapters. The accelerator nodes have 4 NVIDIA A100-
40 GPUs with 40 GB memory each. A low-latency, non-blocking
NVIDIA Mellanox InfiniBand 4X HDR interconnect with 200
Gbit/s per port is used for communication between the nodes.
The operating system installed on every node is Red Hat Enter-
prise Linux 8.2. HoreKa integrates the Helmholtz AI computing
resources (HAICORE) partition with twelve GPU4 and three
GPU8 accelerator nodes. A GPU4 node consists of 76 Intel Xeon
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Platinum 8368 processors, 512 GB main memory, four NVIDIA
A100-40 GPUs, and a local 960 GB NVMe SSD disk. Each GPU8
node has 128 AMD “Rome” EPYC 7742 processors, 1 TB main
memory, eight NVIDIA A100-40 GPUs, and six local NVMe SSD
disks. We used Python v3.8 with biopython v1.79,
numpy v1.20.3, torch v1.9.1.+cu111, torch-
metrics v0.6.0, pytorch-lightning v1.5.1, and
lightning-bolts v0.4.0.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Our full code (https://github.com/KIT-MBS/selbstaufsicht.git) are available under
permissive open-source licenses. Source data for Figs. 2 and 3 can be found in
Supplementary Data Fig. 2 and Supplementary Data Fig. 3.

Code availability
Model parameters are available at (https://zenodo.org/record/8183962). All other data
are available from the corresponding authors upon request.
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