

2nd DESIS User Workshop

13th Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing

Knowledge for Tomorrow

Calibration of the DESIS Instrument

E. Carmona¹, M. Bachmann², R. de los Reyes¹, U. Heiden¹, D. Marshall¹, R. Müller¹

¹ Remote Sensing Technology Institute, DLR, Oberpfaffenhofen, 82234 Wessling, Germany ² German Remote Sensing Data Center, DLR, Oberpfaffenhofen, 82234 Wessling, Germany

Mission Introduction

DESIS Instrument

• Hyperspectral instrument consisting of a Three-Mirror-Anastigmat (TMA) telescope combined with an Offnertype spectrometer

Calibration unit

- Equipped with 9 different types of LEDs. It allows to measure signal with different LED types. Calibration measurement every week for 5 years
- It allows for precise spectral stability measurements. Jumps of 0.5 nm in all LEDs, correlated with different temperature gradients inside DESIS. Corrected during processing. Residual RMS ~0.1 nm for each of the two states

Spectral Calibration

• **Global shift**: based on LED calibration measurements, sensor experiments global shifts. Change of trend in September 2019. More stable since then.

• Finetune based on atmospheric features during vicarious calibration

Spectral stability: based on LED calibration, spectral stability 0.11 – 0.12 nm, within one mode

 2 Modes observed associated to temperature gradients in the optical system. Jump of 0.5 nm between modes. Corrected during smile correction step

Radiometric Vicarious calibration

- · Input scenes not evenly distributed in time
- Particularly challenging to have abundant good quality Radcalnet (RCN) scenes
- Calibration updates arrive several months after data acquisition

DESIS Vicarious Calibration

Obtain consistent relative response in spatial and spectral directions:

- Flat response on homogenous input
- Smooth pixel to pixel transitions
- Consistent behavior across-track

Obtain absolute radiance scale

Correction Steps I: Radiometric adjustments

- Most steps performed with uniform scenes with L1B products averaged in the along-track direction
 - 235 bands × 1024 spatial pixels
- Most corrections are performed after smile correction (confusion of spectral and radiometric corrections)
- **Striping correction**: Compute adjustment to radiometric coefficient using spline fits. Use iterative process until convergence
- Rad./Spc. correction: Use all pixels across track in one single spectrum. Compute minimum deviation to common spectrum

After

940 960

980 1000

Wavelength (nm

Correction Steps: Flat-fielding

- Flat-fielding spatial: In homogeneous scenes all pixels across-track shall have the same value within a band
- Flat-fielding spectral: In homogeneous scenes all across-track pixels shall deliver the same spectra as the central pixels
- L2A Smoothing: Adjust radiometric coefficients to reduce band to band fluctuations in L2A products for all pixels across-track

Vicarious Calibration

• Use flat-fielding over uniform areas for pixel-to-pixel relative adjustment. Use RadCalNet sites for absolute calibration

Latest Vicarious calibration data

- New calibration periods continue using baseline vicarious calibration
- Data in **periods #4** and **#5** with calibration for period **#3**:

700

800

900

1000 Wavelength (nm)

Latest Vicarious calibration data

- New calibration periods continue using baseline vicarious calibration used in DESIS
- Data in **period #4** calibrated with calibration in period #4:

- Similar results as seen in other periods
- After calibration bias is corrected, but as usual RMS below 500 nm is significant larger than above 500 nm

Latest Vicarious calibration data

- New calibration periods continue using baseline vicarious calibration used in DESIS
- Data in **period #5** calibrated with calibration in period #5:

- For the first time different behavior below 500 nm
- More stable during Period #5, reduced RMS compared to all previous periods
- Degradation below 500 nm is reduced

Vicarious Calibration

- Radiometric calibration shows high variability for wavelengths above 480 nm for data until July 2021
- More stable (better than 3.4% / year) for wavelengths above 500 nm

Crosscheck with Calibration Unit

- Change of behavior below 500 nm observable in August 2021. Degradation reduces
- More Stable until February 2022
- Rapid increase until December 2022 and more stable (again) since then
- Very stable in other wavelengths

DESIS and EnMAP – L2A spectral comparison

L1C Processing (and Calibration)

- Orthorectification is performed individually for each DESIS product
- It requires support from automatically extracted Ground Control Points (GCPs) from each scene to improve results and achieve accuracy better than 1 pixel
- Sometimes it is not possible to obtain GCPs and the geometric accuracy reduces
- The image shows a datatake with 3 tiles. Only 1 contains GCPs

L1C Processing (and Calibration)

- Orthorectification is performed individually for each DESIS product
- It requires support from automatically extracted Ground Control Points (GCPs) from each scene to improve results and achieve accuracy better than 1 pixel
- Sometimes it is not possible to obtain GCPs and the geometric accuracy reduces
- The image shows a datatake with 3 tiles. Only 1 contains GCPs

L1C Processing (and Calibration)

Railroad Valley, USA 13-12-2018 18:23:11 UTC 38:4467°N 115.7512° W Sun: 64.14°, 160.58° Incident Angle: 0.8°

Geometric performance

- Accuracy w.r.t. Reference in 177 scenes:
 - #GCP: average **210** per scene
 - #Control Points: average 969 per scene
- In case image matching works for a scene
 - RMSE (east) = 21.0 ± 5.9 m
 - RMSE (north) = 21.4 ± 6.0 m
- In case of no-matching, geolocation relies on boresight calibration:
 - RMSE ~289 m (across); ~496 m (along), but with peak values up to 1 km

Check in Metadata file the parameters "orthoRMSE_x" or "orthoRMSE_y". When value is -1 it means that no matching could be achieved • Boresight angles are stable over time:

 Recently updated boresight calibration with date 01.03.2023

Summary

- DESIS spectral calibration uses the calibration unit and vicarious calibaration. Spectral stability ~0.11 nm (RMSE) between measurements (after correction of temperature effects). Stable long-term.
- Vicarious calibration used for Radiometric calibration. Radiometric accuracy after adjustment to RCN ~4-5% (RMSE)
- An update of radiometric calibration is needed for data after February 2022, in particular below 500 nm. Calibration unit data shows a recovery of the sensitivity lost during the first 3.5 years of operation
- Geometric performance very stable. Significant accuracy difference between products with GCP (RMSE ~21 m) and without GCPs (RMSE 300 m – 500 m)

DLR - Earth Observation Center – DESIS https://www.dlr.de/eoc/desktopdefault.aspx/tabid-13614/

EOWEB GeoPortal (Catalogue DLR) https://eoweb.dlr.de/egp/

Extra

Knowledge for Tomorrow

Correction Steps: L2A spectral smoothing

- Fine tuning of individual pixels radiometric factors obtained using L2A data to avoid atmospheric features
- Compute correction to minimize pixel to pixel fluctuations. Effect visible at lower wavelengths. Fluctuations at larger wavelengths dominated by spectral calibration errors and etaloning/fringing effect in the detector

Results from 3 calibration periods

- Absolute calibration adjusted with RCN data for 3 different periods
- Absolute calibration uses only part of RCN scenes (19)
 - good atmospheric conditions
 - below 50 degrees Sun Zenith Angle
- These summary plots show 19 RCN scenes used for calibration

Results from 3 calibration periods: All RCN Data Results

- Absolute calibration adjusted with RCN data for 3 different periods
- Absolute calibration uses only part of RCN scenes (19)
 - good atmospheric conditions
 - below 50 degrees Sun Zenith Angle
- These summary plots show all RCN scenes (30 scenes)

DESIS Data Products

DESIS – Operational processors (**DLR** + Amazon Cloud)

L0 Data Earth datatakes Experimental datatakes Calibration mesaurements **Orbit and Attitude** Products Auxilary Data Level 1A Processor Publish Cal Measurements Transcription Screening Calibration & Reference Products In-flight Calibration Long Term Archive Process L1A Data Update Cal Tables Level 1B Processor L1B Product* Calibration & Systematic and Reference Radiometric Correction Products Global DEM Database Level 1C Processor L1C Product* Orthorectification Global **REF** Database Level 2A Processor L2A Product* Atmospheric Atmospheric LUT Correction

Products:

- Level 0 (L0)
 - Raw data (Datatakes up to 100 tiles 30x30 km², trajectory files, DC)
- Level 1A (L1A)
 - Tiled images, browse image, metadata, quality flags <= archived
- Level 1B (L1B)*
 - Top of Atmosphere (TOA) radiance (W·m⁻²·sr⁻¹·μm⁻¹)
 - Systematic and radiometric correction (rolling shutter, smile, ...)
 - · All metadata attached for further processing

• Level 1C (L1C)*

- Level 1B data ortho-rectified, re-sampled to a specified grid
- Global DEM (SRTM, 1arcsec), sensor model refinement using global reference image (Landsat-8 PAN with acc. 18m CE90)

• Level 2A (L2A)*

- Ground surface reflectance (i.e. after atmospheric corrections)
- With and w/o terrain correction

DLR Earth Sensing Imaging Spectrometer (DESIS) Sensors 2019, 19(20), 4471; https://doi.org/10.3390/s19204471

Data Products, Quality and Validation of the

* Delivery Product

Results First Vicarious calibration (2018-10 – 2019-09)

