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Abstract

Modern climate projections lack adequate spatial and temporal resolution due to
computational constraints. A consequence is inaccurate and imprecise predictions
of critical processes such as storms. Hybrid methods that combine physics with
machine learning (ML) have introduced a new generation of higher fidelity climate
simulators that can sidestep Moore’s Law by outsourcing compute-hungry, short,
high-resolution simulations to ML emulators. However, this hybrid ML-physics
simulation approach requires domain-specific treatment and has been inaccessible
to ML experts because of lack of training data and relevant, easy-to-use workflows.
We present ClimSim, the largest-ever dataset designed for hybrid ML-physics re-
search. It comprises multi-scale climate simulations, developed by a consortium of
climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate
input and output vectors that isolate the influence of locally-nested, high-resolution,
high-fidelity physics on a host climate simulator’s macro-scale physical state.
The dataset is global in coverage, spans multiple years at high sampling frequency,
and is designed such that resulting emulators are compatible with downstream cou-
pling into operational climate simulators. We implement a range of deterministic
and stochastic regression baselines to highlight the ML challenges and their scoring.
The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res2)
and code (https://leap-stc.github.io/ClimSim) are released openly to sup-
port the development of hybrid ML-physics and high-fidelity climate simulations
for the benefit of science and society.

∗Corresponding author: sungduk@uci.edu
2Also available in a low-resolution version (https://huggingface.co/datasets/LEAP/ClimSim_

low-res) and an aquaplanet version (https://huggingface.co/datasets/LEAP/ClimSim_low-res_
aqua-planet).
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1 Introduction

1.1 Overview

Predictions from numerical physical simulations are the primary tool informing policy on climate
change. However, current climate simulators poorly represent cloud and extreme rainfall physics
[1, 2] despite stretching the limits of the world’s most powerful supercomputers. The complexity
of the Earth system imposes significant restrictions on the spatial resolution we can use in these
simulations [3]. Physics occurring on scales smaller than the temporal and/or spatial resolutions of
climate simulations are commonly represented using empirical mathematical representations called
“parameterizations”. Unfortunately, assumptions in these parameterizations often lead to errors that
can grow into inaccuracies in the future predicted climate.

Machine learning (ML) is an attractive approach to emulate the complex nonlinear sub-resolution
physics—processes occurring on scales smaller than the resolution of the climate simulator—at a
lower computational complexity. Their implementation has the exciting possibility of resulting in
climate simulations that are both cheaper and more accurate than they currently are [4, 5]. Current
climate simulators have a typical smallest resolvable scale of 80–200 km, equivalent to the size of a
typical U.S. county. However, accurately representing cloud formation requires a resolution of 100
m or finer, demanding six orders of magnitude increase in computational intensity. Exploiting ML
remains a conceivable solution to sidestep the limitations of classical computing [5]: resulting hybrid-
ML climate simulators combine traditional numerical methods—which solve the equations governing
large-scale fluid motions of Earth’s atmosphere—with ML emulators of the macro-scale effects of
small-scale physics. Instead of relying on heuristic assumptions about these small-scale processes, the
emulators learn directly from data generated by short-duration, high-resolution simulations [4, 6–18].
The task is essentially a regression problem: in the climate simulation, an ML parameterization
emulator returns the large-scale outputs—changes in wind, moisture, or temperature—that occur due
to unresolved small-scale (sub-resolution) physics, given large-scale resolved inputs (e.g., temperature,
wind velocity; see Section 4).

While several proofs of concept have emerged in recent years, hybrid-ML climate simulators have yet
to be advanced to operational use. Obtaining sufficient training data is a major challenge impeding
interest from the ML community. This data must contain all macro-scale variables that regulate
the behavior of sub-resolution physics and be compatible with downstream hybrid ML-climate
simulations. Addressing this using training data from uniformly high-resolution simulations has
proven to be very expensive and can lead to issues when coupled to a host climate simulation.

A promising solution is to utilize multi-scale climate simulation methods to generate training data.
Crucially, these provide a clean interface between the emulated high-resolution physics and the host
climate simulator’s planetary-scale dynamics [19]. In theory, this makes downstream hybrid coupled
simulation approachable and tractable. In practice, the full potential of multi-scale methods remains
largely untapped due to a scarcity of existing datasets, exacerbated by the combination of operational
simulation code complexity and the need for domain expertise in choosing variables.

We introduce ClimSim, the largest and most physically comprehensive dataset for training ML
emulators of atmospheric storms, clouds, turbulence, rainfall, and radiation for use in hybrid-ML
climate simulations. ClimSim is a comprehensive collection of inputs and outputs from physical
climate simulations using the multi-scale method. ClimSim was prepared by atmospheric scientists
and climate simulator developers to lower the barriers to entry for ML experts on this important
problem. Our benchmark dataset serves as a foundation for developing robust frameworks that
emulate parameterizations for cloud and extreme rainfall physics, and their interaction with other
sub-resolution processes. These frameworks enable online coupling within the host coarse-resolution
climate simulator, ultimately improving the performance and accuracy of climate simulators used for
long-term projections.

1.2 Concepts and Terminology from Earth Science

Convective Parameterization: In atmospheric science, “convection” refers to storm cloud and
rain development, as well as the associated turbulent air motions. Convective parameterizations
represent the integrated effects of these processes, such as the vertical transport of heat, moisture, and
momentum within the atmosphere, and condensational heating and drying, on the temporal and spatial
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scale of the host climate simulator [20–22]. Stochastic parameterizations represent sub-resolution
(“sub-grid scale” in the terminology of Earth science) effects as stochastic processes, dependent on
grid-scale variable inputs [23, 24] to capture variations arising from sub-grid scale dynamics.

Multi-Scale Climate Simulators: Multi-scale climate simulation is a technique that represents
convection without a convective parameterization, by deploying a smaller-scale, high-resolution
cloud-resolving simulator nested within each host grid column of a climate simulator [25–29]. The
smaller-scale simulator explicitly resolves the detailed behavior of clouds and their turbulent motions
at both a higher spatial and temporal resolution (but with a smaller domain) than the host simulator.
This improves the accuracy of the host simulations, but comes at a high computational cost [30, 31].
The time-integrated and horizontally averaged influence of the resolved convection is fed upscale to
the host climate simulator, and is the target of hybrid ML-climate simulation approaches.

Significance of Precipitation Processes for Climate Impacts: In climate simulations, changes in
precipitation with warming is a particularly important issue. The frequency of extreme precipitation
events increases with warming [32–34], with corresponding societal impacts [35]. Current climate
simulators agree on the direction of this change, but exhibit large spread in the quantitative rate of
increase with warming [36, 37].

2 Related Work

There have been several recent efforts to produce hybrid-ML emulators using multi-scale climate
simulations, analogous to ClimSim [4, 10–16, 38]. Most of these focused on simple aquaplanets
[4, 10–13, 16, 38] and those that included real geography [14, 15] did not include enough variables
for complete land-surface coupling, to our knowledge. Most examine simple multi-layer perceptrons
except for [12, 15], who used a ResNet architecture, and [39] who used a variational encoder-decoder
that accounts for stochasticity. Although downstream hybrid testing in real-geography settings
is error-prone, [15] demonstrates some hybrid stability. Compressing input data to avoid causal
confounders may improve downstream accuracy [16], and methods have been proven to enforce
physical constraints [40, 41].

Compared to the training data used above, ClimSim’s comprehensive variable coverage is unprece-
dented, including all variables needed to couple to and from a land system simulator and enforce
physical constraints. Its availability across coarse-resolution, high-resolution, aquaplanet and real-
geography use cases is also new to the community. Successful ML innovations with ClimSim can
have a downstream impact since it is based on a state-of-the-art multi-scale climate simulator that is
actively supported by a mission agency (U.S. Department of Energy).

In non-multi-scale settings, an important body of related work [6–9] has made exciting progress on
using analogous hybrid ML approaches to reduce biases in uniform resolution climate simulations,
including in an operational climate code with land coupling and downstream hybrid stability [17, 18]
(see Supplementary Information; SI). Other related work includes full model emulation (FME) for
short-term weather prediction [42–44]. Whether this approach is possible for climate simulation
using the high-frequency output of its state variables remains an open question. For instance, it
has recently been shown that incorporating spherical geometry and resolution invariance through
spherical Fourier neural operators leads to stability of long rollouts [43]. While ClimSim is focused
on hybrid-ML climate simulation and we do not demonstrate FME baselines, ClimSim contains full
atmospheric state variable sampling well suited for the task.

3 ClimSim Dataset Construction

Experiment Outline: ClimSim presents a regression problem with mapping from a multivariate
input vector, with inputs x ∈ Rdi of size di = 124 and targets y ∈ Rdo of size do =128 (Figure
1). The input represents the local vertical structure (in horizontal location and time) of macro-scale
state variables in a multi-scale physical climate simulator before any adjustments from sub-grid
scale convection and radiation are made. The input also includes concatenated scalars containing
boundary conditions of incoming radiation at the top of the atmospheric column, and land surface
model constraints at its base. The target vector contains the tendencies of the same state variables
representing the redistribution of mass and water, microphysical water species conversions, and
radiative heating feedbacks associated with explicitly resolved convection. This brackets the change

3



Figure 1: The spatially-local version of ClimSim that our baselines are scored on. A spatially-global
version of the problem that expands to the full list of variables would be useful to try.

in atmospheric state after tens of thousands of computationally intensive, spatially nested simulators
of explicit cloud physics have completed a temporally-nested integration. The ultimate goal is to
outsource these physics to ML by mapping inputs to targets at comparable fidelity. The target vector
includes scalar fields and fluxes from the bottom of the atmospheric column expected by the land
surface model component that it must couple to; land-atmosphere coupling is important to predicting
regional water cycle dynamics [45, 46]. Importantly, ClimSim also includes the option for expanded
inputs x ∈ Rdi of size di = 617 and targets y ∈ Rdo of size do = 368, which we demonstrate in one
of our experiments.

Locality vs. Nonlocality: A spatially-global version of the problem could be of practical use for
improving ML via helpful spatial context [47, 48]. In such a case, the problem becomes 2D →
2D regression, and would encompass inputs x ∈ Rdi of maximum size di = 617 × 21,600 (grid
columns) and targets, y ∈ Rdo , of maximum size do = 368× 21,600. Here the second dimension
represents the unstructured "cube-sphere" computational mesh used by the climate model, which is a
list of grid cell locations that span the surface of the sphere [49]. In contrast to typical image-to-image
translation or spatio-temporal prediction problems in ML that involve data on a structured grid (i.e.
rectilinear), the task at hand is of lower dimensionality. Further details about the climate simulator
configuration, simulations, and data, including complete variable lists, can be found in SI.

Dataset Collection: We ran the E3SM-MMF multi-scale climate simulator [28, 29, 49, 50], using
multiple NVIDIA A100 GPUs for a total of ∼ 9,800 GPU-hours. We saved global instantaneous
values of the atmospheric state before and after high-resolution calculations occurred, isolating state
updates due to explicitly-resolved moist convection, boundary layer turbulence, and radiation; details
of the climate simulator configuration can be found in SI. These data were saved at 20-minute intervals
(i.e. the time step of the climate model) for 10 simulated years, resulting in 5.7 billion samples for
the high-resolution simulation that uses an unstructured “cube-sphere" horizontal grid with 21,600
grid columns spanning the globe. This grid yields an approximate horizontal grid spacing of 1.5◦,
but unlike a traditional climate model that maps points across the sphere using two dimensions
aligned with cardinal north/south and east/west directions, unstructured grids use a single dimension
to organize the horizontal location of points. The atmospheric columns at each location and time are
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treated as independent samples. Thus, the total number of samples can be understood by considering
that atmospheric columns at each location and time are treated as independent samples, such that
5.7 billion ≈ 21,600 horizontal locations per time step × 72-time steps per simulated day × 3,650
simulated days). It is important to note that each sample retains a 1D structure corresponding to
the vertical variation across 60 levels. We also ran two additional simulations with approximately
ten times less horizontal resolution, with only 384 grid columns spanning the globe, resulting in
100 million samples for each simulation. These low-resolution options allow for fast prototyping
of ML models, due to smaller training data volumes and less geographic complexity. One low-
resolution simulation uses an “aquaplanet” configuration, i.e., a lower boundary condition of specified
sea surface temperature, invariant in the longitudinal dimension with no seasonal cycle. This is
the simplest prototyping dataset, removing variance associated with continents and time-varying
boundary conditions. The total data volume is 41.2TB for the high-resolution dataset and 744GB for
each of the low-resolution datasets.

Dataset Interface: Raw model outputs emerge from the climate simulator as standard NetCDF files
which can be easily parsed in any language. Each timestep yields files containing input and target
vectors separately, resulting in a total of 525,600 files for each of the three datasets. To prevent
redundancy, variable metadata and grid information was saved separately.

The raw tensors from the climate simulations are initially either 2D or 3D, depending on the variable.
For 2D tensors, the dimensions represent time and horizontal location. While these variables actually
depend on three physical dimensions (time and 2D space), since each location on the sphere is
indexed along a single axis due to the climate model’s unstructured horizontal grid, the apparent
dimensionality is lower. Such variables include solar insolation, snow depth over land, surface energy
fluxes, and surface precipitation rate. 3D tensors include the additional dimension representing
altitude relative to the Earth’s surface, for height-varying state variables like temperature, humidity,
and wind vector components. Separate files are used to store each timestep and variable. ClimSim
includes a total of 24 2D variables and 10 3D variables (see Table 1 in SI).

Dataset Split: The 10-year datasets are divided into: (a) a training and validation spanning the
first 8 years (0001-02 to 0009-01; YYYY-MM), excluding the first simulated month for numerical
spin-up, and (b) a test set spanning the remaining two years (i.e., 0009-03 to 0011-02). A one-month
gap is intentionally introduced between the two sets to prevent test set contamination via temporal
correlation. Both sets are stored separately in our data repositories.

Energy use: The computing and energy costs of generating ClimSim could be viewed as wasteful and
having a negative consequence for society through associated emissions. We emphasize that while it
can appear large, the compute used is actually orders of magnitude less than what is consumed by
operational climate prediction. Associated emissions are minimized given that our integrations were
performed on energy-efficient GPU hardware. The cost must also be weighed against the potential
social benefit of mitigating future energy consumption by eliminating end users’ need for costly
physics-based MMF simulations. Meanwhile, a large consortium of interested parties have helped
agree on this dataset, to help ensure it is not wasted.

4 Experiments

To guide ML practitioners using ClimSim, we provide an example ML workflow using the low-
resolution, real-geography dataset for the task described in Section 1. All but one of our baselines
focuses on emulating the subset of total available input and target variables illustrated in Figure 1,
with the following inputs x ∈ Rdi of size di = 124, and targets y ∈ Rdo of size do = 128 (Figure 1,
Table 1), chosen for its similarity to recent attempts in the literature.

Training/Validation Split: We divide the 8-year training/validation set into the first 7 years (i.e.,
0001-02 to 0008-01 in the raw filenames’ “year-month” notation) for training and the subsequent 1
year (0008-02 to 0009-01) for validation.

Preprocessing Workflow: Our preprocessing steps were (1) downsample in time by using every
7th sample, (2) collapse horizontal location and time into a single sample dimension, (3) normalize
variables by subtracting the mean and dividing by the range, with these statistics calculated separately
at each of the 60 vertical levels for the four variables with vertical dependence, and (4) concatenate
variables into multi-variate input and output vectors for each sample (Figure 1). The heating tendency
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Input Size Target Size

Temperature [K] 60 Heating tendency, dT/dt [K/s] 60
Specific humidity [kg/kg] 60 Moistening tendency, dq/dt [kg/kg/s] 60
Surface pressure [Pa] 1 Net surface shortwave flux, NETSW [W/m2] 1
Insolation [W/m2] 1 Downward surface longwave flux, FLWDS [W/m2] 1
Surface latent heat flux [W/m2] 1 Snow rate, PRECSC [m/s] 1
Surface sensible heat flux [W/m2] 1 Rain rate, PRECC [m/s] 1

Visible direct solar flux, SOLS [W/m2] 1
Near-IR direct solar flux, SOLL [W/m2] 1
Visible diffused solar flux, SOLSD [W/m2] 1
Near-IR diffused solar flux, SOLLD [W/m2] 1

Table 1: The subset of input and target variables used in most of our experiments (Figure 1).
Dimension length 60 corresponds to the total number of vertical levels (discretized altitudes) of the

climate simulator.

target dT/dt (i.e., time rate of temperature T ) was calculated from the raw climate simulator
output as (Tafter − Tbefore)/∆t, where ∆t = 1200 s) is the climate simulator’s known macro-scale
timestep. Likewise, the moisture tendency was calculated via taking the difference of humidity state
variables recorded before versus after the convection and radiation calculations. This target variable
transformation is done so that we can compare the performance of our baseline models to that of
previously published models that reported errors of emulated tendencies [14, 39]. Additionally, this
transformation implicitly normalizes the target variables leading to better convergence properties for
ML algorithms. Given the domain-specific nature of the preprocessing workflow, we provide scripts
in the GitHub repository for workflow reproduction.

4.1 Baseline Architectures

Six baseline models used in our experiment are briefly described here. Refer to SI for further details.

Convolutional Neural Network (CNN) uses a 1D ResNet-style network. Each ResNet block
contains two 1D convolutional layers and a skip connection. CNNs can learn spatial structure and
have outperformed MLP and graph-based networks in [51]. The inputs and outputs for the CNN are
stacked in the channel dimensions, such that the mapping is 60 × 6 → 60 × 10. Accordingly, global
variables have been repeated along the vertical dimension.

Encoder-Decoder (ED) consists of an Encoder and a Decoder with 6 fully-connected hidden layers
each [39]. The Encoder of ED condenses the original dimensionality of the input variables down to
only 5 nodes inside the latent space. This enhances the interpretability of ED and makes the model
beneficial for advanced postprocessing of multivariate climate data [39].

Heteroskedastic Regression (HSR) [52] predicts a separate mean and standard deviation for each
output variable, using a regularized MLP.

Multi-layer Perceptron (MLP) is a fully connected, feed-forward neural network. The MLP
architecture used for our experiments is optimized via an extensive hyperparameter search with 8,257
trials.

Randomized Prior Network (RPN) is an ensemble model [53]. Each member of the RPN is built
as the sum of a trainable and a non-trainable (so-called “prior”) surrogate model; we used MLP for
simplicity. Multiple replicas of the networks are constructed by independent and random sampling of
both trainable and non-trainable parameters [54, 55]. RPNs also resort to data bootstrapping (e.g.,
subsampling and randomization) in order to mitigate the uncertainty collapse of the ensemble method
when tested beyond the training data points [55].

Conditional Variational Autoencoder (cVAE) uses amortized variational inference to fit a deep
generative model that is conditioned on the input and can produce samples from a complex predictive
distribution.
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Variable MAE [W/m2] R2

CNN ED HSR MLP RPN cVAE CNN ED HSR MLP RPN cVAE

dT/dt 2.585 2.864 2.845 2.683 2.685 2.732 0.627 0.542 0.568 0.589 0.617 0.590
dq/dt 4.401 4.673 4.784 4.495 4.592 4.680 – – – – – –
NETSW 18.85 14.968 19.82 13.36 18.88 19.73 0.944 0.980 0.959 0.983 0.968 0.957
FLWDS 8.598 6.894 6.267 5.224 6.018 6.588 0.828 0.802 0.904 0.924 0.912 0.883
PRECSC 3.364 3.046 3.511 2.684 3.328 3.322 – – – – – –
PRECC 37.83 37.250 42.38 34.33 37.46 38.81 0.077 -17.909 -68.35 -38.69 -67.94 -0.926
SOLS 10.83 8.554 11.31 7.971 10.36 10.94 0.927 0.960 0.929 0.961 0.943 0.929
SOLL 13.15 10.924 13.60 10.30 12.96 13.46 0.916 0.945 0.916 0.948 0.928 0.915
SOLSD 5.817 5.075 6.331 4.533 5.846 6.159 0.927 0.951 0.923 0.956 0.940 0.921
SOLLD 5.679 5.136 6.215 4.806 5.702 6.066 0.813 0.857 0.797 0.866 0.837 0.796

Table 2: MAE and R2 for target variables averaged globally and temporally (from 0009-03 to
0011-02). Variables include heating tendency (dT/dt), moistening tendency (dq/dt), net surface

shortwave flux (NETSW), downward surface longwave flux (FLWDS), snow rate (PRECSC), rain
rate (PRECC), visible direct solar flux (SOLS), near-IR direct solar flux (SOLL), visible diffused

solar flux (SOLSD), and near-IR diffused solar flux (SOLLD). Units of non-energy flux variables are
converted to a common energy unit, W/m2. Best model performance for each variable is bolded.

4.2 Skill Boost from Expanding Features and Targets

We performed an ablation of our best performing MLP baseline to demonstrate the added value
of the expanded inputs and targets available in ClimSim, i.e. using inputs x of size di = 617 and
targets y ∈ Rdo of size do = 368; see Table 1 in SI for the full list of variables. We use the same
transformation described in our preprocessing workflow to compute and add condensate (cloud liquid
and cloud ice) and momentum (zonal and meridional winds) tendencies to the target vector. We
conducted this ablation study with both the low-resolution and the high-resolution datasets (see
Section 3.1 in SI for further details regarding these MLP variants). For common elements of the target
vector, using all available variables leads to a uniform improvement in prediction accuracy, especially
for precipitation, in both resolutions (Figures SI7, SI8 and Table SI4). The larger errors (e.g., MAE
and RMSE) observed in the high-resolution emulators are anticipated due to the increased variance
of higher-resolution data. Nevertheless, the similarity of their R2 values to those of the corresponding
low-resolution emulators confirms their adequate performance.

4.3 Evaluation Metrics

Our evaluation metrics are computed separately for each variable in the output vector. Mean absolute
error (MAE) and the coefficient of determination (R2) are calculated independently at each horizontal
and vertical location, and then averaged horizontally and vertically to produce the summary statistics
in Figure 2. For the vertically-varying fields, we first form a mass-weighting and then convert
moistening and heating tendencies into common energy units in Watts per square meter as in [56].
We also report continuous ranked probability scores (CRPS) for all considered models in SI.

4.4 Baseline Model Results

Figure 2 summarizes the error characteristics. Whereas heating and moistening rates have comparable
global mean MAE, behind a common background vertical structure (Figure 2 b,c) the coefficient
of determination R2 (d,e) reveals that certain architectures (RPN, HSR, cVAE, CNN) consistently
perform better in the upper atmosphere (model level < 30) whereas the highly optimized MLP model
outperforms in the lower atmosphere (model level > 30) and therefore the global mean (Table 2). For
the global mean MAE we see the largest averaged errors for PRECC and NETSW (mean MAE >
15 W/m², Figure 2 and Table 2), where MLP clearly has the best the best skill compared to all other
benchmark models. For the other variables, the global mean MAE is considerably smaller and the
skill of the benchmarks model appears to be more similar in absolute numbers. While for the global
mean R2 we find the lowest measurable performance for dT/dt and PRECC (mean R2 < 0.7) and
in these cases, CNN gives the most skillful predictions. The other variables have larger R2 of order
0.8 or higher, which suggests that these quantities are easier to deep-learn (Table 2). For dq/dt and
PRECSC global mean R2 is not an ideal evaluation metric due to negligible variability in dq/dt in the
upper atmosphere and for PRECSC in the tropics in the dataset (Table 2).
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Additional tables and figures that reveal the geographic and vertical structure of these errors, fit
quality, and analysis of stochastic metrics, are included in SI (Sections 4.3, 8.1, and 8.2 in SI).

0

2

4

6

W
/m

2

(b) MAE, dT/dt

0

5

10

15

W
/m

2

(c) MAE, dq/dt

0 10 20 30 40 50 60
Level index

0.0

0.5

1.0 (d) R2, dT/dt

0 10 20 30 40 50 60
Level index

0.0

0.5

1.0 (e) R2, dq/dt

dT/dt dq/dt NETSW FLWDS PRECSC PRECC SOLS SOLL SOLSD SOLLD
0

20

40

W
/m

2

(a) MAE CNN
ED
HSR

MLP
RPN
cVAE
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humidity, respectively, and were vertically integrated with mass weighting. (b,c) retain the vertical
structure of MAE and (d,e) R2. Error bars and grey shadings show the the 5- to 95-percentile range

of MLP. Refer to Table 1 for variable definitions.

4.5 Physics-Informed Guidance to Improve Generalizability and Coupled Performance

Physical Constraints: Mass and energy conservation are important criteria for Earth system simula-
tion. If these terms are not conserved, errors in estimating sea level rise or temperature change over
time may become as large as the signals we hope to measure. Enforcing conservation on emulated
results helps constrain results to be physically plausible and reduce the potential for errors accumu-
lating over long time scales. We discuss how to do this and enforce additional constraints, such as
non-negativity for precipitation, condensate, and moisture variables in the Supporting Information.

Stochasticity and Memory: The results of the embedded convection calculations regulating do
are chaotic, and thus worthy of stochastic architectures, as in our RPN, HSR, and cVAE baselines.
These solutions are likewise sensitive to sub-grid initial state variables from an interior nested spatial
dimension that has not been included in our data.

Temporal Locality: Incorporating the previous timesteps’ target or feature in the input vector
inflation could be beneficial as it captures some information about this convective memory and
utilizes temporal autocorrelations present in atmospheric data.

Causal Pruning: A systematic and quantitative pruning of the input vector based on objectively
assessed causal relationships to subsets of the target vector has been proposed as an attractive
preprocessing strategy, as it helps remove spurious correlations due to confounding variables and
optimize the ML algorithm [16].

Normalization: Normalization that goes beyond removing vertical structure could be strategic,
such as removing the geographic mean (e.g., latitudinal, land/sea structure) or composite seasonal
variances (e.g., local smoothed annual cycle) present in the data. For variables exhibiting exponential
variation and approaching zero at the highest level (e.g., metrics of moisture), log-normalization
might be beneficial.
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Expanded Resolution and Complete Inputs and Outputs: Our baseline models have focused on
the low-resolution dataset, for ease of data volume, and using only a subset of the available inputs
and outputs. This illustrates the essence of the ML challenge. However, we show in our ablation
study, using MLPs, that including all input variables yields generally an improved reproduction of the
target variables in both the low-resolution and the high-resolution dataset (Figures SI7 and SI8 and
Table SI4). Accordingly, we encourage users who discover competitive fits in this approachable limit
to expand to all inputs/outputs in the high-resolution, real-geography dataset, for which successful
fits become operationally relevant.

Further ML Approaches: Recent methods to capture multi-scale processes using neural operators
that learn in a discretization-invariant manner and can predict at higher resolutions than available
during training time [57] may be attractive. Their performance can be further enhanced by incorpo-
rating physics-informed losses at a higher resolution than available training data [58]. Ideas on ML
modeling for sub-grid closures from adjacent fields like turbulent flow physics and reactive flows can
also be leveraged for developing architectures with an inductive bias for known priors [59], easing
prediction of stiff non-linear behavior [60–62], generative modeling with physical constraints [63, 64]
and for interpretability of the final trained models [60].

5 Limitations and Other Applications

Idealizations: A limitation of the multi-scale climate simulator used to produce ClimSim (E3SM-
MMF) is that it assumes scale separation, i.e., that convection can be represented as laterally periodic
within the grid size of the host simulator, and neglects sub-grid scale representations of topographic
and land-surface variability. Despite these simplifications, the data adequately captures many essential
aspects of the ML problem, such as stochasticity, and interactions across radiation, microphysics, and
turbulence.

Hybrid testing: Inclusion of a natural path for downstream testing of learned physics emulators as
fully coupled components of a hybrid-ML climate simulator is vital. However, such a workflow is not
yet included in ClimSim, since there is no easy way for the ML community to run many hybridized
variants of the E3SM-MMF in a distributed high-performance GPU computing infrastructure via a
lightweight API. It is our eventual goal to tackle the software engineering needed to enable such a
protocol, since, in the long term, it is in this downstream environment where ML researchers should
expect to have their maximum impact on the field of hybrid-ML climate simulation. Meanwhile,
ClimSim provides the first step.

Stochasticity: One open problem that the dataset may allow assessing is understanding the role of
stochasticity in hybrid-ML simulation. While primarily used as a dataset for regression, it would be
also interesting to assess and understand the degree to which different variables are better modeled as
stochastic or deterministic, or if the dataset gives rise to heavy-tailed or even multi-modal conditional
distributions that are important to capture. To date, these questions have been raised based on
physical conjectures [e.g., 65] but remain to be addressed in the ML-based parameterization literature.
For instance, precipitation distributions have long tails that are projected to lengthen under global
warming [34, 66]—and will thus tend to generate out-of-sample extremes. ClimSim could help
construct optimal architectures to capture precipitation tails and other impactful climate variables
such as surface temperature.

Interpretability: This dataset could also be utilized to discover physically interpretable models for
atmospheric convection, radiation, and microphysics. A possible workflow would apply dimensional-
ity reduction techniques to identify dominant vertical variations, followed by symbolic regression to
recover analytic expressions [67, 68].

Generalizability: Although the impacts of global warming and inter-annual variability are absent
in this initial version of ClimSim, important questions surrounding climate-convection interactions
can begin to be addressed. One strategy would involve partitioning the data such that the emulator is
trained on cold columns, but validated on warm columns, where warmth could be measured by surface
temperatures, as in [56]. However, the results from this approach may also reflect the dependence
of convection on the geographical distribution of surface temperatures in the current climate and
should be interpreted with caution. To optimally engage ML researchers in solving the climate
generalization problem, a multi-climate extension of ClimSim should be developed that includes
physical simulations that samples future climate states and more internal variability.

9



Relevance determination and active learning: While the climate simulator code offers data
generation flexibility, guidance on ideal regimes to target for improved learning would benefit the
domain scientists able to run it. This question can be addressed with the current data and metrics of
interest provided.

6 Conclusion and Future Work

We introduce ClimSim, the most physically comprehensive dataset yet published for training ML
emulators of atmospheric storms, clouds, turbulence, rainfall, and radiation for use in hybrid-ML
climate simulation. It contains all inputs and outputs necessary for downstream coupling in a full-
complexity multi-scale climate simulator. We conduct a series of experiments on a subset of these
variables that demonstrate the degree to which climate data scientists have been able to fit their
deterministic and stochastic components.

We hope ML community engagement in ClimSim will advance fundamental ML methodology and
clarify the path to producing increasingly skillful sub-grid physics emulators that can be reliably used
for operational climate simulation. To facilitate two-way commications between ML practitioners
and climate scientists, we incorporate many desired characteristics for an ideal benchmark dataset
suggeted in [69]. Such interdisciplinary collaboration will open up an exciting future in which the
computational limits that currently constrain climate simulation can be reconsidered.

We plan to soon extend ClimSim to include, first, a sampling of multiple future climate states. Second,
we aim to provide a protocol for downstream hybrid simulation testing. We hope lessons learned in
our chosen limit of multi-scale atmospheric simulation will have applicability in other sub-fields of
Earth System Science where computational constraints are currently a barrier to including explicit
representations of more systems of nested complexity.
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1 Climate Simulations

Climate models divide the Earth’s atmosphere, land surface, and ocean into a 3D grid, creating a
discretized representation of the planet. Somewhat like a virtual Lego construction of Earth, with
each brick representing a small region (grid cell). Earth system models are made up of independent
component models for the atmosphere, land surface, rivers, ocean, sea ice, and glaciers. Each of
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these component models is developed independently and can run by itself when provided with the
appropriate input data. When running as a fully coupled system the “component coupler” handles the
flow of data between the components.

Within each grid cell of the component models, a series of complex calculations are performed to
account for various physical processes, such as phase changes of water, radiative heat transfer, and
dynamic transport (referred to as “advection”). Each component model uses the discretized values of
many quantities (such as temperature, humidity, and wind speed) as inputs to parameterizations and
fluid solvers to output those same values for a future point in time.

The atmosphere and ocean components are the most expensive pieces of an Earth system model,
which is largely due to the computation and inter-process communication associated with their
fluid dynamics solvers. Furthermore, a significant portion of the overall cost is attributed to the
atmospheric physics calculations that are performed locally within each grid column. It is important
to note that atmospheric physics serves as a major source of uncertainty in climate projections,
primarily stemming from the challenges associated with accurately representing cloud and aerosol
processes.

1.1 Model Description

The data that comprise ClimSim are from simulations with the Energy Exascale Earth System
Model-Multiscale Modeling Framework version 2.1.0 (E3SM-MMF v2) [1]. Traditionally, global
atmospheric models parameterize clouds and turbulence using crude, low-order models that attempt
to represent the aggregate effects of these processes on larger scales. However, the complexity
and nonlinearity of cloud and rainfall processes make them particularly challenging to represent
accurately with parameterizations. The MMF approach replaces these conventional parameterizations
with a cloud resolving model (CRM) in each cell of the global grid, so that cloud and turbulence
can be explicitly represented. Each of these independent CRMs is spatially fixed and exchange
coupling tendencies with a parent global grid column. This novel approach to representing clouds
and turbulence can improve various aspects of the simulated climate, such as rainfall patterns [2].

The configuration of E3SM-MMF used here shares some details with E3SMv2. The dynamical code
of E3SM uses a spectral element approach on a cubed-sphere geometry. Physics calculations are
performed on an unstructured, finite-volume grid that is slightly coarser than the dynamics grid,
following Hannah et al. (2021) [3], which is better aligned with the effective resolution of the
dynamics grid. Cases with realistic topography include an active land model component that responds
to atmospheric conditions with the appropriate fluxes of heat and momentum.

The embedded CRM in E3SM-MMF is adapted from the System for Atmospheric Modeling (SAM)
described by Khairoutdinov and Randall (2003) [4]. While the CRM does explicitly represent clouds
and turbulence, it still cannot represent the smallest scales of turbulence and microphysics, and,
therefore, these processes still need to be parameterized within each CRM grid cell. Microphysical
processes are parameterized with a single-moment scheme, and sub-grid scale turbulent fluxes are
parameterized using a diagnostic Smagorinsky-type closure. Convective momentum transport in the
nested CRM is handled using the scalar momentum tracer approach of Tulich (2015) [5]. The CRM
uses an internal timestep of 10 seconds, while the global calculations use a timestep of 20 minutes.

Despite recent efforts to accelerate E3SM-MMF with GPUs and algorithmic techniques [6], the CRM
domain size strongly affects the computational throughput and limits the type of experiments that
can be conducted. However, the MMF approach is quite flexible in how the CRM size is specified.
E3SM-MMF is typically run with a 2D CRM that neglects one of the horizontal dimensions, and
employs relatively coarse grid spacing that cannot represent small clouds. Increasing the size of this
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2D domain by adding further columns (more CRM cells) generally improves the realism of the model
solution. Reducing the model grid spacing can also improve the model to a certain degree, although
the number of columns often needs to be increased to avoid the degradation associated with a small
CRM. Ideally, the CRM would always be used in a 3D configuration to fully capture the complex,
chaotic turbulence that dictates the life cycle of each individual cloud, but this approach is generally
limited to special experiments that can justify the extra computational cost. The simulations for
ClimSim utilize a 2D CRM with 64 columns and 2 km horizontal grid spacing within each grid cell.

The atmospheric component of E3SM uses a hybrid vertical grid that is “terrain-following” near
the surface, and transitions to be equivalent to pressure levels near the top (e.g., https://www2.
cesm.ucar.edu/models/atm-cam/docs/usersguide/node25.html). The vertical levels are
specified to be thin near the surface to help capture turbulent boundary layer processes, and are
gradually stretched to be very coarse in the stratosphere. E3SM-MMF uses 60 levels for the global
dynamics with a top level around 65 km. The CRM used for atmospheric physics uses 50 levels,
ignoring the upper 10 levels, to avoid problems that arise from using the anelastic approximation with
very low densities. This does not create any issues, because cloud processes are generally confined to
the troposphere where the anelastic approach is valid. The hybrid grid can be converted to pressure
levels using Equation 1, where P0 = 100, 000 Pa is a reference pressure, and Ps(x, t) is the surface
pressure which varies in location x and time t:

Pk = AkP0 +BkPs (1)

Ak and Bk—where the subscript k denotes the index of vertical coordinate—are the fixed, prescribed
coefficients that define how the “terrain-following” and “pure pressure” coordinates are blended to
define the hybrid coordinate at each vertical level. Ak andBk are provided as a part of the dataset with
variable names of hyam and hyai or hybm and hybi, depending on whether mid-level or interface
values are needed. The third character of the variable names (“a” and “b”) in Equation 1 denotes Ak
and Bk coefficients, respectively. Note that the indexing of the vertical coordinate starts from the top
of the atmosphere due to the construct of Ak and Bk coefficients, e.g., k = 0 for the top and k = 59

for the surface in E3SM-MMF.

In the E3SM-MMF framework, the sequencing of atmospheric processes can be conceptualized
as follows. It starts with a surface coupling step that receives fluxes from the surface component
models (i.e., land, ocean, and sea ice). This is followed by a set of relatively inexpensive physics
parameterizations that handle processes such as airplane emissions, boundary layer mixing, and
unresolved gravity waves. The global dynamics then takes over to evolve the winds and advect tracers
on the global grid. Finally, there is another set of physics calculations to handle clouds, chemistry,
and radiation, which are relatively expensive. This final physics section is where the embedded CRM
of E3SM-MMF is used, and is the ideal target for surrogate model emulation due to its outsized
computational expense. Accordingly, this step represents the target of ClimSim.

One area where E3SM-MMF significantly differs from E3SMv2 is in the treatment of aerosols and
chemistry. The embedded CRM in E3SM-MMF predicts the mass of water species (i.e., cloud and
rain droplet mass mixing ratios) but does not predict the number concentration (i.e., number of
drops per mass of air). One consequence of this limitation is that E3SM-MMF cannot represent
complex cloud aerosol interactions that can impact droplet number concentrations and cloud radiative
feedbacks. Therefore, E3SM-MMF cannot use the more sophisticated aerosol and chemistry package
used by E3SMv2, and instead uses prescribed aerosol and ozone amounts to account for the direct
radiative impact of these tracers. Current efforts are addressing this limitation for future versions of
E3SM-MMF.
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1.2 Model Configurations

The simulations used for ClimSim were performed on the NERSC Perlmutter machine. E3SM-
MMF is unique among climate models in that it can leverage hybrid CPU/GPU architectures on
machines such as NERSC Perlmutter (https://www.nersc.gov/systems/perlmutter), which
has 4 NVIDIA A100 GPUs per node. All simulations were configured to run with 4 MPI ranks
and 16 OpenMP threads per node. The low-resolution (real geography and aquaplanet) cases used
2 nodes, and the high-resolution (real geography) case used 32 nodes. The throughput of these
configurations was roughly 11.5 simulated years per day (sypd) for low-resolution cases and 3.3 sypd
for the high-resolution case, averaged over multiple batch submissions. The total simulation length in
all cases was 10 model years and 2 model months.

Boundary conditions over maritime regions are constrained by prescribed sea surface temperatures and
sea ice amount. Various input data are needed for the cases with realistic topography, such as ozone
concentrations and sea surface temperatures, which have been generated to reflect a climatological
average of the 2005-2014 period. The aquaplanet configuration does not have a land component, but
otherwise has similar input requirements using idealized data to produce a climate that is symmetric
along lines of constant latitude.

2 Dataset and Code Access

2.1 Code Access

Following NeurIPS Dataset and Benchmark Track guidelines, we have uploaded our datasets to
Hugging Face:

• E3SM-MMF High-Resolution Real Geography dataset:
https://huggingface.co/datasets/LEAP/ClimSim_high-res

• E3SM-MMF Low-Resolution Real Geography dataset:
https://huggingface.co/datasets/LEAP/ClimSim_low-res

• E3SM-MMF Low-Resolution Aquaplanet dataset:
https://huggingface.co/datasets/LEAP/ClimSim_low-res_aqua-planet

We have documented all code (including the code to preprocess the data, create, train, and evaluate
the baseline models, and visualize data and metrics) in an openly-available GitHub repository:
https://leap-stc.github.io/ClimSim.

2.2 Variable List

All variables included in our dataset are listed in Table 1.

2.3 Dataset Statistics

Here, we present some distribution statistics to aid in understanding the dataset. Detailed distribu-
tions for all variables are provided in https://github.com/leap-stc/ClimSim/tree/main/
dataset_statistics. These statistics are calculated for each vertical level individually for the
vertically-resolved variables (e.g., state_t and state_q0001). For each variable (additionally, at
each level for the vertically-resolved variables), a histogram is provided to visualize the distribution
using 100 bins. Additionally, a text file accompanies each histogram, containing key statistical mea-
sures such as the mean, standard deviation, skewness, kurtosis, median, deciles, quartiles, minimum,
maximum, and mode. The text file also includes the bin edges and the corresponding frequency
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In Out Variable Dimensions Units Description

× pbuf_SOLIN ncol W/m2 Solar insolation

× pbuf_COSZRS ncol Cosine of solar zenith angle

× pbuf_LHFLX ncol W/m2 Surface latent heat flux

× pbuf_SHFLX ncol W/m2 Surface sensible heat flux

× pbuf_TAUX ncol W/m2 Zonal surface stress

× pbuf_TAUY ncol W/m2 Meridional surface stress

× pbuf_ozone lev, ncol mol/mol Ozone volume mixing ratio

× pbuf_N2O lev, ncol mol/mol Nitrous oxide volume mixing ratio

× pbuf_CH4 lev, ncol mol/mol Methane volume mixing ratio

× state_ps ncol Pa Surface pressure

× × state_q0001 lev, ncol kg/kg Specific humidity

× × state_q0002 lev, ncol kg/kg Cloud liquid mixing ratio

× × state_q0003 lev, ncol kg/kg Cloud ice mixing ratio

× × state_t lev, ncol K Air temperature

× × state_u lev, ncol m/s Zonal wind speed

× × state_v lev, ncol m/s Meridional wind speed

× state_pmid lev, ncol Pa Mid-level pressure

× cam_in_ASDIR ncol Albedo for direct shortwave radiation

× cam_in_ASDIF ncol Albedo for diffuse shortwave radiation

× cam_in_ALDIR ncol Albedo for direct longwave radiation

× cam_in_ALDIF ncol Albedo for diffuse longwave radiation

× cam_in_LWUP ncol W/m2 Upward longwave flux

× cam_in_SNOWHLAND ncol m Snow depth over land (liquid water equivalent)

× cam_in_SNOWHICE ncol m Snow depth over ice

× cam_in_LANDFRAC ncol Land area fraction

× cam_in_ICEFRAC ncol Sea-ice area fraction

× cam_out_NETSW ncol W/m2 Net shortwave flux at surface

× cam_out_FLWDS ncol W/m2 Downward longwave flux at surface

× cam_out_PRECSC ncol m/s Snow rate (liquid water equivalent)

× cam_out_PRECC ncol m/s Rain rate

× cam_out_SOLS ncol W/m2 Downward visible direct solar flux to surface

× cam_out_SOLL ncol W/m2 Downward near-IR direct solar flux to surface

× cam_out_SOLSD ncol W/m2 Downward visible diffuse solar flux to surface

× cam_out_SOLLD ncol W/m2 Downward near-IR diffuse solar flux to surface

Table 1: Overview of input variables (first column) and output variables (second column) of the
E3SM-MMF physics calculations (including the CRM) that are stored in ClimSim. The other
columns indicate the variable name, dimensions, units, and a brief description. IR is short for
infrared, which is also often referred to as “longwave” radiation among atmospheric scientists.
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values used to generate the histogram figures. This comprehensive approach allows for a detailed
analysis of the dataset’s distributions.

2.4 Dataset Applications

Our data can benefit a broader audience beyond climate modelers wishing to explore ML for sub-grid
parameterization. For climate studies, while high-frequency timestep-level outputs from simulations
are rarely archived, they offer insights into convective extremes and diurnal variability. Such data
opens the path to explore multi-scale interactions between rapid dynamics and broader weather and
climate fluctuations. This includes a detailed examination of variables needed to constrain vertically
resolved energy and water budgets and understand their variability. For the machine learning
community, this dataset addresses the scarcity of large-scale regression benchmarks, common in the
sciences. Such benchmarks are less common compared to prevalent industrial datasets that emphasize
classification, computer vision, and NLP tasks.

2.5 Target Audiences

In essence, this benchmark aims to democratize and expand access to advanced climate modeling.
High-potential architectures will undergo testing in the superparameterized version of the DOE’s
primary climate model, E3SM. Successful integration would substantially reduce computational
costs for the DOE when contemplating the deployment of MMF technology in climate prediction.
E3SM’s external user community, typically deterred by the extensive computational demands of
superparameterized simulators, also stands to benefit. Currently, only a minority with substantial
computing resources can engage with such models. A successful recipe for ClimSim could thus
democratize the use of explicit convection for a broader user base. If performant architectures also
prove effective in the NCAR Community Earth System Model (CESM) - the world’s most widely
used open source climate simulator - the user base could expand significantly. Given its software
similarities to E3SM, it is logical to expect that ClimSim’s learnt parameterizations will be readily
adaptable to CESM. Moreover, we anticipate that a successful hybrid machine learning climate
simulator will bring benefits to a diverse range of industry sectors, including those vulnerable to
climate risks (such as agriculture, energy, and tourism), as well as the climate risk industry itself
(such as insurance and risk assessment).

3 Baseline Models

This section offers a detailed depiction of six baseline models. Every facet of model designs,
excluding the dimensions of the input and output layers, differs among the models. We recognize that
while this approach maximizes the differentiation among baseline models, such extensive degrees
of freedom complicate the complete isolation of the effects arising from optimization parameter
choices and those originating from the model architecture itself. In future ClimSim releases, baseline
models will share more constraints (including optimization parameters) to highlight the performance
difference due to model architectures.

3.1 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) is a basic, densely connected artificial neural network. We used
KerasTuner [7] with a random search algorithm for hyperparameter optimization. The following
hyperparameters were optimized: the number of hidden layers (N layers), the number of nodes per
layer (Nnodes), activation function, and batch size. The search domains were:

• N layers: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
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• Nnodes: [128, 256, 384, 512, 640, 768, 896, 1024]

• Activation function: [ReLU, LeakyReLU (α = 0.15), eLU (α = 1.0)]

• Batch size: [48, 96, 192, 384, 768, 1152, 1536, 2304, 3072]

• Optimizer: [Adam, RAdam, RMSprop, SGD]

Note that Nnodes was selected independently for each hidden layer. For example, for N layers = k,
Nnodes was drawn from the search domain k times. The width of the last hidden layer was fixed at
128. The output layer utilized the linear activation function for the first 120 outputs (corresponding
to the heating and moistening tendencies), and ReLU for the remaining 8 variables (corresponding
positive-definite surface variables). The loss function was taken as the mean squared error (MSE),
and the learning rate was defined using a cyclic scheduler, with an initial learning rate of 2.5 × 10-4,
maximum of 2.5 × 10-3, and step size of 4 epochs.

Following Yu et al. (2023) [8], we conducted the hyperparameter search in two stages. In the first
stage, a total of 8,257 randomly-drawn hyperparameter configurations were trained and evaluated
with a tiny subset of the full training set, sub-sampled in the time dimension with a stride of 37. In
the second stage, the top 0.2% candidates (160 hyperparameter configurations) were re-trained with a
larger fraction of the full training set (sub-sampled with a stride of 7), and then evaluated for our MLP
baseline. After this two-step search process, the best hyperparameter configuration was identified as:
N layers = 5, Nnodes = [768, 640, 512, 640, 640], LeakyReLU activation, a batch size of 3,072, and
RAdam optimizer. The MLP baseline has approximately 1.75 million parameters and executes 3.50
MFlops on one data point, the architecture of which is summarized in Figure 1.

To provide some context on the amount of variance in model performance that can be attributed to
random effects of optimization, the top 160 models were selected from our pool of 8,257 trials and
scored on the validation set; the 5th to 95th percentile range of this ensemble is shown by the error
bars in Figures 2a and SI3, and by the grey shading in Figures 2b-e, SI4, and SI5.

MLP with expanded features and targets: We built MLP with an expanded set of input and output
variables, as elaborated in Section 4.2 of the main text. For the sake of clarity, we designate an
MLP model employing the subset of available variables (outlined in Section 4 of the main text) as
"MLPv1," while an MLP model utilizing the expanded variables is referred to as "MLPv2." The
hyperparameter optimization for MLPv2 followed a similar process as MLPv1, with the exception
that the search domain of batch size was defined as [2700, 5400, 10800, 21600, 43200, 64800, 86400,
129600, 172800]. After 11,851 search trials, the best hyperparameter configuration was identified as:
N layers = 3, Nnodes = [384, 1024, 640], ReLU activation, a batch size of 2,304, and Adam optimizer.
The MLPv2 baseline has approximately 1.59 million parameters and executes 3.17 MFlops on one
data point.

MLP with the high-resolution dataset: In conjunction with the MLP featuring expanded features
and targets, we also constructed MLP models using the high-resolution dataset for both MLPv1
and MLPv2. To differentiate these models from those constructed with the low-resolution dataset,
we add the suffix "-ne30" to their names. The hyperparameters for MLPv1-ne30 and MLPv2-ne30
were optimized using the same methodology as was applied to their low-resolution counterparts.
For MLPv1-ne30, after 10,296 search trials, the best hyperparameter configuration was identified
as: N layers = 4, Nnodes = [1024, 128, 128, 768], leaky ReLU activation, a batch size of 5,400, and
Adam optimizer. The MLPv1-ne30 baseline has approximately 0.49 million parameters and executes
0.98 MFlops on one data point. For MLPv2-ne30, after 10,440 search trials, the best hyperparameter
configuration was identified as: N layers = 3, Nnodes = [640, 128, 1024], ReLU activation, a batch size
of 2,700, and Adam optimizer. The MLPv2-ne30 baseline has approximately 1.00 million parameters
and executes 2.00 MFlops on one data point.
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Figure 1: The architecture of the MLP baseline model.

The model performance comparison between MLPv1, MLPv2, MLPv1-ne30, and MLPv2-ne30 is
presented in SI Section 8.1.

3.2 Randomized Prior Network (RPN)

A randomized prior network (RPN) is an ensemble model [9]. Each member of the RPN is built as
the sum of a trainable and a non-trainable (so-called “prior”) surrogate model; we used MLP for
simplicity. Multiple replicas of the networks are constructed by independent and random sampling of
both trainable and non-trainable parameters [10, 11]. RPNs also resort to data bootstrapping in order
to mitigate the uncertainty collapse of the ensemble method when tested beyond the training data
points [11]. Data bootstrapping consists of sub-sampling and randomization of the data each network
in the ensemble sees during training. Hyperparameters of individual MLPs (i.e., N layers, Nnodes, batch
size) did not need to be tuned from scratch, and were instead chosen based on the hyperparameter
search mentioned in Section 3.1. RPN ensembles of 128 networks were considered justified [10].
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In particular, individual MLPs forming the RPN were considered as fully connected neural networks
with N layers = 5, Nnodes = [768, 640, 512, 640, 640], and a batch size of 3,072, as in Section 3.1. We
utilized ReLU activation (with a negative slope of 0.15) for all layers except for the output layer,
where the linear activation function was used.

The MLPs were trained for a total of 13,140 stochastic gradient descent (SGD) steps using the Adam
optimizer. The learning rate was initialized at 5 × 10-4 with an exponential decay at a rate of 0.99 for
every 1,000 steps. The RPN baseline has approximately 222.3 million parameters (∼1.74 million per
MLP) and executes 0.89 GFlops on one data point.

3.3 Convolutional Neural Network (CNN)

The convolutional neural network (CNN) used is a modified version of a residual network (ResNet).
Each ResNet block is composed of two, 1D convolutions (Conv1D) with a 3 × 3 kernel using “same”
padding, and an output feature map size of 406. Each Conv1D is followed by ReLU activation and
dropout (with rate = 0.175). Residuals were also 1D convolved using a 1 × 1 kernel, and added back
to the output of the main ResNet block.

The CNN composes 12 such ResNet blocks, followed by “flattening” of the feature map via a 1 ×
1 convolution and eLU activation. Two separate Dense layers (and their corresponding activations)
map the output feature map to their respective co-domains: one to (−∞,∞) assuming that vertically-
resolved variables have no defined range, and another to [0,∞) for all globally-resolved variables.
These were concatenated as the output of the network.

A hyperparameter search was conducted on depth, width, kernel size, activation functions, loss
functions, and normalization types using the Hyperband [12] strategy with the KerasTuner [7]
framework. The search domains were:

• Model depth/number of ResNet blocks: [2, 15]

• Model width: [32, 512]

• Kernel width: [3, 5, 7, 9]

• Activation function: [GeLU, eLU, ReLU, Swish]

• Layer normalization: [True, False]

• Dropout: [0.0, 0.5]

• Optimizer: [SGD, Adam]

The CNN was trained for 10 epochs with an Adam optimizer with standard hyperparameters (β1 =

0.9, β2 = 0.999, ϵ = 1 × 10−7). The learning rate was defined using a cyclic scheduler, with an
initial learning rate of 1 × 10-4, a maximum of 1 × 10-3, and a step size of 2 ×⌊ 10,091,520

12 ⌋. A scaling
function of 1

2.0x−1 was applied to the scheduler per step x.

The hyperparameter search was conducted for 12 hours on 8 NVIDIA Tesla V100 32GB cards, with
one model executing on each card. A weighted mean absolute error (MAE) was used as the loss
function for optimization. We down-weighted the standard MAE loss to de-emphasize repeated scalar
values provided to the network as input. The weighted MAE function is defined below:

def mae_adjusted(y_true , y_pred):
abs_error = K.abs(y_pred - y_true)
vertical_weights = K.mean(abs_error[:,:,0:2])*(120/128)
scalar_weights = K.mean(abs_error[:,:,2:10])*(8/128)
return vertical_weights + scalar_weights
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The CNN baseline has approximately 13.2 million parameters and executes 1.59 GFlops on one data
point. The architecture is visualized below in Figure 2.

Figure 2: The ResNet-style CNN baseline is comprised of multiple ResNet blocks (i.e., DoubleConv),
and applies different activation to the outputs for vertically-resolved and global variables. The

channel dimensions are [in_channels, hidden_ch, out_ch, vert_ch, scalar_ch] = [6, 406, 10, 8, 2].

3.4 Heteroskedastic Regression (HSR)

We quantified the inherent stochasticity in the data D = {(x1,y1), . . . , (xn,yn)}, and the uncertainty
in our prediction by providing a distributional prediction instead of a point estimate. In hetereoskedas-
tic regression (HSR), this predictive distribution is modeled explicitly; here as independent Gaussians
with unique mean µk and precision (inverse variance) τk for each variable. We assumed

yi |xi ∼ N (µ(xi),Diag(τ(xi)
−1)),

and parameterized both µ and τ as over-parameterized feed-forward neural networks (i.e., MLPs)
µ̂θ(x) and τ̂ϕ(x), respectively. This yielded the corresponding predictive distribution

ŷi |xi ∼ N (µ̂θ(xi),Diag(τ̂θ(xi)
−1)),

which was fitted with maximum likelihood estimation (MLE) by minimizing the objective

L(θ, ϕ) = 1

2n

n∑

i=1

[
∥τ̂ϕ(xi) (yi − µ̂θ(xi))∥22 − 1T log (µ̂θ(xi))

]
.

Note that, due to the flexibility of the neural networks, this formulation is ill-posed. It may lead
to cases of extreme overfitting where τ̂ϕ(xi) ≈ yi, τ̂ϕ(xi) ≈ 0, thus making L(θ, ϕ) completely
unstable. Hence, we instead minimized a modified objective that included L2-regularization via

Lρ,γ(θ, ϕ) := ρL(θ, ϕ) + (1− ρ)
[
γ ∥θ∥22 + (1− γ) ∥ϕ∥22

]
,

where ρ, γ ∈ (0, 1) determines the trade-off between MLE estimation, mean regularization, and
precision regularization. We follow [13] and set ρ = 1 − γ to reduce the hyperparameter search
domain.

Specifically, we used two MLPs with layer normalization and ReLU activation, and trained them
with gradient-based stochastic optimization. To improve stability, the first third of training was
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spent on exclusively training µ̂θ(xi) with an MSE loss. To optimize hyperparameters, we selected a
configuration from 300 trials with a random number of N layers = [2, 3, 4], Nnodes = [256, 512, 1,024,
2,048], γ (log-uniform in [0.001, 0.1]), optimizer = [SGD, Adam] with hyperparameters (β1 = 0.9,
β2 = 0.999), learning rate λ (log-uniform in [10-6, 10-3]), and batch size = [1024, 2048, 4096, 8192,
16384]. Each run was trained for 12 epochs total on one NVIDIA GeForce RTX 4080 16GB. We
chose the run with the lowest CRPS on the validation data, yielding N layers = 4, Nnodes = 1,024,
γ = 2.2× 10−2, λ = 7× 10−6, and a batch size of 16,384, trained with Adam. The HSR baseline
has approximately 6.63 million parameters and executes 6.85 MFlops per data point.

3.5 Conditional Variational Autoencoder (cVAE)

A conditional generative latent variable model first samples—from a prior p(z)—a point z in a
low-dimensional latent space, which then informs a conditional distribution pθ(y|z,x) over the
target domain. This allows for a complex and flexible predictive distribution. In our case, we used
feed-forward neural networks (i.e., MLPs) µθ(z,x) and σθ(z,x) with combined parameters θ and
model:

z ∼ N (0, I)
y|z,x ∼ N

(
µθ(z,x),Diag(σθ(x)

2)
) (2)

To fit the model to data D = {(x1,y1), . . . , (xn,yn)}, we minimized the negative evidence lower
bound (NELBO) Lθ(q) that bounds the intractable negative marginal likelihood from above via

Lθ(q) := −Ezi∼q

[
log

pθ(yi, zi|xi)
q(zi|xi)

]
= − log pθ(yi|xi) + KL

(
q ∥ pθ(zi|yi,xi)

)
︸ ︷︷ ︸

≥0

,

using an approximation q to the posterior pθ(zi|yi,xi). The conditional variational autoencoder
(cVAE) [14] uses amortized variational inference to optimize θ and q jointly by approximating the
latter with e.g., qψ(zi) = N

(
gψ(xi),Diag(hψ(xi)

2)
)
, where we again chose gψ(xi) and hψ(xi) to

be MLPs. This allowed us to optimize for θ and ψ by minimizing

Lθ(q) β=1
= Ezi∼qψ

[
1

2

∥∥∥∥
yi − µθ(zi,xi)

σθ(zi,xi)

∥∥∥∥
2

2

+ 1T log (σθ(zi,xi))

]
+ βKL(qψ(zi) ∥ p(zi)) + const

with a Monte Carlo approximation by first sampling zi (once) from the variational encoder qψ(zi).
After which, we decoded the predictive mean and standard deviation with the variational decoder
µθ(z,x) and σθ(z,x). We then computed NELBO as a sum of a reconstruction term and a KL
term that regularizes the latent space, averaged over all samples, and back-propagated the gradients.
By letting β be a hyperparameter, we manually determined the trade-off between reconstruction
quality and latent space structure. Finally, at inference time, we used Equation 2 to sample from the
predictive distribution

pθ(ŷ|x) =
∫
pθ(ŷ|x, z)p(z) dz.

For both the variational encoder and decoder, we used an MLP with layer normalization, ReLU
activation, dropout with p = 0.05, and two branching final layers that produced the mean and
standard deviation, respectively. We trained both MLPs jointly—with gradient-based stochastic
optimization—on the objective described above.

To optimize hyperparameters, we ran 300 trials with a random number of hidden layers N layers = [2, 3,
4], Nnodes = [256, 512, 1024, 2048], size of the latent space = [4, 8, 16, 32], β (log-uniform in [0.01,
10]), optimizer = [SGD, Adam] with (β1 = 0.9, β2 = 0.0999), learning rate λ (log-uniform in [10-6,
10-3]), L2 regularization α (log-uniform in [10-6, 10-3]), and batch size = [1024, 2048, 4096, 8192,
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16384]. Each run was trained for 5 epochs total on one NVIDIA GeForce RTX 4080 16GB. The run
with the lowest CRPS on the validation data yielded N layers = 3, Nnodes = 1,024, and a batch size of
4,096, trained with Adam. In a second step, we fixed these hyperparameters and further fine-tuned β,
λ, and α by training for 20 epochs every time, for 10 trials. We found the best model with β = 0.5,
λ = 5×10−5, α = 10−3. The cVAE baseline has approximately 4.9 million parameters and executes
4.88 MFlops per data point.

3.6 Encoder-Decoder (ED)

The Encoder-Decoder (ED) is an adjusted version of the ED presented in Behrens et al. (2022) [15].
We keep all tuneable hyperparameters except for the learning rate and the node sizes of input and
output layer of ED fixed to the original values that were optimized with a detailed hyperparameter
search for the superparameterization of the Community Atmosphere Model version 3 in an aquaplanet
setup [15]. The Encoder consists of 6 hidden fully-connected layers. The Encoder decreases
progressively the dimensionality of the input variables down to 5 nodes in the latent space of the
network. These 5 latent nodes are the only input to the decoding part of ED. The Decoder maps the
information from the latent space back to 128 nodes in the output layer through 6 progressively wider
fully-connected hidden layers [15]. We train ED over 40 epochs with a learning rate step after each
7th epoch, which reduces the learning rate by factor 5 [15]. The adjusted initial learning rate has a
value of 1 × 10−4. The batch size has a value of 714 samples. As activation functions of all hidden
layers we use ReLU and the output layer of the Decoder is ELU-activated [15]. As an optimizer
during training we use Adam. As a loss function of ED we use a MSE loss and as additional metric
the MAE during training. The following list summarizes the key hyperparameters of ED:

• Learning rate: 1 × 10−4, learning rate decrease after every 7th epoch

• Batch size: 714

• Latent space width: 5 Nodes

• Encoder node size: [124, 463, 463, 232, 116, 58, 29, 5]

• Decoder node size: [5, 29, 58, 116, 232, 463, 463, 128]

• Encoder activation functions: [Input, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU]

• Decoder activation functions: [Input, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU, ELU]

• Optimizer: Adam

To prevent overfitting we shuffle the training data set before each epoch. ED baseline has approxi-
mately 832,000 parameters, with 415,000 parameters in the Encoder and 417,000 parameters in the
Decoder. In total, ED executes 1.66 MFlops per data point, with 829 kFLops per data point for the
Encoder and 832 kFlops per data point for the Decoder.

3.7 Inference Cost

CNN ED HSR MLP RPN cVAE

Number of Parameters 13,200,000 832,000 6,630,000 1,750,000 222,300,000 4,900,000
MFlops Per Data Point 1590 1.66 6.85 3.50 890 4.88

Table 2: The number of learnable parameters and Megaflops (MFlops) per data point for each of the
six baseline models.
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4 Baseline Model Evaluations

4.1 Metrics

4.1.1 Deterministic Metrics

Mean Absolute Error (MAE):

MAE =
1

n

n∑

i=1

|Xi − y| (3)

Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

n

n∑

i=1

(Xi − y)2 (4)

Coefficient of Determination (R2):

R2 = 1−
∑n
i=1(Xi − y)2∑n
i=1(Xi − X̄)2

(5)

In Equations 3–5, Xi and y represent the true and predicted values, respectively. The mean of the
true values of the dependent variable is denoted by X̄ .

4.1.2 Stochastic Metric (CRPS)

The continuous ranked probability score (CRPS) is a generalization of the MAE for distributional
predictions. CRPS penalizes over-confidence in addition to inaccuracy in ensemble predictions—a
lower CRPS is better. For each variable, it compares the ground truth target y with the cumulative
distribution function (CDF) F of the prediction via

CRPS(F, y) :=

∫ (
F (x)− 1{x≥y}

)2
dx

= E[|X − y|]− 1

2
E[|X −X ′|],

where X,X ′ ∼ F are independent and identically distributed (iid) samples from the distributional
prediction. We use the non-parametric “fair estimate to the CRPS” [16], estimating F with the
empirical CDF of n = 32 iid samples Xi ∼ F :

ˆCRPS(X, y) :=
1

n

n∑

i=1

|Xi − y| − 1

2n(n− 1)

n∑

i=1

n∑

j=1

|Xi −Xj | (6)

The first term in Equation 6 is the MAE between the target and samples of the predictive distribution,
while the second term is small for small predictive variances, vanishing completely for point estimates.
Note that this definition extends to ensemble models, where we take the prediction of each ensemble
member as a sample of an implicit predictive distribution.

4.2 Results

MAE and R2 of the baseline models are presented in the main text (e.g., Table 1 and Figure 2 in the
main text). Here, we show RMSE and CRPS in Table 3 and Figures 3, 4, and 5.

We also present the spatial structure of the metrics. Figure 6 shows the latitude-height structure of R2.
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Variable RMSE [W/m2] CRPS [W/m2]

CNN ED HSR MLP RPN cVAE CNN ED HSR MLP RPN cVAE

dT/dt 4.369 4.696 4.825 4.421 4.482 4.721 – – 3.284 – 2.580 2.795
dq/dt 7.284 7.643 7.896 7.322 7.518 7.780 – – 4.899 – 4.022 4.372
NETSW 36.91 28.537 37.77 26.71 33.60 38.36 – – 0.055 – 0.053 0.057
FLWDS 10.86 9.070 8.220 6.969 7.914 8.530 – – 0.018 – 0.016 0.018
PRECSC 6.001 5.078 6.095 4.734 5.511 6.182 – – 0.011 – 0.008 0.009
PRECC 85.31 76.682 90.64 72.88 76.58 88.71 – – 0.122 – 0.085 0.097
SOLS 22.92 17.999 23.61 17.40 20.61 23.27 – – 0.031 – 0.028 0.033
SOLL 27.25 22.540 27.78 21.95 25.22 27.81 – – 0.038 – 0.035 0.040
SOLSD 12.13 9.917 12.40 9.420 11.00 12.64 – – 0.018 – 0.015 0.016
SOLLD 12.10 10.417 12.47 10.12 11.25 12.63 – – 0.017 – 0.015 0.016

Table 3: Globally-averaged RMSE and CRPS. Each metric is calculated at each grid point, then
horizontally-averaged and (for dT/dt and dq/dt) vertically-averaged. The units of non-energy flux

variables are converted to a common energy unit, W/m2, following Section 5.2. Best model
performance for each variable is highlighted in bold.
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Figure 3: Averaged (a) MAE, (b) RMSE, (c) R2, and (d) CRPS. Each metric is calculated at each
grid point, then horizontally-averaged and (for dT/dt and dq/dt) vertically-averaged. For MAE,
RMSE, and CRPS, the units of non-energy flux variables are converted to a common energy unit,

W/m2, following Section 5.2. Negative values are not shown for R2. Error bars show the 5- to
95-percentile range of MLP.
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Figure 4: Vertical structures of horizontally-averaged (a) MAE, (b) RMSE, (c) R2, and (d) CRPS of
dT/dt. For MAE, RMSE, and CRPS, the units of non-energy flux variables are converted to a

common energy unit, W/m2, following Section 5.2. Negative values are not shown for R2. Grey
shadings show the 5- to 95-percentile range of MLP.
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Figure 5: The vertical structures of horizontally-averaged (a) MAE, (b) RMSE, (c) R2, and (d) CRPS
of dq/dt. For MAE, RMSE, and CRPS, the units of non-energy flux variables are converted to a
common energy unit, W/m2, following Section 5.2. Negative values are not shown for R2. Grey

shadings show the 5- to 95-percentile range of MLP.
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Figure 6: R2 of daily-mean, zonal-mean (a) heating tendency and (b) moistening tendency. Yellow
contours surround regions of > .9R2 while orange contours surround regions of > .7R2. Negative
values are not plotted (white). Sin(latitude) is used for x-axis to account for the curvature of Earth.

The pressure levels on Y-axis are approximated values.

4.3 Fit Quality

Scatter plots of truth versus prediction are shown in this section (Figures SI9 to SI16 in SI Section 8).
While many variables exhibit consistent fit quality, some show notable variability between baselines,
as seen with snow precipitation rate predictions. The performance of our optimized deterministic
baseline (MLP) suggests these issues are avoidable. However, note that our prediction problem has a
multi-variate and multi-dimensional nature.

5 Guidance

5.1 Physical Constraints

Mass and energy conservation are important criteria for Earth system modeling. If these terms are not
conserved, errors in estimating sea level rise or temperature change over time may become as large as
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the signals we hope to measure. Enforcing conservation on emulated results helps constrain results to
be physically plausible and reduce the potential for errors accumulating over long time scales.

In the atmospheric component of the E3SM climate model, mass is composed of “dry air” (i.e.,
well-mixed gases such as molecular nitrogen and oxygen) and water vapor. During the physics
parameterizations we seek to emulate, there is no lateral exchange of mass across columns of the
host model, and the model assumes that the total mass in each column and level remains unchanged.
Thus, while surface pressure (state_ps) is part of the state structure we seek to emulate, that surface
pressure component must be held fixed. The water mass, however, is not held fixed, requiring fictitious
sources and sinks of dry air, which are corrected later in the model—outside of the “emulated” part
of the code—and is not addressed within the emulator.

Changes in column water mass should balance the sources and sinks of water into and out of the
column through surface fluxes. The surface source of water is an input to the emulator via the cam_in
structure. The surface sink of water is generated by the model, and hence emulated in our case. The
net surface water flux (source minus sink) should be equal to the tendency of water mass within
the column (7). The mass of water is held in five separate terms within the state structure: water
vapor (qv), cloud liquid condensate (ql), cloud ice (qi), rain (qr), and snow (qs). These terms are
held as ratios of their mass to the sum of dry air plus water vapor (referred to as specific humidity).
The “δ” refers to the difference (after minus before computation) in each quantity owing to the CRM
physics. The layer mass (sum of dry air and water vapor) of level k is equal to the pressure thickness
of that layer ∆pi (the difference between top and bottom interface pressure for level i) divided by the
gravitational acceleration g (assumed constant). The timestep length is δt. In addition to conserving
water mass, we required each individual water constituent to remain greater than or equal to zero in
every layer within the column. In Equation 7, E is the surface source of water (evapotranspiration)
and P is the surface sink of water (precipitation):

∑

i

(δqv + δql + δqi + δqr + δqs)
∆pi
gδt

= E − P (7)

For the portion of the code that we try to emulate, the water source E is not applied such that
the only surface flux to account for when constraining water conservation is the precipitation flux
(P , cam_out_PRECC). Unfortunately, only the input and output state variables for water vapor
(state_q0001), cloud liquid (state_q0002), and cloud ice (state_q0003) are available. Addi-
tional storage terms related to precipitating water that have not exited the column over the course of a
model timestep are unavailable in the current output. Therefore, we are unable to exactly enforce
water conservation. Estimates show relative errors of a couple percent resulting from the lack of these
precipitation mixing ratios. We can still require that the relative error be small. To accomplish this,
we compared the “expected” total water, based on the combination of the input and surface fluxes,
to the predicted total water. In the equations below, superscript o denotes output and superscript i
denotes input:

Total Water (Actual) =
∑

i

(δqov + δqol + δqoi )
∆pi
g

Total Water (Expected) =
∑

i

(
δqiv + δqil + δqii

) ∆pi
g

− Pδt

Relative Error =
Total Water (Expected)− Total Water (Actual)

Total Water (Actual)
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We required the model to keep the relative error small (e.g., below 5%). Anything further is beyond
the limit of the current data.

Like mass conservation, energy conservation can generally be enforced by requiring that the total
change within the column is exactly balanced by the fluxes into and out of that column. Because the
emulator does not predict upwelling radiative fluxes at the model top (a sink term for energy), we
do not have the boundary conditions necessary to constrain column energy tendencies. However,
we still required certain criteria be met for physical consistency. First, the downwelling surface
shortwave radiative flux cannot exceed the downwelling shortwave flux at the model top (prescribed
input pbuf_SOLIN). Likewise, the net surface shortwave flux should also be bounded between zero
(100% reflection) and the surface downwelling shortwave flux (100% absorption). Additionally,
the downwelling longwave flux should not exceed the blackbody radiative flux from the warmest
temperature in the column.

5.2 Unit Conversion and Weighting for Interpretable Evaluation

To facilitate the objective evaluation of the model’s prediction, we provided a weight tensor of shape
(do, Nx) to convert raw outputs to area-weighted outputs with consistent energy flux units [W/m2].
More details are given below.

To ensure that our evaluation takes the Earth’s spherical geometry into account, we designed an area
weighting factor a that depends on the horizontal position x:

a (x) = Acol (x) / ⟨Acol⟩x
where Acol is the area of an atmospheric column and ⟨Acol⟩x the horizontal average of all atmospheric
columns’ areas. This formula gives more weight to outputs if their grid cell has a larger horizontal
area. To ensure that our evaluation is physically-consistent, we convert all predicted variables to
energy flux units

[
W/m2

]
(power per unit area). This has to be done for each variable separately.

• For heating tendencies Ṫ [K/s], which depends on the horizontal position x and vertical
level lev, this was be done using the specific heat capacity constant at constant pressure
cp [J/ (K× kg)], where ∆pi [Pa] is the layer’s pressure thickness, calculated as the differ-
ence between the pressure at the layer’s top and bottom interfaces:

Ṫ
[
W/m2

]
=
cp
g

× a (x)×∆pi (lev)× Ṫ [K/s]

• For water concentration tendencies q̇
[
s−1

]
, which also depends on x and lev, this was be

done using the latent heat of vaporization of water vapor at constant pressure Lv [J/kg]:

q̇
[
W/m2

]
=
Lv
g

× a (x)×∆pi (lev)× q̇
[
s−1

]

Note that there is some level of arbitrariness, as the exact latent heat depends on which water
phase is assumed to calculate the energy transfer. Here, we chose to weigh all phases using
Lv to give them comparable weights in the evaluation metrics.

• For momentum tendencies u̇
[
m/s2

]
, which also depend on x and lev, we used a charac-

teristic wind magnitude |U | [m/s] to convert these tendencies into turbulent kinetic energy
fluxes, in units W/m2, making them comparable to Ṫ

[
W/m2

]
and q̇

[
W/m2

]
:

u̇
[
W/m2

]
=

|U |
g

× a (x)×∆pi (lev)× u̇
[
m/s

2
]

19



Note that there is some level of arbitrariness in the choice of |U | [m/s], which could e.g., be
chosen so that the variances of u̇

[
W/m2

]
and Ṫ

[
W/m2

]
are comparable.

• Precipitation rate variables P [m/s] were also be converted to energy fluxes using Lv and
the density of liquid water ρw

[
kg/m3

]
(or the density of snow/ice for solid precipitation),

though they do not require vertical integration:

P
[
W/m2

]
= Lv × ρw × a (x)× P [m/s]

• Finally, surface energy fluxes F
[
W/m2

]
were simply multiplied by a (x) to account for

area-weighting.

Note that while these choices ensured unit consistency, facilitating the physical interpretation of our
evaluation metrics, we recommend tailoring the exact choice of physical constants to the application
of interest.

5.3 Additional Guidance

Stochasticity and Memory: The results of the embedded convection calculations regulating do come
from a chaotic dynamical system and thus could be worthy of architectures and metrics beyond the
deterministic baselines in this paper. These solutions are likewise sensitive to sub-grid initial state
variables from an interior nested spatial dimension that have not been included in our data.

Temporal Locality: Incorporating the previous timesteps’ target or feature in the input vector
inflation could be beneficial as it captures some information about this convective memory and
utilizes temporal autocorrelations present in atmospheric data.

Causal Pruning: A systematic and quantitative pruning of the input vector based on objectively
assessed causal relationships to subsets of the target vector has been proposed as an attractive
preprocessing strategy, as it helps remove spurious correlations due to confounding variables and
optimize the machine learning (ML) algorithm [17].

Normalization: Normalization that goes beyond removing vertical structure could be strategic,
such as removing the geographical mean (e.g., latitudinal, land/sea structure) or composite seasonal
variances (e.g., local smoothed annual cycle) present in the data. For variables exhibiting exponential
variation and approaching zero at the highest level (e.g., metrics of moisture), log-normalization
might be beneficial.

6 Other Related Work

Several benchmark datasets have been developed to facilitate AI tasks in weather and climate.
ClimateNet [18] and Extremeweather [19] were both designed for AI-based feature detection of
extreme weather events in forecasts of Earth’s future climate made using conventional climate models.
WeatherBench [20] provides data specifically designed for data-driven weather forecasting, focusing
on periods ranging from 3 to 5 days into the future. PDEBench [21] provides data from numerical
simulations of several partial differential equations (PDEs) for benchmarking AI PDE emulators.
ClimateBench [22] was designed for emulators that produce annual mean global predictions of
temperature and precipitation given greenhouse gas concentrations and emissions. ClimART [23]
was designed for the development of radiative energy transfer parameterization emulators for use in
weather and climate modeling. These benchmark datasets play a vital role in advancing AI and ML
research within the weather and climate domains.

ClimSim, a dataset for parameterization emulators trained on high-resolution data from small-scale
embedded models, is unique compared to other benchmark datasets designed for emulators in
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climate simulation (ClimateBench, ClimART, and PDEBench). While PDEBench provides data
for developing AI emulators of the same PDEs commonly used in climate simulation, ClimSim is
uniquely tailored to address the challenging task of replacing a sophisticated parameterization for the
combined effects of clouds, rain, radiation, and storms. Specifically, models trained using ClimSim
will learn to emulate the nonlinear effect of clouds, rain, and storms resolved on the 1 km (20 s)
space (time) scale, which is a collection of hundreds of equations rather than one, to represent their
upscale impacts on the 100 km (30 min) scale. Hybrid simulation is also the goal of ClimART, which
is designed specifically for the narrower and less computationally costly task of radiative energy
transfer parameterization, rather than cloud and rain emulators. ClimateBench, on the other hand,
is not an attempt at hybrid simulation, but rather for “whole-model” emulators that reproduce the
annual mean global predictions of climate that a conventional climate model would simulate given
unseen greenhouse gas concentrations and emissions. This does not attempt to sidestep Moore’s Law
or admit previously unattainable resolution, i.e., any error or bias related to the parameterizations
used to create the training data are part of what is learned by the emulator.

In contrast, the goal of ClimSim is to develop an emulator for the explicitly resolved effect of clouds
and storms on climate, so that, down the road, the emulator can be used to replace parameterizations
in a climate model, enabling more realistic climate simulation without the typical computational
overhead. ClimSim builds off work by a few climate scientists who have been exploring since 2017
to apply ML for hybrid multi-scale climate modeling. [24] first demonstrated that using simple
ML models, and a simple atmosphere test-bed, certain atmospheric patterns of convective heating
and moistening could be effectively predicted, particularly in the tropics and mid-latitude storm
tracks. However, when these models were integrated into broader climate simulations, except for
lucky fits that demonstrated the exciting potential for success [25], issues related to stability arose, a
common problem when constructing hybrid climate models. Various methods were tried to improve
the stability, such as coupling multiple models together and searching for better model architectures
[26, 27]. These efforts led to improved error rates in the predictions. More recently, researchers have
expanded this work into real-world settings, using more advanced ML architectures [28–30]. Wang
et al. (2022) [31] even managed to create a deep-learning model that showed hybrid stability over a
decade under real-world conditions. While this hybrid model had a few biases, it was successful in
capturing some aspects of climate variability. Additionally, work has been done to compress input
data to avoid causal confounders while maintaining accuracy [17], use latent representations that
account for stochasticity [15], and enforce physical constraints within these models [32], all of which
could potentially improve their reliability.
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7 Datasheet

7.1 Motivation

1. For what purpose was the dataset created? Our benchmark dataset was created to serve
as a foundation for developing robust frameworks that emulate parameterizations for cloud
and extreme rainfall physics and their interaction with other sub-resolution processes.

2. Who created the dataset and on behalf of which entity? The dataset was developed by a
consortium of climate scientists and ML researchers listed in the author list.

3. Who funded the creation of the dataset? The main funding body is the National Science
Foundation (NSF) Science and Technology Center (STC) Learning the Earth with Artificial
Intelligence and Physics (LEAP). Other funding sources of individual authors are listed in
the acknowledgment section of the main text.

7.2 Distribution

1. Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes, the dataset is
open to the public.

2. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The
dataset will be distributed through Hugging Face and the code used for developing baseline
models through GitHub.

3. Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

4. Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

7.3 Maintenance

1. Who will be supporting/hosting/maintaining the dataset? NSF-STC LEAP will support,
host, and maintain the dataset.

2. How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
The owner/curator/manager(s) of the dataset can be contacted through following emails:
Sungduk Yu (sungduk@uci.edu), Michael S. Pritchard (mspritch@uci.edu) and LEAP
(leap@columbia.edu).

3. Is there an erratum? No. If errors are found in the future, we will release errata on the
main web page for the dataset (https://leap-stc.github.io/ClimSim).

4. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Yes, the datasets will be updated whenever necessary to ensure accuracy, and
announcements will be made accordingly. These updates will be posted on the main web
page for the dataset (https://leap-stc.github.io/ClimSim).

5. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted?) N/A

6. Will older version of the dataset continue to be supported/hosted/maintained? Yes,
older versions of the dataset will continue to be maintained and hosted.

7. If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nisms for them to do so? No.
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7.4 Composition

1. What do the instance that comprise the dataset represent (e.g., documents, photos,
people, countries?) Each instance includes both input and output vector pairs. These
inputs and outputs are instantaneous snapshots of atmospheric states surrounding detailed
numerical calculations to be emulated.

2. How many instances are there in total (of each type, if appropriate)? The high-resolution
dataset (ClimSim_high-res) includes 5,676,480,000 instances, and each low-resolution
dataset (ClimSim_low-res and ClimSim_low-res_aqua-planet) includes 100,915,200 in-
stances.

3. Does the dataset contain all possible instances or is it a sample of instances from a
larger set? The datasets contain 80% of all possible instances. The rest 20% are reserved as
the holdout test set, which will be released once enough models using ClimSim are developed
by independent groups.

4. Is there a label or target associated with each instance? Yes, each instance includes both
input and target (prediction) variables.

5. Is any information missing from individual instances? No.

6. Are there recommended data splits (e.g., training, development/validation, testing)? We
have a hard split between the training/validation set and the test set. The first 8 simulation
years-worth dataset is reserved for the training/validation set, and the last 2 simulation years-
worth dataset is reserved for the test set. However, we do not have specific recommendations
on the split within the training/validation set.

7. Are there any errors, sources of noise, or redundancies in the dataset? There is one
redundancy. Input variable “state_pmid” is redundant since it is a linear function of

“state_ps”.

8. Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The dataset is self-contained.

9. Does the dataset contain data that might be considered confidential? No.

10. Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

7.5 Collection Process

1. How was the data associated with each instance acquired? The data associated with
each instance is acquired from a series of simulations of a global climate model called
E3SM-MMF. References for E3SM-MMF are provided in Section 3 of the main text.

2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? We used many
NVIDIA A100 GPU nodes in a high-performance computing cluster called Perlmutter
(operated by the U.S. Department of Energy) to run the E3SM-MMF simulations.

3. Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
Regular employees (e.g., scientists and postdocs) at UC Irvine, LLNL, and SNL were in-
volved in the data collection process. No crowdworkers were involved during the data
collection process.

4. Does the dataset relate to people? No.
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5. Did you collect the data from the individuals in questions directly, or obtain it via
third parties or other sources (e.g., websites)? We obtained the dataset from computer
simulations of Earth’s climate.

7.6 Uses

1. Has the dataset been used for any tasks already? No, this dataset has not been used for
any tasks yet.

2. What (other) tasks could be the dataset be used for? Please refer to Section 5 in the main
manuscript for other applications.

3. Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? The current composition of
the datasets are self-sufficient to build a climate emulator. However, it misses some extra
variables, which are not essential for such climate emulators but necessary to strictly enforce
physical constraints (see Section 4.5 of the main text). We plan to include these extra vari-
ables in the next release. Any changes in the next release and update to user guidelines will
be documented and shared through the dataset webpage (https://leap-stc.github.io/ClimSim).

4. Are there tasks for which the dataset should not be used? No.

24



8 Extra Figures and Tables

8.1 MLP with Expanded Target Variables

(Variables) MLPv1 MLPv2 MLPv1-ne30 MLPv2-ne30

MAE

dT/dt 2.688 2.305 2.799 2.886
dq/dt 4.503 4.030 4.231 4.068
dql/dt N/A 0.689 N/A 0.697
dqi/dt N/A 0.384 N/A 0.330
du/dt N/A 1.34E-04 N/A 2.68E-04
dv/dt N/A 1.09E-04 N/A 2.66E-04
NETSW 13.47 8.339 15.47 11.04
FLWDS 5.118 4.134 5.318 4.891
PRECSC 2.645 1.539 3.115 3.009
PRECC 33.89 23.74 42.49 29.62
SOLS 7.942 5.774 8.484 6.866
SOLL 10.30 8.190 10.582 8.993
SOLSD 4.587 3.230 5.056 4.360
SOLLD 4.834 3.977 4.963 4.553

R2

dT/dt 0.590 0.663 0.626 0.536
dq/dt - - - -
dql/dt N/A - N/A -
dqi/dt N/A - N/A -
du/dt N/A - N/A -
dv/dt N/A - N/A -
NETSW 0.982 0.993 0.977 0.988
FLWDS 0.927 0.945 0.914 0.924
PRECSC - - -0.117 -0.117
PRECC -1.494 0.833 -0.115 -0.115
SOLS 0.962 0.978 0.963 0.976
SOLL 0.948 0.964 0.953 0.965
SOLSD 0.955 0.976 0.950 0.965
SOLLD 0.866 0.905 0.874 0.899

RMSE

dT/dt 4.437 3.756 5.199 4.958
dq/dt 7.337 6.521 7.550 7.135
dql/dt 1.192 1.489
dqi/dt 0.812 0.940
du/dt 2.80E-04 6.45E-04
dv/dt 2.25E-04 6.72E-04
NETSW 26.95 17.24 30.48 21.18
FLWDS 6.803 5.532 7.136 6.540
PRECSC 4.656 2.955 7.791 7.509
PRECC 73.16 53.47 119.8 83.22
SOLS 17.39 12.84 18.51 14.74
SOLL 21.96 17.89 22.71 19.27
SOLSD 9.474 6.837 10.42 8.724
SOLLD 10.14 8.486 10.62 9.526

Table 4: Similar to Table 2 in the main text but for comparing MAR, R2, and RMSE of different
MLP models: MLP v1 (subset emulation) and the MLP v2 (full vector emulation) built with the

low-resolution (ne4) and the high-resolution datasets (ne30). dql/dt, dqi/dt, du/dt, and dv/dt
correspond to the tendencies of state_q0002, state_q0003, state_u, and state_v, respectively, in Table

SI1.
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Figure 7: Equivalent to Figure S3, but for comparing the MLPv1 (subset emulation) and the MLPv2
(full vector emulation). In addition, MLP models trained with the high-resolution dataset (ne30) are
shown here: MLPv1-ne30 and MLPv2-ne30. Bars show the median of the performance of top-20
models selected from the hyperparamter search (>8,000 trials), and magenta error bars show the

range of the top-20 model performance.
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Figure 8: Equivalent to Figure 2, but for comparing the MLP v1 (subset emulation) and the MLP v2
(full vector emulation). In addition, MLP models trained with the high-resolution dataset (ne30) are
shown here: MLPv1-ne30 and MLPv2-ne30. Out of the top model pools, MLP models shown in this

figure are randomly chosen for visualizatoin.
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8.2 Scatter Plots
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Figure 9: Hexagonally-binned representation of 2D target variables comparing the climate model
simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis). The color of each

hexagonal bin corresponds to the number of data points enclosed.
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Figure 10: Hexagonally-binned representation of 2D target variables comparing the climate model
simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis). The color of each

hexagonal bin corresponds to the number of data points enclosed.
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Figure 11: Hexagonally-binned representation of 2D target variables comparing the climate model
simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis). The color of each

hexagonal bin corresponds to the number of data points enclosed.
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Figure 12: Hexagonally-binned representation of 2D target variables comparing the climate model
simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis). The color of each

hexagonal bin corresponds to the number of data points enclosed.
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Figure 13: Hexagonally-binned representation of 3D (vertically-resolved) target variables comparing
the climate model simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis) at

four different vertical levels. The color of each hexagonal bin corresponds to the number of data
points enclosed.
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Figure 14: Hexagonally-binned representation of 3D (vertically-resolved) target variables comparing
the climate model simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis) at

four different vertical levels. The color of each hexagonal bin corresponds to the number of data
points enclosed.
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Figure 15: Hexagonally-binned representation of 3D (vertically-resolved) target variables comparing
the climate model simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis) at

four different vertical levels. The color of each hexagonal bin corresponds to the number of data
points enclosed.
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Figure 16: Hexagonally-binned representation of 3D (vertically-resolved) target variables comparing
the climate model simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis) at

four different vertical levels. The color of each hexagonal bin corresponds to the number of data
points enclosed.
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8.3 Global Maps of R2
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Figure 17: Global maps of R2 of baseline models (built on the low-res, real-geography dataset). Grey
shading shows locations with negative R2 values.
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Figure 18: Global maps of R2 of baseline models (built on the low-res, real-geography dataset). Grey
shading shows locations with negative R2 values.
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Figure 19: Global maps of R2 of baseline models (built on the low-res, real-geography dataset). Grey
shading shows locations with negative R2 values.
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Figure 20: Global maps of R2 of baseline models (built on the low-res, real-geography dataset). Grey
shading shows locations with negative R2 values.
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