THE SENTINEL-4/MTG-S OPERATIONAL CLOUD PRODUCT

Ronny Lutz¹, Victor Molina Garcia¹, Fabian Romahn¹, Athina Argyrouli^{2,1}, Diego Loyola¹ ¹German Aerospace Center (DLR) / ²Technical University of Munich (TUM) EUMETSAT Meteorological Satellite Conference 2023, 11-15 September 2023, Malmö, Sweden

German Aerospace Center (DLR) Earth Observation Center (EOC) Remote Sensing Technology Institute (IMF) Atmospheric Processors (ATP)

- Motivation and Sentinel-4 basics
- Cloud retrieval algorithms for S4: OCRA & ROCINN
- Application to the GEMS instrument
- Conclusion / Outlook

Motivation

- Sentinel-4 will be dedicated to:
 - remote sensing of the atmospheric composition
 - air quality monitoring
- The retrieval of trace gases and greenhouse gases requires the characterisation of clouds for a given scene measurement
 - for Sentinel-4 we provide a L2 cloud product with basic cloud information
 - this information can be used as auxiliary input to the trace gas retrievals

Sentinel-4

Orbit geostationary

Temporal resolution and coverage

hourly coverage over Europe

Spatial resolution of UVN instrument 8 x 8 km²

> Spectral coverage UV-VIS-NIR

Spectral resolution in the UVN

0.12-0.5 nm

Launch Probably Q1/2025

Sentinel-4

Orbit geostationary

Temporal resolution and coverage

hourly coverage over Europe

Spatial resolution of UVN instrument 8 x 8 km²

> Spectral coverage UV-VIS-NIR

Spectral resolution in the UVN

0.12-0.5 nm

© B. Veihelmann (ESA)

Launch Probably Q1/2025

5

DLR CLOUD RETRIEVAL ALGORITHMS

OCRA Optical Cloud Recognition Algorithm

- map measured reflectance to color space
- CF=0 from clear-sky composite
- CF=1 from "white point"
- radiometric cloud fraction via scaling of the measurement between the clear-sky and the white point

blue

clear-sky composite

radiometric cloud fraction ...

OCRA Optical Cloud Recognition Algorithm

- map measured reflectance to color
- CF=0 from clear-sky composite
- CF=1 from "white point"
- radiometric cloud fraction via scaling of the measurement between the clear-sky and the white point

clear-sky composite

> Orbit Lagrange Point L1

radiometric

Temporal resolution and coverage

10-22 full disk images per day

Instrument name

EPIC (Earth Polychromatic Imaging Camera) on NASA DSCOVR platform

Spatial resolution

12 km at nadir

Spectral coverage

10 channels across UV-VIS-NIR

Spectral resolution in the UVN

bandwidth between 1-3 nm

cloud fraction ...

OCRA Optical Cloud Recognition Algorithm

clear-sky composite

radiometric cloud fraction ...

Clear-sky maps for EPIC channels (780, 551, 388) nm aggregation of daily maps in intervals of +/- 14 days with 0.2 deg resolution

map measured reflectance to color

- CF=0 from clear-sky composite
- CF=1 from "white point"
- radiometric cloud fraction via scaling of the measurement between the clear-sky and the white point

radiometric cloud fraction

OCRA

Optical Cloud

Recognition Algorithm

OCRA Optical Cloud Recognition Algorithm

- map measured reflectance to color
- CF=0 from clear-sky composite
- CF=1 from "white point" •
- radiometric cloud fraction via scaling of the measurement between the clear-sky and the white point

12

OCRA Optical Cloud Recognition Algorithm

- map measured reflectance to color
- CF=0 from clear-sky composite
- CF=1 from "white point"
- blue radiometric cloud fraction via scaling of the measurement between the clear-sky and the white point

clear-sky composite

radiometric cloud fraction

OCRA & ROCINN – Examples: TROPOMI/S5P

Hurricane lota, 2020-11-16, orbit 16037

Hurricane lota ©NASA worldview

APPLICATION TO GEMS

- GEMS/GeoKompsat-2B is a South Korean instrument for air quality over Asia.
- It is part of the geostationary constellation, together with TEMPO (USA) and S4 (Europe)
- Launched in 2018. TEMPO launched on 7 April 2023. Sentinel-4 to launch in Q1/2025.

- OCRA applied to GEMS L1 and compared to the operational GEMS L2 Cloud product
- Good agreement of general cloud structures; differences at extreme viewing geometries
- ROCINN cannot be applied because GEMS does not cover the NIR spectral range

GEMS L2 Cloud

OCRA applied to **GEMS** L1

- GEMS is an ideal testing ground for our Sentinel-4 processor developments:
 - Inverstigation of diurnal variations
 - Behaviour at extreme viewing geometries
 - Performance testing of the processors when handling real geostationary data

GEMS L2 Cloud

OCRA applied to GEMS L1

monthly mean cloud fractions on a regular 0.2° by 0.2° lat/lon grid for each hourly scan

main structures agree very well

- high correlation of 0.80 with slope close to one (0.9) and y-intercept close to zero (0.007)
- histogram shapes agrees well, but peaks are slightly shifted
- "outliers" are coming from regions with extreme solar and/or viewing zenith angles

CONCLUSION AND OUTLOOK

Conclusion and Outlook

Conclusion

- OCRA/ROCINN cloud algorithms have already been successfully implemented for several LEO missions in an operational environment
- Application of OCRA to the **geostationary** GEMS instrument looks very promising
- OCRA/ROCINN cloud algorithms are ready to be used operationally for the geostationary Sentinel-4

Outlook

- Ongoing algorithm developments (ice cloud parameterization, ...)
- Generation of a consistent OCRA/ROCINN long-term cloud data record (GOME, SCIAMACHY, GOME-2, S5P, ..., S4, S5)

Daily quicklook images of trace gases and cloud properties:

<u>https://atmos.eoc.dlr.de/calendar</u>

Interested in L3 data? Check the INPULS project:

DLR inpuls

<u>https://atmos.eoc.dlr.de/inpuls/</u>

ADDITIONAL SLIDES

Comparison with imagers

GEMS L2

- GEMS L2 effective cloud fraction compares well with radiometric cloud fraction from other UV/VIS sensor s
- Imagers provide geometric cloud fractions and have character of a mask

GEMS L2 Cloud vs OCRA vs TROPOMI CRB

GEMS L2 vs TROPOMI CRB

- Correlation of 0.80 for GEMS L2 vs OCRA
- Correlation of 0.88 for GEMS L2 vs TROPOMI CRB
- Outliers in the left plot are due to extreme geometries at the west edge of the scan

GEMS L2 Cloud vs OCRA vs TROPOMI CRB

GEMS L2 vs OCRA

GEMS L2 vs TROPOMI CRB

GEMS L2 vs OCRA: histogram modes slightly shifted
GEMS L2 vs TROPOMI CRB: TROPOMI covers slightly broader range