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Abstract: Understanding forest decline under drought pressure is receiving research attention due
to the increasing frequency of large-scale heat waves and massive tree mortality events. However,
since assessing mortality on the ground is challenging and costly, this study explores the capability
of satellite-borne Copernicus Sentinel-1 (S-1) C-band radar data for monitoring drought-induced
tree canopy damage. As droughts cause water deficits in trees and eventually lead to early foliage
loss, the S-1 radiometric signal and polarimetric indices are tested regarding their sensitivities to
these effects, exemplified in a deciduous broadleaf forest. Due to the scattered nature of mortality in
the study site, we employed a temporal-only time series filtering scheme that provides very high
spatial resolution (10 m × 10 m) for measuring at the scale of single trees. Finally, the anomaly
between heavily damaged and non-damaged tree canopy samples (n = 146 per class) was used to
quantify the level of damage. With a maximum anomaly of −0.50 dB ± 1.38 for S-1 Span (VV+VH),
a significant decline in hydrostructural scattering (moisture and geometry of scatterers as seen
by SAR) was found in the second year after drought onset. By contrast, S-1 polarimetric indices
(cross-ratio, RVI, Hα) showed limited capability in detecting drought effects. From our time series
evaluation, we infer that damaged canopies exhibit both lower leaf-on and leaf-off backscatters
compared to unaffected canopies. We further introduce an NDVI/Span hysteresis showing a lagged
signal anomaly of Span behind NDVI (by ca. one year). This time-lagged correlation implies that
SAR is able to add complementary information to optical remote sensing data for detecting drought
damage due to its sensitivity to physiological and hydraulic tree canopy damage. Our study lays
out the promising potential of SAR remote sensing information for drought impact assessment in
deciduous broadleaf forests.

Keywords: tree mortality; water status; microwave remote sensing; SAR; Sentinel-1; time series;
plant water content

1. Introduction

Droughts are becoming more severe and frequent as the Earth’s climate
warms [1–3], exacerbating forest stress and tree mortality across all major types of for-
est ecosystems [4]. Accurate understanding of drought effects by continuously monitoring
forest decline is, therefore, crucial given the central role of forest ecosystems for global
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biogeochemical fluxes, human welfare, and maintaining biodiversity and ecosystem ser-
vices [4–6]. Assessing tree mortality in the field is challenging and costly, which sets limits
to both spatial and temporal coverage of ground assessments. By contrast, remote sensing
can provide large-scale and temporal high-resolution data suitable for forest damage as-
sessments. However, understanding the role and dimension of water deficits and forest
structural changes to tree mortality still needs to be better linked to satellite data.

In the optical domain of remote sensing, the relation to the reflectance of the leaf
area [7], photosynthetic activity [8], and surface temperature [9] can be used to derive dam-
age assessments and has been applied to a variety of sensors and frequency bands [10,11],
including large-scale mapping [12]. Due to their short wavelengths, however, only the
reflections of the leafy components of tree canopies were captured. On the other hand,
since measurements at longer wavelengths have higher penetrations in the canopy, their
signals are physically more related to phenomena inside the tree crown, consisting of
leaves and woody compartments, each of which suffers a water deficit under drought
conditions [13]. In the microwave domain, plants emit, absorb, and scatter energy, varying
with the forest’s dielectric properties (their water content) and structures of plant com-
partments (distribution of leaves, branches, and stems), owing to the complex scattering
mechanisms from forests [14]. By exploiting this relationship, microwave sensors hold great
potential as damage-sensitive forest health monitoring instruments that can further provide
spatially gapless and temporally dense observations due to their ability to penetrate clouds.
However, the main challenge remains to quantify the sensitivity of the various microwave
instruments to drought-induced damage to the canopy.

The estimation of water stress is a strong indicator of drought-induced damage. Good
sensitivity for measuring water stress was recently found with microwave signals mainly
for sensors with high temporal coverage, primarily space-borne scatterometers [15,16],
radiometers [17–19], or tower-based experiments [20–23], e.g., due to exploiting symptoms
of water stress in diurnal variations of water uptake. However, due to the coarse spatial
resolutions of radiometers and scatterometers (typically > 10 km), the retrievals of plant
hydraulic parameters are still limited to regional scales.

Tree damage and mortality are oftentimes underestimated when signals of affected and
unaffected vegetation mix [6,24]. The damage patterns then remain outside the measurable
monitoring scale when the sensor resolution is lower than the scale of single canopies.
Here, synthetic aperture radar (SAR) can fill the observation gap. Operating at very high-
resolution (10 m × 10 m), the ESA Copernicus twin Sentinel-1A/B (S-1) SAR satellites
(λ = 5.6 cm, f = 5.405 GHz) are vital tools for active microwave measurements. Due to
their free and open data policies and dense observation time series with 12- (global) and
6-day (Europe) repeat cycles, the sensors provide global dual-polarimetric (VV-VH) C-
band SAR data of high accessibility [25]. In comparison to longer L-bands (strong ground
contributions) and shorter X-bands (mostly leaf contributions), C-band SARs penetrate
substantial parts of the tree canopies while measuring the integrated water and structural
properties [26]. The density of the S-1 time series is a game changer for the damage
assessment of single canopies since now an effective temporal speckle filtering scheme (i.e.,
noise reduction) can be employed without losing spatial resolution [27].

In the field of forest ecology, S-1 data were used for forest type mapping [28], change
detection in deforestation [29,30], windthrow mapping [31], retrieving phenological param-
eters [32,33], live fuel moisture content [34], and tracking insect defoliation [35,36]. Further-
more, S-1 could be used to derive vegetation water status in agricultural settings [37,38].
However, the sensitivity of temporally dense C-band SAR data still needs to be explicitly
tested to assess signal sensitivity to drought-damaged deciduous broadleaf forest canopies.

As the microwave signal relates to water and structure, the backscatter coefficient is a
mixed signal [39]. Given this complexity of absorption and scattering in tree canopies and
the historical sparseness of SAR time series, damage assessments have long been ineffective
at disentangling the plant water status, phenology/structure, and biomass variation [40].
At the timescales of weeks to months, and in the presence of strong droughts, the progress-
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ing dehydration of plant tissue becomes the primary driver of tree mortality [13]. The dense
S-1 time series can here be used to filter/aggregate acquisition periods of relative constant
biomass (growing season), smoothing over short-term influences (e.g., rain interception) so
that signal changes can be related to water status variability (tissue dehydration), structural
decay (e.g., early leaf loss) and, finally, drought-induced damage.

Steele-Dunne et al. [41] showed that soil, branch, and trunk influences on the C-band
backscatter become negligible in broadleaf canopies when sufficiently wet, at least given
the model presumptions on tree geometry of very dense aspen trees [42]. Generally, with in-
creasing canopy water content, non-canopy C-band scattering becomes proportionally
attenuated by the canopy volume. Still, in the event of droughts, leaves dry out and shed,
thus leading to (1) a decrease of backscatter from leaves, (2) increasing scattering from
branches, trunks, and soil, and (3) changes in scattering mechanisms from the multiple
scattering of canopies to the single scattering of individual branches and twigs. S-1 polari-
metric properties are used to test these intermingling backscatter behaviors. In addition,
the S-1 cross-ratio (CR) shows sensitivity to phenology [43,44] and leaf loss [35]. Thus,
it will be used alongside VV, VH, and Span (combined VV and VH), the dual-pol radar
vegetation index (RVI) [38,45], and the Entropy-Alpha space (Hα), the latter being derived
from the dual-polarimetric eigendecomposition [46].

This study explores the capability of the S-1 dual-polarimetric SAR time series specifi-
cally for assessing tree canopy damage in a deciduous broadleaf forest (DBF) under strong
drought conditions in the years 2018–2020 in central Germany. The signal trajectories
before, during, and in the aftermath of the drought (totaling four years) were used to inves-
tigate the physical relation of damage evolution with the SAR signal. As damage reference
categories, an optically derived very high-resolution mortality dataset was created that
characterizes the canopy development (CD), providing damaged and non-damaged tree
sets. Finally, we display the co-evolution of the Sentinel-2 (S-2)-based NDVI and S-1 signal
during the drought phases to show the complementarity of S-1 SAR to optical data for
drought-induced tree canopy damage assessment.

The following hypotheses are formulated:

1. A densely-sampled C-band backscatter allows for detecting tree canopy damage
characterized by the mortality of individual trees in an otherwise intact canopy of a
broadleaf forest.

2. C-band SAR is influenced by the plant water status and structural changes in a
tree canopy.

3. S-1 polarimetric variables offer insight into the structural changes under such circumstances.
4. Generally, C-band SAR complements measurements of optical instruments in describ-

ing temporal patterns of damage.

Two methodological implementations aim to improve the pre-processing of the dense
SAR time series:

• Reducing the influence of speckle for high-resolution SAR studies via temporal-only filters.
• Implementing a novel technique for correcting the geoposition ambiguities of forest

canopies in SAR geometry with a lidar surface model.

2. Materials and Methods
2.1. Study Site and Drought Impact

The study was conducted at Hainich National Park (HNP) in western Thuringia,
Germany (lat: 10.4229◦, lon: 51.0591◦, mean elevation: 413 m a.s.l.), a mixed deciduous
broadleaf forest dominated by European beech (Fagus sylvatica, 65%), ash (Fraxinus excelsior,
25%), maple (Acer pseudoplatanus, and Acer platanoides, combined 7%) with other deciduous
species [47]. Due to its foundations in middle and upper Muschelkalk (shell limestones)
and lower Keuper (claystone), the soils are relatively shallow, carbonated, and humus-rich
with strong runoff (e.g., Rendzina, Regosol), with characteristics more pronounced on
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exposed slopes [48]. Thus, soils have limited storage capabilities and plant-available water
rapidly declines under drought conditions.

This study refers to the successive droughts that took place in Central Europe in the
years 2018–2020 [49]. Local meteorological data from an eddy covariance flux tower in
the HNP indicate characteristics of an atmospheric drought and hydrological drought
when compared to the 2000–2014 multi-year average [50]. Both, the anomaly of vapor
pressure deficit (VPD) in 2018 of 0.302 kPa (+59%) and the extremely low SPEI drought
index (description in Figure 1) indicate a strong negative water balance and atmospheric
drought in these years (Figure 1). The strength of the hydrological drought was indicated by
a soil water anomaly of −7.93% (−25%) in 2018, with storages not replenishing as of 2020.
The climatological reference period of 2000–2014 was constrained by the measurement
period of the Eddy covariance flux tower (DE-HAI), which was erected in 2000. We decided
on tower data instead of a long-term record from the next meteorological station due to
the large distance to the next station (~10 km, Eisenach) and to account for DBF-specific
energy fluxes at the site. We considered a 4-year period that started in 2017 and included
the pre-event and the onset, as defined by the start of the SPEI anomaly, as of 4 April 2018,
and the late stage of the drought (until 2020). The relative nomenclature used in this study
ranged accordingly from Y−1 (2017) to Y2 (2020). It is clear that data from such a narrow
study period cannot capture long-term trends and is especially prone to uncertainty. Since
the Sentinel-1A/B data record is limited, we restricted the study period to 4 years.

Figure 1. Drought-related meteorological variables. Top: standardized precipitation evapotranspira-
tion index (SPEI-12) [51] and vapor pressure deficit (VPD) [52]. SPEI was calculated on the basis of
potential evapotranspiration and precipitation from HNP eddy covariance flux tower data [50] and
was integrated for 12 month-periods with an unshifted rectangular kernel. Bottom: soil water content
(SWC) and precipitation. The onset of the drought is indicated as a dashed vertical line. Precipitation
data are weekly sums, while others are daily means. The meteorological data were retrieved from the
flux tower at 44 m above ground, except for SWC (8 cm soil depth).

The multi-year drought has led to substantial tree canopy damage and dieback in vast
areas in Central Europe, including Germany [12,53], and was also observed in the HNP [54]
(Figure 2). We confined the study site to an area of plateaus in the western HNP (Figure 3)
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where increased crown damage could already be successfully delineated using drone and
Sentinel-2 data [54,55].

Figure 2. Photo documentation of tree mortality of European beech (Fagus sylvatica) on the Burgberg
during the field survey at Hainich National Park. The photograph was taken by the author on
2 June 2021.

Figure 3. Left: Study area at Hainich National Park (HNP) comprising the two plateau hills Gr.
Zimmerberg and Burgberg. PlanetScope color infrared orthomosaic (R: near-infrared, G: red, B: green)
Y2 (2020) [56]. Right: Overview of the study area in the HNP. Background true color orthomosaic
from aerial flight campaigns [57].

2.2. Sentinel-1 Data Processing

Only SAR data (acquired in the early morning/predawn with a local overflight time
of ~7:30 CEST (6:30 CET, 5:30 UTC)) were used. At predawn conditions, healthy plants
establish a hydraulic equilibrium where the water potential between the soil and leaf tissue
converges (tissues replenish) ([58], p. 556). Conversely, under the effect of droughts, leaf
tissues cannot fully refill during the night [59]. In this sense, water-related measurements at
predawn are expected to be the most reasonable proxy for hydraulic damage in the diurnal
cycle, independent of photosynthetic activity in the daytime. To avoid geometric variability
among orbits due to changes in incidence angles and look directions, only scenes with
average sensor incidence angles θ of 36◦ over the study area were considered, corresponding
to typical mid-range conditions (relative orbit 66). In total, 215 ESA Copernicus S-1 scenes
with an average of 6-day revisit cycles (the same look direction, time of day, and sensor
incidence angle) were processed for the period 2017–2020 [60] using single look complex
(SLC) data (Figure 4). The SLC format is a precondition for performing a polarimetric
eigenanalysis on the complex SAR signal and for temporal speckle filtering in radar (slant)
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geometry. The subsequent radar-specific processing steps were performed using the S-1
SNAP processor [61], accessed via the S-1 handler package ‘pyroSAR’ [62].

After applying the precise orbit file, all scenes were co-registered and a rolling arith-
metical mean temporal speckle filter was applied pixel-wise to (1) the radiometric VV-VH
intensities and (2) the complex 2-channel covariance matrix [C2] [63]. We leverage the
frequent revisit time of the S-1 sensor by employing a temporal-only speckle filter to increase
signal stability while keeping the maximum spatial resolution of 10 m× 10 m. Subsequently,
[C2] was used for deriving Hα. We iterated a filter set of the effective number of looks (ENL)
∈ {3, 7, 13, 19} for assessing appropriate temporal filter sizes for the analysis. Despite the
development of advanced time series filter methods, e.g., [64,65], filtering is usually not
applicable for complex numbered data. A rolling mean operand was, therefore, used here
for simplicity. Using default parameters, the radiometric data were normalized to radar
brightness β0 and terrain-flattened γ0

T [66]. With the polarimetric data, the eigenproblem
for [C2] was solved as described by Cloude [67] using custom implementations with python
packages ‘numpy’ [68] and ‘numba’ [69]. Finally, all data were geocoded to a 10× 10 m grid
(UTM 32N, WGS 84) using a lidar-derived DTM and DSM, where the latter was low-pass
filtered from 1 m to 5 m to avoid ambiguities due to rough canopy surfaces and crown
gaps in forests [70]. With DTM and DSM representing the minimum (no forest, DTM) and
maximum (canopy height, DSM) of possible geocoding reference planes, the range of DEM
influences will be judged with their extrema. By using the lidar-derived DSM instead of the
default DEM settings, the geolocations of canopies shifted from the DTM ground level to
the prospected canopy level. We propose that this method enables an accurate overlay of
the oblique acquisition geometry of SAR with nadir-looking instruments (S-2, UAV, lidar)
for forest applications. This is necessary to locate single canopies onto the SAR imagery.

To assess the structural changes to the damaged trees, the additional polarimetric
indices, i.e., cross-ratio (CR), radar vegetation index (RVI) [45], and Span were derived
as follows:

CR = γ0
VV/γ0

VH (1)

RVI =
4 ∗ γ0

VH
γ0

VV + γ0
VH

(2)

γ0
Span = γ0

VV + γ0
VH (3)

where γ0
XX represents either VV or VH calibrated and radiometric terrain corrected S-

1 backscatter.

Figure 4. S-2 acquisitions used for hull function interpolation (n = 34), S-1 acquisitions (n = 215)
and PlanetScope imagery (n = 4) in the analysis period. The dashed line indicates drought onset
(approximately 1 April 2018).
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2.3. Optical Reference Data Processing

Optical remote sensing data are sensitive to DBF crown damage in the HNP [54]
and are, therefore, used as indicators for canopy damage. First, very high resolution
PlanetScope imagery is used to select damaged tree canopies bi-temporally before and after
the drought to create an a-posteriori canopy damage sample set. Second, the multi-spectral
ESA Copernicus Sentinel-2 (S-2) time series is used alongside S-1 to understand similarities
and differences between SAR and optical forest drought signals.

The PlanetScope/Dove 4-band color-infrared data were retrieved at Level-3B as an
analytic ortho-scene image product at 3 m of resolution [56]. Four cloud-free scenes in peak
growing seasons were chosen to create NDVI-based vitality layers for each observation
year (Figure 5). Pre-event NDVIY−1 was defined as undamaged. NDVI change layers
were created and defined as the differences of the respective year to pre-event conditions
by ∆NDVIYn−Y−1 = NDVIYn − NDVIY−1 . As radiometric inconsistencies between Plan-
etScope sensors reduced the quality of time series data [71], this study restricts its use to
1-sigma quantile classification in bi-temporal (pre- and post-droughts, Y−1 and Y2) differ-
ences and visualizes damage patterns spatially. The a-posteriori Canopy Development (CD)
tree sample sets were defined by:

CD− : Negative canopy development ∆NDVI < µ− σ,
(damaged, high mortality risk)

CD 0 : Indifferent canopy development ∆NDVI < µ + σ and > µ− σ,
(undamaged or recovered, low mortality risk)

CD + : Positive canopy development ∆NDVI > µ + σ.
(re-greening, disregarded here)

where µ is the mean and σ is the standard deviation of the sample.
In the next step, the extracted CD sets were aligned to the S-1 data grid. After (bilinear)

interpolation, these pixels were selected; they were members of either CD class (with 95%
confidence interval). Due to the heterogeneity of the soils, forest age, height, stand density,
and topography in the study area, we further employed a stratified sampling strategy
to ensure that the samples were representative and classes had equal sizes. We filtered
pixels with:

1. Canopy density > 80%;
2. Canopy height > 18 m;
3. Slope angle < 10◦.

The thresholds were derived from assessing the environmental variable distributions
and by local expert knowledge to minimize radar-relevant topographical effects (e.g.,
slopes) and to pursue relative forest homogeneity, especially by excluding non-mature
forest patches (canopy height and density). As horizontal density ancillary data, the ”Tree
Cover Density” Copernicus high-resolution layer (2018) was used [72]. Slope angle and a
canopy height model were derived from lidar DTM and DSM [70]. Finally, valley features
were masked out. With a total of n = 146 samples per class, 292 10× 10 pixels (2.92 ha) were
selected (CD + is disregarded as re-growth patterns are not the primary focus of the study).

S-2 data were retrieved via the Microsoft Planetary Computer (MPC) cloud plat-
form [73], which was processed to Level-2A bottom-of-the-atmosphere reflectances and
terrain corrected with Planet DEM 30 by the Sen2Cor processor and MPC. The normalized
difference vegetation index (NDVI) was calculated at 10 m native S-2 resolution using the
bands 4 (red) and 8 (nir), after [74]. The normalized difference water index (NDWI) was
favored for water assessments [75]; however, the NDVI was used here due to its damage
sensitivity and the higher spatial resolution of S-2 at red/NIR bands (10 m) in compari-
son to the SWIR bands (20 m), which should match the chosen S-1 resolution. As clouds
often only obscure parts of the imagery, no global cloud filter was applied and a total of
270 scenes were downloaded. Instead, we cut NDVI data at sampling sites where NDVI <
0.25, as those values were assumed to represent clouded pixels. Then, local maxima in the
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time series were detected using findpeaks from the ‘gsignal’ package [76] and R statistical
software [77]. The 34 scenes left (Figure 4) were then linearly interpolated to all S-2 and
S-1 acquisition dates. This way, more scenes in the S-2 time series could be kept, with
stable intra-seasonal signals retained. Season thresholds in this study were tailored to the
local forest and species composition by using the NDVI inflection points in the spring and
fall based on pre-event data. Accordingly, the growing season and full foliage cover were
assumed for DOY 130 (10 May)–280 (7 October).

Figure 5. ∆NDVI of the study area (a–c) based on PlanetScope imagery for Y0, Y1, and Y2 [56];
(c) used to create canopy development (CD) sample sets, see (d); CD− (damaged or dead trees), CD 0
(undamaged or partially recovered as of Y2 (2020)), base map aerial imagery from [57]. Acquisition
dates for the PlanetScope image pairs are indicated in the figure. Note that PlanetScope radiometry
may be inconsistent in the used scenes, impeding quantitative interpretation.

2.4. Time Series Analysis and Statistical Methods

At first, time series data of SAR were used to evaluate intra-seasonal and inter-annual
dynamics of the damaged CD− canopies. For this, we used class-wise averaged means
of the damaged tree class for S-1 indices and S-2 NDVI. In this context, different temporal
speckle filters were used and their suitability is discussed.

Secondly, the state and progress of damage in tree canopies were analyzed by cal-
culating anomalies (differences) between CD− and CD 0 tree samples. The benefits of
using spatial anomalies instead of temporal ones include (1) the leveling-out of short-term
influences on the radar signal (e.g., rain interception) and (2) only damage-related features
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are visible. For a temporal anomaly calculus, we considered a reference period based on
the data since the sensor launch (from 2015) was too low.

With speckle filtering, temporal autocorrelation was introduced in the S-1 time series.
Thus, to avoid bloated statistics by auto-correlated sampling, only a single S-1 scene with
the largest speckle filter size ENL = 19 was used for anomaly calculus and testing. For this,
the most central scene (median of the acquisitions) in the peak leaf-on was used. Conversely,
the NDVI time series did not carry out this autocorrelation. Hence, all NDVI peaks were
used, as defined in Section 2.3.

Damage anomaly statistics were derived from differences in sample distributions of
CD− and CD 0 as

∆µx−y = µx − µy (4)

∆σx−y =
√

σ2
x + σ2

y (5)

where ∆µx−y and ∆σx−y are the mean and standard deviations (SD) of differences (anoma-
lies) between population classes x (CD−) and y (CD 0). Due to unequal variances, Welch’s t-
test [77] was calculated, hypothesizing that the sample means between CD− and CD 0, were
equal. Note that normal distribution and random sampling of the population are assumed.

The extracted S-1 dual-pol indices were assessed toward their information content
based on the correlation analysis. Due to the variety of polarimetric indices, we used a
simple Spearman rank correlation and principal component analysis (PCA) method to
judge if features add information to the analysis or are redundant. Here, a PCA is a useful
tool to estimate feature distance. As many polarimetric indices have been designed for
full-pol configurations, the usefulness of each index needs to be assessed for the use case
prior to including them in a dual-pol analysis.

3. Results
3.1. Speckle Filtering and Geocoding of Dual-Pol SAR Time Series Data

Time series signal disturbance arises from, e.g., variations in wind speed (triggering
tree swaying, rain interception, or freeze/thaw events). As these short-term phenom-
ena affect tree status mapping, their propagation to the filtered time series is of concern.
In this study, we found that, by increasing the filter size, the radiometric stability for
γ0

Span increased (Figure 6a,c) and SD decreased from ~2 dB to ~1.1 dB, for ENL = 3 and 19,
respectively. The interpretation of plant water status changes at damaged canopies was,
therefore, only valid when stable environmental and phenological conditions could be
assumed. For the sensitivity analysis, we restricted the data to leaf-on-only conditions (as
represented by Y−1 NDVI seasonal inflection points). The remaining signal variances can,
therefore, largely be explainable by changes in the plant water status.

The dual-pol entropy approaches a stable boundary with means of 0.7–0.8 and SD
of ~0.08 at above ENL = 13 (Figure 6b). While Lee et al. [78] suggested an ENL = 49 for
a reasonably unbiased spatial filter size for entropy, our data indicate a higher efficiency
of speckle reduction in the temporal rather than in the spatial space. While the effect
of combined spatiotemporal filtering has not been investigated, it holds large potential
for harmonizing trade-offs. The annual trajectory of entropy suggests that scattering
mechanisms simplify with the growing season and diversify again toward the fall.

Owning to the trade-off between high spatial (10 m pixels) and temporal resolution,
we decided on ENL = 13 (~80 days for our S-1 setup) for time series depictions. Yet, for the
sensitivity analysis, seasonal averages are considered, represented by an ENL = 19 of the
median scene of the summer season (see Section 2.4).

Concerning the correct detection of scattered mortality patterns, both lidar eleva-
tion models, DSM and DTM, have been used to geocode the SAR imagery. We found
that the ∆γ0

SpanDSM backscatter dropped by ~0.5 dB in the late-stage drought (Y2) while

∆γ0
SpanDTM only decreased by ~0.2 dB. As CD class differentiation is only possible with
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DSM-geocoded data, we infer that tracking canopy changes (by an oblique SAR geometry at
a very high spatial scale) requires an elevation model that reflects the top forest layer under
study rather than ground topography. Further analyses are currently being performed and
documented in [79].

Figure 6. Results of the temporal speckle filters given for the time series mean (a,b) and standard
deviation (SD, c,d) exemplarily for the Span backscatter γ0

Span (a,c) and the eigenparameter entropy
(b,d) for the drought onset year Y0 using a set of temporal-only rolling mean filters. Besides the mean
and standard deviations of the variables, the SPEI relates drought progression to signal behavior.

3.2. Temporal Signal of Drought-Stressed Broadleaf Forest

Describing the signal trajectory along the drought progression is vital to understanding
anomalies induced by drought. Therefore, the time series of S-1 backscatter, CR, and S-2
NDVI at damaged tree canopies (CD−) is given in Figure 7. γ0

VV and γ0
VH have been found

to decrease in the spring and rise again in the fall, complying with pre-drought conditions
(Y−1). The intra-annual changes in the plant water status can partly be disentangled in
the SAR time series when carefully selecting phases of constant phenology. For example,
while in Y0, a near-normal leaf development can be assumed (due to wet conditions in
Y−1), the emerging drought conditions reduced vitality and chlorophyll activity from peak
growing season onward (Figure 7d). Similarly, backscatter γ0

Span in Y0 decreased toward the
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fall (Figures 6a and 7a). When assuming foliage to be fully developed and the tree structure
to be constant, the observed early summer γ0

Span decline can be attributed to water loss.

The further decreasing γ0
Span in the late summer, finally, mixes with structural decay in

the canopies due to, e.g., premature leaf fall and wilting. Leaf-off γ0
VV always remained

below pre-drought conditions, indicating fundamental hydrological changes to the trees,
as well as in the winter. S-2 NDVI has been found to decline in Y0 toward the late summer,
complying with European-wide observation of early wilting patterns [53,80]. Y1 and Y2
display strong vitality declines compared to the reference year.

Figure 7. Sentinel-1 backscatter (γ0
VV and γ0

VH), the cross-ratio (CR) and Sentinel-2 NDVI data time
series with ENL = 13. Averages of CD− class for Y−1–Y2 (2017–2020). Grey lines delineate average
phenological boundaries of spring and fall, which approximately coincides with leaf flush and fall,
verified by non-drought S-2 NDVI in Y−1.

The CR describes a magnitude with phenological phases, plateauing in summer, and
increasing and decreasing in the spring and fall, respectively. In this sense, the slow slope
of CR in the early summer Y1 (DOY 150–200) can be related to delayed leaf development,
only reaching its maximum (foliage) toward DOY ~250 (early September). NDVI-based
vitality peaks earlier (DOY ~170) than CR in Y1, indicating that greenness and structural
development do not necessarily co-evolve in drought-affected springs but show distinct
developments. As signal delays or losses cannot be observed in Y2, CR eventually lacks
clear interpretability in drought contexts.
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3.3. The Dual-Pol SAR Information Space

The dual-polarimetric capabilities of S-1 were statistically investigated using Spearman
rank correlations and a PCA. All available data of classes CD− and CD 0 were used
throughout all years. γ0

VV and γ0
VH were found to have a strong positive correlation of

r = 0.72 (Figure 8a). In contrast, the CR was much less related to either SAR channel with
r = 0.36 (VV) and r = −0.33 (VH). The correlations between CR and both eigen-based
parameters were high, at −0.50 (entropy) and −0.43 (alpha), indicating a certain alignment
of information content. As the dual-pol RVI essentially contains the same information
content as CR, it will be disregarded in further analysis.

Figure 8. (a) Spearman-rank coefficients of S-1 dual-polarimetric variables with significance levels
(p < 0.001 = ***, p < 0.01 = **, p < 0.05 = *). (b) Dimensions of the principal components analysis (PCA),
ranked by their relative variance in the feature space, features were normalized prior to the analysis.
(c) Contributions (eigenvalue/contribution) and directionality (eigenvector/angle) of either variable
with the PCA. The color ramp represents their strength of contribution.

Results from the PCA are depicted in Figure 8. The cumulative variance reveals that
the first three axes contain the main information directions in the data (Figure 8b). When
looking at the relative contribution of the variables within axis 1, the dominant information
contents of γ0

VV and γ0
VH (and γ0

Span) are visible (Figure 8c). The CR is orthogonally directed
(axis 2) and similarly strong. Alpha is negatively correlated with CR, yet with a weaker
signal, and the effect of entropy is low. We argue that the backscatter and CR carry most
of the information content due to the orthogonality of CR to the backscatter, on the one
hand, and the strong negative relation of alpha to CR and the marginal effects of entropy,
on the other hand. Consequently, while γ0

Span is used to represent S-1 radiometry, CR
represents the polarimetric information content. The eigenvalues/contributions and the
eigenvectors/angles do not directly imply strength in classifying damaged forests, they
only hold information for deciding the most meaningful variables.
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3.4. Sensitivity and Co-Evolution of SAR and Optical Data to Drought Impact

To test the sensitivity of S-1 γ0
Span and CR regarding tree canopy damage under

drought stress, the year-wise difference between CD− (damaged) and CD 0 (undamaged)
tree samples were calculated. The S-1 backscatter of damaged trees declined moderately
in Y1 while significantly dropped in Y2 (Figure 9), with average anomalies of −0.43 dB
± 1.36 (VH), −0.52 dB ± 1.52 (VV), and −0.50 dB ± 1.38 (Span) (Figure 10 and Table 1).
Notably, ∆NDVI anomaly was largest in Y1 (−0.089 ± 0.04) and decreased again in Y2
(−0.068 ± 0.03), indicating that the trajectory between SAR and optical indices in late-stage
drought damage diverged. It is clear from the data that the anomaly of NDVI is more
certain than S-1-derived indices. However, as backscatter trends in Y2 become significant,
we can assert systematic changes to the scattering intensity of the C-band signal. The CD
classes were defined on the basis of NDVI (PlanetScope-based) and, thus, changes to NDVI
are self-evident.

Figure 9. Temporal evolution of the S-1 span difference between unaffected and affected/damaged
tree canopies (∆γ0

Span) in concurrence with the drought index SPEI. SAR data processed with temporal
ENL = 13.

The S-1 indices were compared regarding their discriminative strengths to drought
damage. While ∆γ0

VV had the largest anomaly and ∆γ0
VH had the lowest SD among the

backscatter data, ∆γ0
Span had the highest t-value (4.42) in contrast to VV (4.17) and VH (3.80),

indicating a higher ability for CD class differentiation. Although deviations between the
signals are arguably small, we can still infer that γ0

Span is statistically more stable than VV
and VH for detecting drought effects in this context. Regarding ∆CR, anomalies remained
statistically insignificant over the entire observation period. Furthermore, the statistical
reliability of CR anomaly was hampered here due to very high errors with SD > 1.5 (Y2).
Besides the potential for qualitatively interpreting changes to the seasonal cycle, CR does
not show sensitivity to DBF forest droughts.

The differences between S-2 NDVI and S-1 Span signal trajectories in the drought
aftermath allow for tracking multi-year damage recovery. Understanding the recovery
patterns is useful in understanding the long-term implication of drought disturbances.
On the NDVI/Span-plane (Figure 11), the trajectories of plant vitality versus microwave
radiometry are given. Zero anomalies are expected for two cases: (1) No drought apparent,
(2) drought influence for both populations (CD− and CD 0). While negative anomalies
measure losses in vitality/chlorophyll activity or structural/water status for ∆NDVI and
∆γ0

Span, respectively, positive anomalies can be caused by sampling errors or environmental
unknowns. In contrast, Y0 exhibits a strong drought effect for both sample populations
(case 2). Only in late summer did ∆NDVI decrease, which may indicate drought damage
accelerating in the following years. The effects of ∆γ0

Span in Y0 cannot be readily interpreted
because of its large fluctuation (also visible in Figure 10). As all trees are damaged (see
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Figure 5), the signal could be explained by random variability in tree crown desiccation
as seen by C-band SAR. While NDVI shows the largest anomaly (~−0.1) in Y1, γ0

Span
anomalies are moderate (~−0.18 dB). Finally, with Y2, two converse effects become visible:
While anomalies in γ0

Span further intensify, NDVI values regain, forming a hysteresis-like
circular pattern.

Table 1. Damage anomaly (mean ± SD) for S-1 variables and S-2 NDVI during the growing season.
Two sample Welch tests of p-value significance levels are given as follows: < 0.0001 = ****, < 0.001 = ***,
< 0.01 = **, < 0.05 = ·, <= 0.1 = ., > 0.1 = non.

Index Year Year ∆γ0
VV [dB] ∆γ0

V H [dB] ∆γ0
Span [dB] ∆CR (γ0

VV /γ0
V H ) [-] ∆NDVI [-]

Y−1 2017 0.049 ± 1.432 0.094 ± 1.355 0.059 ± 1.290 −0.041 ± 1.371 0.020 ± 0.027 ****

Y0 2018 0.039 ± 1.510 0.021 ± 1.365 0.038 ± 1.341 0.028 ± 1.573 −0.005 ± 0.014 ****

Y1 2019 −0.182 ± 1.385 −0.135 ± 1.332 −0.172 ± 1.251 · −0.049 ± 1.292 −0.089 ± 0.041 ****

Y2 2020 −0.524 ± 1.519 **** −0.427 ± 1.357 *** −0.504 ± 1.378 **** −0.085 ± 1.563 −0.068 ± 0.031 ****

Bold entries are highlighted in the text.

Figure 10. Signal anomaly between damaged (CD−) and undamaged (CD 0) trees for S-1 variables
and S-2 NDVI. Probability density functions (pdf) were calculated based on mean and SD-growing
seasonal differences. Metrics of the pdfs are declared in Table 1.
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Figure 11. Anomaly time lag between NDVI and S-1 Span backscatter (γ0
Span), representing a

hysteresis. Time steps are S-1 acquisitions and nearest neighbor S-2 NDVI values, depicted in
different transparency levels per month-of-year. The chain-like alignment of observations is an effect
of autocorrelation with temporal speckle filtering (S-1) or interpolation (S-2). SAR data processed
with temporal ENL = 13, growth season data only.

4. Discussion

The sensitivity of Sentinel-1 SAR for capturing tree canopy damage and mortality
patterns in Central European deciduous broadleaf forests was tested. We found that the
S-1 Span was the best predictor of damage detection, and the largest backscatter anomaly
was found in Y2 of −0.5 dB ± 1.38, indicating coupled hydrostructural decay in drought-
affected trees. Polarimetric indices, such as the widely used cross-ratio (CR), could not
prove sensitivity to damage within our analysis. In light of the data fusion in forest
monitoring, we found the SAR anomaly time series lagging behind NDVI in time by ca.
one year after the onset of the drought, suggesting complementary information content of
SAR to optical sensors.

4.1. The Role of SAR Processing in Drought Observations

The applied temporal-only speckle filter scheme reduces short-term disturbances in the
S-1 signal time series. A filter size of ENL = 13 (~80 days) was shown to be a good trade-
off between temporal decorrelation with phenology and biomass, and sufficient speckle
reduction (Figure 6) for backscatter and polarimetric data. This enabled using credible
S-1 maximum 10 m spatial pixel spacing, promoting as little spatial overlap as possible
between damaged and non-damaged tree samples with their surroundings, acknowledging
the heterogeneity of mortality patterns. However, with the long temporal correlation length
introduced by filtering, weekly-to-monthly plant water status changes cannot be assessed
independently of neighboring image acquisitions. Therefore, the signal can only be related
to seasonal trends of desiccation and rehydration in canopy tissues. To increase the temporal
resolution, combined spatiotemporal filtering strategies are, therefore, advised, especially
in cases of high spatial homogeneity (e.g., large-scale bark beetle outbreaks). An 80-day
averaging comes with the expense of ignoring short-term dynamics where outliers could
corrupt the time series averaging, especially wind swaying [22], rain interception [81,82],
and dew ([39], p. 508) [83,84]. To account for these factors, either threshold-based filters are
found to be easy-to-use assets to gain more signal stability [82] or analytically based ap-
proaches (e.g., incorporating rain interception models [81]). Additionally, the full temporal
resolution of S-1 data can be used by incorporating all relative orbit acquisitions to increase
the observation density to up to 1.5 days. While this benefits the temporal coverage and
allows similar ENL within a shorter time span, the incidence, azimuth angle, and diurnal
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variations (morning/afternoon overflight) will be introduced, which need to be further
taken into account. For example, Weiß et al. [33] mitigated incidence angle influences by
incorporating θ into microwave radiative transfer models.

4.2. Detecting Hydrostructural Changes to C-Band SAR in a Damage Forest Canopy

Drought conditions reduce canopy water content and limit tree leaf development
and foliage duration (e.g., due to early leaf fall). Since S-1 summer anomalies of γ0

Span
correlate with tree canopy damage, coupled hydrostructural declines in those trees are
suggested (see Figure 10). We hypothesize that the observed backscatter decline can be
related to (1) losses in water content in damaged plant components, e.g., due to disturbed
hydraulic uptake and (2) the decline in the number of vegetation scatterers due to losses in
the tree structure (leaf and, eventually, branch loss), especially in the late stage of mortality.
Furthermore, since Walthert et al. [59] showed that xylem damage occurs before leaf loss
in damaged mature beeches, changes in growing season backscatter may be related to
mortality-induced plant water status changes instead of changes to leaf biomass, i.e., a
decline in plant water content and uptake. To validate the interpretation of SAR signal
losses, the link to in situ tree physiology is essential. When relating the thresholds of
individual water stress to SAR, we gain the unique ability to understand plant water status
and, finally, mortality in more spatial and temporal details.

As we have seen, the backscatter decline in Y0 can be interpreted as the loss of canopy
water content when assuming the biomass is constant (see Figure 7). The assumption
is, however, violated with (early) leaf loss as the phenological boundary. With leaf fall,
signal attenuation from an undamaged canopy diminishes, and contributions of the branch,
stem, and soil moisture simultaneously increase [41]. For damaged trees, the winter
backscatter is found to be strongly reduced (Figure 7a). The winter/leaf-off backscatter in
an undamaged forest usually exceeds values measured in summer/leaf-on months. Our
data suggest contrasts with normal behaviors found in the pre-drought period Y−1 and
literature (see [85]). The tree structure decline in the backscatter relates to the low water
content in the desiccated damaged tissues under leaf-off conditions. Its correlation with
tree desiccation is, however, conceivable. As the soil moisture of the upper layers is not
variable in the winter—which may not be accurate for deeper hydrological layers—changes
in soil moisture cannot explain the low winter backscatter alone. To test this, detailed
knowledge about the leaf-off water content of damaged and undamaged trees, the allocation
of scattered contributions to specific plant layers, and quantifying the soil contribution and
soil water content are necessary. Further, physically modeling the backscatter as a function
of phenology can broaden our understanding of the DBF backscatter in the winter; a crucial
asset for interpreting S-1 time series data in this biome.

A promising approach exploits the separation of plant water status, phenology, and
biomass dynamics when growth is absent, e.g., at a diurnal level. Here, diurnal measure-
ments yielded encouraging results for quantifying water stress [13,15,86,87]. The suitability
of S-1 for entering the diurnal observation domain is, however, far-fetched due to the long
time lags between morning and evening acquisitions (3–6 days). Approaches for forests,
while successfully used for water stress detection in agricultural areas [88], need to be
developed. As mentioned earlier, using different S-1 orbits further introduces variabilities
in incidence and azimuth angles that need to be considered.

4.3. Potential of S-1 Polarimetry for Detecting Changes in Scattering Mechanisms

Changes in scattering mechanisms in drought-damaged tree canopies were expected
to shift the polarimetric SAR signatures from volume scattering to simpler scattering
mechanisms after the onset of drought. Dual-polarimetric S-1 variables (CR, RVI, entropy,
alpha) showed sensitivity to the seasonal dynamics of deciduous trees (see entropy in
Figure 6b and CR in Figure 7c) and, thus, covaries with phenology. This supports the
interpretation that CR is sensitive to the presence and absence of leaves and, thus, reacts
to substantial changes to the tree structure [32,43,85]. Still, changes in CR with crown
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damage could not be observed in our study. In contrast to the findings in [35,36], which
used CR as a proxy for defoliation, similar signs of signal loss were not significant in our
data during the growing season (see CR anomaly in Table 1). We conclude that CR helps
to interpret phenology in DBF forests. However, a clear role in the structural decay of CR
under drought stress needs further research and detailed knowledge about the canopy
structure and phenology.

Due to the high-entropy regime (H > 0.6), ambiguities in scattering mechanisms are
common problems for forests, especially at the C-band, impeding the successful retrieval
of polarimetric information. Our experimental results comply with the simulations by Ji
and Wu [89], showing that co-cross (VV-VH) polarization combinations could not correctly
identify the canonical scattering mechanisms compared to full-polarimetric or co-pol dual-
polarimetric setups (VV-HH). Still, a careful 3D separation of backscatter contributions
from tree compartments (twigs, branches, stems) and the ground would strongly facilitate
interpreting the detected annual cycle of the dual-pol entropy. Studying forests with multi-
temporal, fully polarimetric SAR systems would help researchers understand microwave
scattering in forests under changing phenology.

CR and Span were statistically found to be the most independent in the PCA based on
the orthogonality of information content. As either variable can be directly calculated from
VV and VH intensities (e.g., from ESAs GRD product), one can reconsider sparring the
computationally demanding processing of complex-numbered SLCs and the eigenanalysis
in favor of the simpler CR and Span. The high magnitudes and low errors found in Span
indicate a slight improvement over using VV or VH channels alone in terms of more stable
anomaly detection. Therefore, we suggest its use for mortality assessment and, more
generally, for applications focusing on SAR radiometry.

4.4. Time-Lagged Damage Patterns in the NDVI/Span-Plane

An NDVI/Span-plane was introduced that reveals the lagged signal anomaly in the
backscatter against optically-derived vitality indices along the impact and recovery phases
of the drought. If trees desiccate and die, water content and leaf/twig loss will lead to
long-term structural decay, as captured by the S-1 Span. At the same time, photosynthetic
activity showed tendencies for recovery (Y2). Thus, a time-lagged correlation between
∆NDVI and ∆γ0

Span is implied, highlighting the different aspects and capabilities of optical
and SAR sensors for detecting damage patterns and, ultimately mortality. While this
approach is not suitable for characterizing drought sequences, it can be the basis for the
multi-sensor remote sensing of disturbance ecology.

The NDVI/Span-plane can help researchers understand coupled photosynthetic and
hydrostructural decay in the time domain for studying the damage and recovery of forests.
In this sense, a forest would return to its Cartesian origin once it recovers from drought
disturbance. The position of the hysteresis would then characterize its drought impact and
recovery stage.

The recovery of ∆NDVI in Y2 suggests an increase of greenness and vegetation vitality
at damaged tree sites (CD−) at the late stages of droughts. A possible explanation is the de-
velopment of undergrowth vegetation and pioneering plants underneath desiccated/dead
trees. Moreover, if droughts are not lethal for individual trees, the partial regrowth of
compartments may occur, or mixed pixels containing adjacent recovered or undamaged
individuals may affect NDVI. Positive values of anomalies between CD− and CD 0 are
found in Y−1 and Y0, indicating inconsistencies in the sample set. The data cannot explain
positive values when assuming that the samples are drawn from the same tree population
and damage leads to a decline in the backscatter and NDVI. Unknown variations in the
population can play roles, including demography (age, species), forest structure (vertical
and horizontal distribution), topography (e.g., aspect), soil/geology (e.g., soil composition,
rock formations, runoff scheme), and variables that go beyond the initial sampling scheme
(NDVI threshold, slope, canopy height, tree cover density).
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5. Conclusions

Our results suggest that the Sentinel-1 backscatter can track the evolution of tree
canopy damage at very high spatial (10 m × 10 m) and moderate temporal (~80 days)
scales in a temperate deciduous broadleaf forest. S-1 polarimetric indices did not show the
significant separation of damaged and undamaged trees, which was partly attributed to
the high entropy scattering in the forests and the dual-pol sensor properties. The S-1 Span
showed the best capability for assessing tree canopy damage. If considering periods of
constant biomass, such as the peak growing season, backscatter anomalies can be carefully
related to the plant water status. However, additional data on the plant water status
are necessary to validate this conclusion. With the SAR anomaly time series lagging
behind optically derived vitality indices in time by ca. one year, the long-term structural
decay in the aftermath of drought years can be monitored. Further, with the help of the
circular pattern in a Span/NDVI observation space, a tool for quantifying forest decline
and recovery stages is provided. Based on the introduced methodology, a SAR-based or
SAR-enhanced monitoring tool for observing long-term forest drought damage and its
application in other broadleaf is conceivable. For mapping damage, integrating the sensors
would enable the unique benefits of each frequency domain for retrieving mortality-relevant
forest parameters, by, e.g., combining NDVI-based vitality and phenology information with
SAR-based plant water status and structure.

Since speckle variance strongly decreases confidence in anomaly detection and still
hinders out-of-the-box mapping with our data, new methods for estimating speckle patterns
in time should be applied when working at very high spatial resolutions. Extending the
reference dataset to other forest types and areas of known tree mortality would build the
basis for SAR damage assessment outside of this local experiment. Other central unknowns
comprise the discrimination of plant water status from meteorological factors, tree structure,
and phenology, and understanding the backscatter contributions from different vegetation
layers in the C-band, primarily under drought stress. At this point, the data gap in a tree’s
physiological measurements for retrieved remote sensing forest hydrological parameters
strongly limits advancing toward forest stress mapping. Shortcomings in the interpretability
of SAR signals should further motivate research to analytically model microwave scattering
along phenological and diurnal phases to retrieve the stand-level water status directly
from microwave measurements. While recent advances in VWC modeling based on the
transmission parameter VOD show promising results for linking water status and drought
stress to microwave measurements at a coarse spatial resolution, the transfer to active
SAR systems will be a crucial advantage for high-resolution mapping of forest health and
tree mortality.
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