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Abstract— Advanced multichannel spaceborne synthetic
aperture radar (SAR) systems with multiple elevation beams
allow for obtaining high-resolution and wide-swath SAR images.
However, the degradation of the SAR image quality due to range
ambiguities is still an issue. In this article, the range-ambiguity
problem is analytically modeled and solved by employing a
range-time and Doppler-frequency dependent mixing matrix,
which describes the linear superposition of multiple mutually
range-ambiguous radar echoes. The overall framework can
be regarded as a generalization of the cocktail party problem
where each listener has to separate one speech signal out of
a linear superposition of multiple voices. For the first time,
the 2-D dependence of the antenna radiation pattern in the
elevation and azimuth directions is considered by accounting for
both the real-time beamsteering in elevation and the systematic
variations of the mixing coefficients with the Doppler frequency.
A novel solution, based on higher order blind source separation,
is presented. The performance of the proposed method is
numerically analyzed, with reference to an array-fed reflector
antenna SAR system, by simulating a realistic acquisition
scenario. To this aim, real-SAR data and the actual antenna
patterns of the Tandem-L mission proposal are considered.

Index Terms— Digital beamforming (DBF), echo separation,
high-resolution wide-swath, independent component analysis,
reflector antenna, spaceborne synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is one of the most
relevant techniques for Earth observation. Conventional

SAR images, however, still suffer from a tradeoff between the
extension of the imaged swath and the spatial resolution [1].
In order to overcome this limitation, novel system architectures
and operational modes, exploiting multiple digital receive
channels, have been intensely studied and developed in the
last decades. Important examples of these kinds of systems
are the U.S.–Indian NISAR, scheduled for launch in 2023, and
the German mission proposal Tandem-L (TDL) [2], [3]. Here,
in order to overcome the tradeoff between swath extension
and azimuth resolution, a wide swath is illuminated by a
broad transmit beam, at high pulse repetition frequency (PRF).
On receive, multiple elevation beams simultaneously collect
the useful signals returned from the swath. Each receive beam
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operates according to the scan-on-receive (SCORE) digital
beamforming (DBF) technique [4], [5]. Both in the case
of NISAR and TDL, the SAR architecture is based on an
array-fed reflector antenna. In fact, compared with a planar
antenna, this architecture has a limited hardware complexity
and allows to obtain antenna radiation patterns with a higher
gain and lower sidelobes [6].

The main challenge of such a multibeam operational mode
is the separation of the useful signals from each other. In fact,
the signal that is useful for one receive beam represents a
range ambiguity for another beam. Accordingly, the range
ambiguities cannot be attenuated by the transmit pattern, as in
a conventional case where only a single-Rx beam is used.
This issue can be hardly tackled by state-of-the-art tech-
niques for range ambiguity suppression, such as azimuth phase
coding (APC) [7], [8], waveform encoding [9], staggered
SAR [10], [11], especially without a significant impact on the
SAR instrument complexity.

In principle, in order to suppress the range ambiguities,
DBF techniques, such as minimum variance distortionless
response (MVDR), could be used to realize receive patterns
with very low sidelobe levels [6], [12], or linearly constrained
minimum variance (LCMV) which place nulls in the expected
directions of arrival of the ambiguous signals [13], [14].
However, in practice, the knowledge of the pattern may be
insufficient to achieve a satisfactory ambiguity suppression.
In fact, due to the large size of the reflector, it is impossible
to accurately calibrate the pattern on the ground, before the
launch. Moreover, the actual pattern may considerably differ
from the expected one, due to deviations of the reflector sur-
face from its nominal shape after the reflector deployment or
deformations associated with temperature variations, satellite
mispointing, as well as phase offsets among the individual
receive channels. Also, the topography may impact the range
ambiguity suppression, and a topographic error of 1.5 km
may raise the range ambiguity to an unacceptable level
of −17 dB [15]. The problem related to the poor knowledge
of the pattern is not solved properly even by in-orbit pattern
calibration approaches. In fact, most of these methods require
the availability of homogeneous backscattering surfaces with
a flat topography [16], [17], [18].

In this article, the range ambiguity suppression problem
is recast in the framework of the cocktail party phe-
nomenon [19]. To suppress the range ambiguities, a novel
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data-based approach is proposed, using a higher order blind
source separation (BSS) technique on the downlinked data.
The remarkable aspect of this method is that it does not
require any prior knowledge of the actual antenna pattern.
While the degradation of the range ambiguity suppression
performance for most of the techniques mentioned earlier is
directly related to the increasing deviation of the actual pattern
from the nominal pattern, in contrast, the proposed method
maintains its robustness even in this case, as it estimates the
necessary information on the actual pattern, i.e., the mixing
coefficients, directly from the acquired SAR data to suppress
range ambiguities. This represents a significant advantage of
the method over the majority of range ambiguity suppression
techniques. Additionally, it does not affect the SAR instrument
complexity.

The idea behind the proposed method was originally pro-
posed in [15] as one opportunity to obtain the calibration
coefficients for the cross elevation beam range ambiguity sup-
pression technique CEBRAS; first results, presented already
in short conference papers [20], [21], are here extended
and analyzed in detail. A BSS-based method, to retrieve
the useful SAR signals in a multibeam SAR system, was
recently proposed also in [22] and [23]. Compared with these
last publications, the uniqueness and novelty of the present
approach rely on the detailed data model and the realistic
analysis. Specifically, the 2-D dependence of the antenna
radiation patterns and of the SAR signals versus range time
and Doppler frequency is considered and integrated into the
implementation of the BSS technique. Furthermore, attention
is given to noise in the data model. The performance of the
proposed method is numerically analyzed in realistic scenarios,
simulated by means of real SAR data and the actual antenna
patterns of TDL [6], [12].

This article is organized as follows. In Section II-A, the
general concept of the cocktail party problem is reviewed,
followed by a novel derivation of the extended cocktail party
problem for multichannel SAR in Section II-B. The proposed
2-D range ambiguity suppression method based on higher
order BSS is presented in Section III. Section IV reports
the numerical analysis. The importance of the method in the
research field is discussed in Section V. Section VI concludes
this article.

II. PROBLEM FORMULATION

A. Cocktail Party Problem

Let us consider several people talking simultaneously at a
cocktail party. Each person hears different voices, which are
mixed together. This phenomenon can be modeled as [24]

x(t) = A · s(t) x1(t)
...

xM(t)

 =

 a1,1 · · · a1,N
...

. . .
...

aM,1 · · · aM,N

 ·

 s1(t)
...

sN (t)

 (1)

where M is the number of listeners; N the number of people
talking; A is the mixing matrix, with elements given by the
mixing coefficients; x the vector of the M heard mixed voices;
and s the vector of the N emitted speech signals. The so-called

Fig. 1. Illustration of the cocktail party problem.

“cocktail party problem” denotes then the task of extracting
the useful source signals, s, from the received ones, x, without
knowing A (see Fig. 1).

It is worth noting that when M = N , each emitted voice
represents the useful signal for one listener and the disturbance
of variable strength for the others. This property of the source
signals is denoted as reciprocity. As shown in the next sections,
it is of key importance in the multichannel SAR context.

B. Cocktail Party Problem in Multichannel SAR

Without loss of generality, let us consider a multichannel
SAR system, based on an array-fed reflector, like TDL [2].
As shown in Fig. 2, multiple subswaths are imaged simultane-
ously, by means of a wide transmit (Tx) beam that illuminates
the whole swath, and multiple narrow receive (Rx) beams
(each one dedicated to a subswath) that follow the echo on
the ground in the elevation direction, according to the SCORE
technique [5], [25].

Since the PRF is high w.r.t. the overall swath extension,
range ambiguous echoes are received from the imaged swath.
In particular, the received signal can be expressed as

xi (τ, ft ) = si (τ, ft ) +

∑
m

si,RA(τ, ft , m) (2)

where xi denotes the signal received from the i th beam;
si and si,RA are the corresponding useful signal and range
ambiguous signals, respectively, which are simultaneously
received; τ is the range time; ft is the Doppler frequency;
and m is the order of ambiguity.

The slant range of the range ambiguous target is given by

RRA = R0 + Dr (m) (3)

where R0 is the slant range of the useful target, and Dr is
the distance of ambiguity, i.e., the slant range displacement
between useful signal and range ambiguous signal is given by

Dr (m) =
m · c · PRI

2
(4)

where PRI is the pulse repetition interval; and c is the speed
of light.

It is worth mentioning that strong range ambiguities arise
within the imaged swath due to the Tx pattern that illu-
minates them. Ambiguities that arise outside the imaged
swath are much lower and referred to as weak ambiguities.1

1The nadir echo is considered a weak ambiguity, as it is assumed to be
sufficiently suppressed, not only by the Tx and Rx beams but eventually also
by specific techniques, such as [26] and [27].
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Fig. 2. Multichannel SAR system, based on an array-fed reflector, imaging five subswaths simultaneously by means of five SCORE Rx beams. The five
SCORE-received signals are downloaded to the ground, where the proposed method is applied.

Fig. 3. Zero-Doppler geometry. Two subswaths are imaged simultaneously
by two beams. In beam 1, P returns the useful signal, Q the strong ambiguity;
in beam 2, Q returns the useful signal, and P the strong ambiguity.

As a consequence, as first mentioned in [15], a reciprocity
property exists between the useful signals and the ambiguity
signals. Accordingly, the ambiguity of a useful signal is always
represented by a scaled version of another useful signal, where
the scaling factor is given by a complex number.

To further explain the reciprocity, let us consider the sce-
nario in Fig. 3, characterized by two Rx beams and four
target points (O , P , Q, and U ), separated by the distance

of ambiguity. Based on (2), the two Rx signals can be
expressed as

x1(τ, ft )

= s1(τ, ft ) +

∑
m

s1,RA(τ, ft , m)

= σP · w1(τ, ft , P) · rect
(

τ −
2RP( ft )

c

)
· exp

(
− j

4π

λ
RP( ft )

)
· exp

(
jπkr

[
τ −

2RP( ft )

c

]2
)

+ σQ · w1(τ, ft , Q) · rect
(

τ −
2RQ( ft )

c

)
· exp

(
− j

4π

λ
RQ( ft )

)
· exp

(
jπkr

[
τ −

2RQ( ft )

c

]2
)

+ σO · w1(τ, ft , O) · rect
(

τ −
2RO( ft )

c

)
· exp

(
− j

4π

λ
RO( ft )

)
· exp

(
jπkr

[
τ −

2RO( ft )

c

]2
)

(5)
x2(τ, ft )

= s2(τ, ft ) +

∑
m

s2,RA(τ, ft , m)

= σQ · w2(τ, ft , Q) · rect
(

τ −
2RQ( ft )

c

)
· exp

(
− j

4π

λ
RQ( ft )

)
· exp

(
jπkr

[
τ −

2RQ( ft )

c

]2
)
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+ σP · w2(τ, ft , P) · rect
(

τ −
2RP( ft )

c

)
· exp

(
− j

4π

λ
RP( ft )

)
· exp

(
jπkr

[
τ −

2RP( ft )

c

]2
)

+ σU · w2(τ, ft , U ) · rect
(

τ −
2RU ( ft )

c

)
· exp

(
− j

4π

λ
RU ( ft )

)
· exp

(
jπkr

[
τ −

2RU ( ft )

c

]2
)

(6)
where w(τ, ft , Y ) denotes the two-way antenna pattern,
weighting the signal received from the point Y (Y = O,

P, Q, U );2 σY is the complex amplitude of the echo received
from Y; RY is the distance between the receiver and Y ;
and kr and λ are the transmitted chirp rate and the radar
wavelength, respectively. It is noted that in the raw data, the
Doppler frequency band is determined by the illumination
time. However, the azimuth envelope is omitted in the equation
for a simpler representation.

It is important to note that the derivation in (5) and (6) can
be generalized to distributed targets. Specifically, while in the
point target case Y = O, P, Q, and U represent individual
point targets, in the distributed target case Y = O, P, Q,
and U represent range bins. In the distributed target case, the
received signal at a range bin consists of multiple scattering
points.

The strong ambiguity signal, sSA, comes from Q in (5), or P
in (6); the weak ambiguity, sWA, comes from O and U . It is
then useful to compare the strong ambiguity, s1,SA, in (5) to
the useful signal, s2 in (6)

s1,SA(τ, ft ) = σQ · w1(τ, ft , Q) · rect
(

τ −
2RQ( ft )

c

)
· exp

(
− j

4π

λ
RQ( ft )

)
· exp

(
jπkr

[
τ −

2RQ( ft )

c

]2
)

(7)

s2(τ, ft ) = σQ · w2(τ, ft , Q) · rect
(

τ −
2RQ( ft )

c

)
· exp

(
− j

4π

λ
RQ( ft )

)
· exp

(
jπkr

[
τ −

2RQ( ft )

c

]2
)

. (8)

From (7) and (8), it can be seen that the two signals differ
only by a complex constant, given by the relative antenna
pattern level of w1 and w2 at the location Q. This shows that
the range ambiguity level is solely determined by the ratio
between the sidelobe and mainlobe of the antenna patterns

a12(τ, ft ) =
s1,SA(τ, ft )

s2(τ, ft )

=
w1(τ, ft , Q)

w2(τ, ft , Q)
(9)

2In the following, for simplicity, it is assumed that the signal, received
from a point target, is weighted by the pattern value at the target location,
i.e., the SCORE beam movement during the pulse duration, particularly for
long pulse, is neglected [28].

a21(τ, ft ) =
s2,SA(τ, ft )

s1(τ, ft )

=
w2(τ, ft , P)

w1(τ, ft , P)
(10)

where a12 is the mixing coefficient between the strong ambi-
guity signal s1,SA and the useful signal s2, and a21 is the
mixing coefficient between strong ambiguity signal s2,SA to
useful signal s1.

Accordingly, (5) and (6) can be rewritten as follows:

x1(τ, ft ) = s1(τ, ft ) + a12(τ, ft ) · s2(τ, ft )

+ s1,W A(τ, ft ) (11)
x2(τ, ft ) = s2(τ, ft ) + a21(τ, ft ) · s1(τ, ft )

+ s2,W A(τ, ft ). (12)

Based on (5)–(12), the general case of N -elevation Rx
beams which map N -subswaths and accounting for white
Gaussian noise n, can be written as

x(τ, ft ) = A(τ, ft ) · s(τ, ft ) + sWA(τ, ft ) + n x1(τ, ft )
...

xN (τ, ft )

 =

 1 · · · a1,N (τ, ft )
...

. . .
...

aN ,1(τ, ft ) · · · 1

 ·

 s1(τ, ft )
...

sN (τ, ft )


+

 s1,W A(τ, ft )
...

sN ,W A(τ, ft )

+

n1
...

nN

. (13)

It is important to note that the received SAR signals, x, the
useful signals, s, and the mixing matrix, A, depend on range
time, τ , and Doppler frequency, ft . In particular, A represents
the relative value of the sidelobe to the mainlobe of the
two-way pattern, as written in (9) and (10). Accordingly, the
diagonal elements, which correspond to the useful signal, are
unitary; while the off-diagonal elements, which correspond to
the range ambiguities, are complex coefficients, with ampli-
tude lower than 1. In particular, the off-diagonal elements of
the SAR mixing matrix are in general much lower than 1
(i.e., the SAR mixing matrix is considerably “low”), since
the Rx antenna patterns are typically designed to suppress the
undesired strong ambiguities [6]. Moreover, the off-diagonal
values of A show a strong variation versus τ and a moderated
variation versus ft since the useful and ambiguous signal have
a large angular separation in the range direction but are both
located around zero-Doppler.

With reference to (13), the problem to be solved in the
multichannel SAR context is to suppress the range ambiguities
by extracting the N useful signals, s, from the N received
mixed signals, x. The similarity with the cocktail party
problem, described in Section II-A, is evident. In particular,
also in the SAR case, the reciprocity property applies, and
the mixing matrix is unknown. The main differences regard:
1) the presence in the SAR signal of the weak ambiguous
signals, sWA, and the white-Gaussian noise n and 2) the
dependence of the SAR mixing matrix and signal on the range
time and Doppler frequency. Based on this dependence, the
range ambiguity suppression problem is denoted as 2-D.
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Fig. 4. Example of SAR systems where the cocktail party problem can be
applied. (a) Multichannel SAR system, based on a planar array antenna with
multiple elevation Rx beams. (b) Waveform-encoding MIMO-SAR [29], [30].

It is worth mentioning that the noise does not provide
any information about the mixing matrix. In fact, as shown
in (13), it is introduced by each receive channel on the already
combined useful signals, s. Accordingly, an increasing noise
level may make the extraction of the N useful signals more
challenging, as explained more in detail in Section III.

Finally, it is worth noting that the reported derivation is not
limited to the case of monostatic array-fed reflector antenna
SAR systems. In fact, as illustrated in Fig. 4, it can be easily
be extended to planar array antenna systems or MIMO-SAR
systems [29], [30].

III. PROPOSED METHOD

A. Higher Order Blind Source Separation

The method proposed in this article to tackle the range
ambiguity suppression problem in (13) is based on the BSS
technique [31]. In the classical cocktail party problem, the BSS
estimates the useful signals, i.e., the emitted voices, as

ŝ = Bx (14)

where B is the separation matrix. This solution is in general
not unique. In fact, it is affected by scaling and permutation
uncertainties, since both the useful source signals, s, and the
mixing matrix, A, are unknown [31].

The BSS methods can be separated into two categories:
second-order methods, which rely on the assumption, that
the source signals are mutually uncorrelated (in the sense
of classical second-order correlations) [32], [33]; the higher
order BSS methods, which rely on the mutual independence

among all source signals [34], [35]. It is worth mentioning
that, in general, the SAR mixing matrix poses a challenge
to the BSS. In fact, the BSS method relies on the statistical
properties of the source signals (correlation for the second-
order, independence for the higher order), and the sensitivity of
the method depends on the statistical differences between the
useful signal and the received signal [33], [34]. Accordingly,
when the mixing matrix is considerably low (see Section II),
the statistical difference between the useful and the received
signals becomes relatively small, reducing the sensitivity of
the BSS method. Moreover, in the SAR context, the noise
produces a model mismatch and is expected to degrade the
BSS performance, since it does not provide any information on
the mixing matrix, as shown by (13). In particular, the higher
order BSS approach is expected to offer a greater robustness
to the noise compared to the second-order [36], [37], [38].
In this article, as higher order BSS, the joint approximation
diagonalization of eigenvalue (JADE) is considered [35], [39].

The idea behind the higher order BSS methods comes from
the central limit theorem [40], which states that the sum of
an infinitely large number of independent random variables
will result in a Gaussian random variable. Accordingly, in the
cocktail party problem, even in the presence of a limited
number of source signals, the received signals are expected to
be more Gaussian than the useful source signals. This property
is exploited by the higher order BSS methods to estimate
the useful signals [31]. In particular, the higher order BSS
algorithms consist of two steps: first, the principal component
analysis (PCA), which removes the second-order correlation
of the input data; second, the independent component anal-
ysis (ICA), which obtains independent signals by exploiting
their higher order statistics.

In the multichannel SAR context, the BSS separation matrix
assumes the form

B ≈ A−1 (15)

where the approximation derives from the model mismatch
between (13) and (1), due to the presence of weak ambiguities
and the additive noise. As regards the uniqueness of the
solution, the scaling and permutation uncertainties are not an
issue. In fact, they can be solved by exploiting the information
on the unitary diagonal elements of the SAR mixing matrix
(see Section II-B).

It is worth mentioning that a precondition for a suc-
cessful application of the higher order BSS methods is the
non-Gaussianity of the useful signals [31], [41]. In the context
of SAR, the various types of terrain and terrain cover exhibit
distinct Gaussianity characteristics [1]. These differences in
backscatter statistics can significantly affect the effectiveness
of the method. Additionally, as discussed in more detail
in Section III-B, the selection of the kind of SAR data should
be carefully considered in order to properly apply the BSS in
the SAR context. Moreover, the performance of BSS is also
affected by the relative intensity level of the ambiguous and
useful components. In particular, for very weak ambiguities,
the Gaussianity of the source and received signals may be
similar, and consequently, the successful application of the
BSS method is challenging. Accordingly, the SAR mixing
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matrix, and specifically the low amplitude of the off-diagonal
elements, is expected to strongly affect the achievable BSS
performance. The presence of additive white Gaussian noise
may also degrade the performance. Another challenge for the
application of the BSS in the SAR context is the dependence of
both the mixing matrix and the useful signals on the range time
and Doppler frequency. In fact, the JADE method is classified
as a stationary technique [42], [43], [44]. Accordingly, proper
steps should be introduced to improve the BSS performance.
This is discussed more in detail in Section III-C.

B. SAR Range Compressed Data

Let us consider the main three kinds of SAR data: raw
data, range compressed data, and fully focused image. The
selection of the input SAR data for the BSS is here driven by
the Gaussianity level and the reciprocity of these signals.

The SAR raw data are considered not suitable since they are
characterized by the highest Gaussianity. In fact, each sample
collects the backscattering from the widest area, given by the
instantaneous radar field of view [45].

The focused SAR image, at least for a heterogeneous scene,
can be assumed to have non-Gaussian statistics [46], [47].
Nevertheless, fully focused SAR data do not satisfy the reci-
procity between the useful and ambiguous signals as written
in (13). The problem arises during the azimuth compression
step, due to the different azimuth FM rates between the
useful signal and the range ambiguity signal. In particular,
the azimuth FM rate can be expressed as follows [48]:

Ka(R) =
2V 2

r

λR
(16)

where Vr denotes the effective radar velocity; and R is the
minimum slant range of the imaged point-target/resolution
cell, as in (3).

Recalling the problem discussed in Section II, the range
ambiguity signal and the useful signal in (7) and (8), after
azimuth compression, can be written as follows:

s ′′

1,SA(τ, ft ) = σQ · w′′

1(τ, ft , Q) · δ

(
τ −

2RQ

c

)
· exp

(
− j

4π

λ
RQ

)
· exp

(
− j

πλDr f 2
t

2V 2
r

)
(17)

s ′′

2 (τ, ft ) = σQ · w′′

2(τ, ft , Q) · δ

(
τ −

2RQ

c

)
· exp

(
− j

4π

λ
RQ

)
(18)

where Dr is the distance of the ambiguity, here computed
for m = 1; δ(τ ) is the range impulse response after range
focusing; and the symbol ′′ is used to denote the focused image
case. According to (17) and (18), the strong ambiguity signal,
s ′′

1,SA, and the useful signal, s ′′

2 , do not differ by a complex
constant, and the reciprocity is no more valid.

The reciprocity between signals, separated by the ambiguity
distance, is still preserved in the range-compressed domain

s ′

1,SA(τ, ft ) = σQ · w′

1(τ, ft , Q) · δ

(
τ −

2RQ( ft )

c

)
· exp

(
− j

4π RQ

λ

)
· exp

(
jπ

f 2
t

Ka(RQ)

)
(19)

s ′

2(τ, ft ) = σQ · w′

2(τ, ft , Q) · δ

(
τ −

2RQ( ft )

c

)
· exp

(
− j

4π RQ

λ

)
· exp

(
jπ

f 2
t

Ka(RQ)

)
(20)

where the symbol ′ is used to denote the range compressed
domain. In fact, (19) and (20) differ only by a complex
constant

a′

12(τ, ft ) =
s ′

1,SA

s ′

2

=
w′

1(τ, ft , Q)

w′

2(τ, ft , Q)
. (21)

With regards to the statistics, the range-compressed data
have a higher deviation from Gaussianity compared with the
raw data, as the range compression enhances the contrast in
the range direction due to its focusing properties. Therefore,
applying the BSS in the range-compressed domain appears as
the best choice.

It must be remarked that no range cell migration (RCM)
correction should be applied to the selected range-compressed
data, in order to preserve the reciprocity. In fact, after RCM
correction, the range envelope of the useful signal is already
independent of Doppler frequency, while the range envelope of
the range ambiguity is still a function of Doppler frequency
due to the only partially corrected RCM (see Fig. 5). More
in detail, it can be derived that the maximum residual RCM
affecting the ambiguous signal is approximately given by

1RCM =
λ2 Dr (m)

32 δ2
az

(22)

where δaz denotes the azimuth resolution. From (22), it is clear
that the residual RCM may not be an issue for X-band SAR
systems with a moderate azimuth resolution, but cannot be
neglected in L-band systems.

The reciprocity of the selected range compressed data is
illustrated in Fig. 6 for different scenarios. For instance, the
reciprocity happens between s2 and s6 in zero Doppler, with a
mixing coefficient a26. In the nonzero Doppler, the reciprocity
happens between s1 and s4, with a mixing coefficient a14.3 The
fact that the value of the mixing coefficient is changing along
the Doppler requires an optimization strategy, as discussed
in Section III-C.

C. Performance Optimization

Two different novel strategies are included in the proposed
method, in order to improve the BSS performance in the
multichannel SAR context. They are denoted as stacking and
azimuth subband decomposition, respectively.

The implementation of BSS alone, without additional
optimization strategies, does not lead to satisfactory range
ambiguity-to-signal ratio (RASR) performance, as shown later

3The main purpose of showing Figs. 5 and 6 is to visually assess the
signal’s reciprocity principle, which is of significant importance for the BSS
technique. To ensure a fair assessment, a comparison is conducted using the
same range-bin reference for both Figs. 5 and 6, despite the fact that the
signals in Figs. 5(c) and 6(c) are different due to the presence of the RCM
effect.



AMIN et al.: 2-D RANGE AMBIGUITY SUPPRESSION METHOD 5203117

Fig. 5. Violation of signal reciprocity after RCM correction. Useful
signals denoted by a solid curve, the range ambiguous signals denoted
by dotted curves. Left and right signals separated by the range ambiguity
distance c · PRI/2, indicated by the vertical line: (a) six useful signals
s1–s6 after RCM correction; (b) range ambiguity in zero Doppler (area inside
the black box), the received signal is composed by s2 + s6; and (c) range
ambiguity in nonzero Doppler (area inside the black box), on the left the
received signal is s5 + s2, while on the right, the received signal is s6 + s3.

in numerical analysis (Section IV). This constraint arises
from the biased estimation of the kurtosis when dealing
with the limited amount of data [49]. It is worth highlight-
ing that the effectiveness of BSS strongly depends on an
accurate estimation of the kurtosis. Therefore, it becomes
essential to employ suitable approaches, such as the stack-
ing strategy in this case. Additionally, considering that
the range ambiguity problem is formulated as Doppler
dependent (as derived in Section II), it becomes desirable
to have a Doppler-dependent solution. In this case, the
azimuth subband decomposition strategy serves as a suitable
approach. The requirement for a Doppler-dependent solu-
tion is also driven by the presence of the RCM effect,
as in Section III-B.

The stacking strategy holds significant importance as it
provides a larger number of samples to optimize the BSS
performance, resulting in an unbiased estimation of the kur-
tosis. This requirement for a great number of samples is
particularly relevant when the data tend to have a Gaussian
distribution [49], and it is shown later in Section IV that
the non-Gaussian characteristic of the range-compressed data
is not adequately pronounced (as compared with the image
data). Consequently, accumulating as many samples as feasible
becomes preferable when dealing with the data that lack strong

Fig. 6. Reciprocity before RCM correction. Left and right signals separated
by range ambiguity distance c · PRI/2, indicated by the vertical lines. Useful
signals denoted by a solid curve, range ambiguous signals denoted by dotted
curves: (a) six useful signals s1–s6 before RCM correction; (b) range ambi-
guity in zero Doppler (area inside the black box), received signal composed
by s2 + s6; (c) range ambiguity in nonzero Doppler (area inside the black
box), received signal is composed by s4 + s1.

non-Gaussian traits. Stated differently, the stacking strategy
serves as a suitable approach for acquiring supplementary
samples from the limited azimuthal extension. The stacking
strategy consists in reorganizing the SAR data, used as input
for the BSS, and is proposed as follows:

DNaz×Nrg → DNsta Naz×Nrg/Nsta (23)

where D denotes the data, Naz and Nrg are the total number of
azimuth and range samples, and Nsta is the number of stacked
azimuth lines, with Nrg/Nsta being an integer number. The
output data, obtained after the application of the BSS, are then
organized in the original size. It is important to remark that
reorganizing the data means grouping together Nsta azimuth
lines, as illustrated in Fig. 7.

The optimum number of stacked azimuth lines must be
evaluated empirically, as a tradeoff between the following
contradicting requirements: on the one side, Nsta should be
large to increase the robustness of the BSS method; on
the other side, Nsta should be low in order to properly
estimate the range dependent variations of the SAR mixing
matrix.

The azimuth subband decomposition makes the pro-
posed approach Doppler-dependent, and is introduced in
order to account for: 1) the Doppler variations of
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Fig. 7. Stacking strategy for Nsta = 3.

the SAR mixing matrix and 2) the different, Doppler-
dependent, reciprocity configurations, associated with the
RCM (see Fig. 6).

It is worth to remark that the Gaussianity of the SAR
data is typically higher in the Doppler domain than in the
azimuth-time domain, due to the lower heterogeneity of the
signal. Indeed, the Gaussianity of the SAR data depends also
on the Doppler bandwidth: it increases for smaller Doppler
bandwidths, i.e., coarser azimuth resolutions (see Table II for
a numerical example). Accordingly, in order to optimize the
BSS performance, the BSS is always applied in the (range-
and azimuth-) time domain, rather than in the time-Doppler
domain. In particular, the azimuth subband decomposition is
implemented as follows (see Fig. 8): 1) the data are split
into Nsub Doppler subbands in time-Doppler domain; 2) the
data are transformed back into the time domain; 3) the BSS
method is applied; and 4) the subbands are composed again to
obtain the full Doppler bandwidth. The number of considered
Doppler subbands, Nsub, must be optimized empirically, based
on the following contradicting requirements: on the one side,
Nsub shall be high in order to account for the mentioned
Doppler-dependent variations; on the other side, Nsub must be
low to limit the Gaussianity of the SAR data. The complete
list of processing steps of the proposed method is illustrated
in Fig. 9.

Fig. 8. Subband decomposition strategy.

IV. NUMERICAL ANALYSIS

For the numerical analysis, let us refer to a DBF multi-
channel L-band SAR system, based on an array-fed reflector
antenna, as the one described in Section II. The main system
parameters are reported in Table I. The system is classified as
high-resolution wide-swath (HRWS). It exploits five SCORE
Rx beams, formed by activating sets of consecutive feed
elements, to simultaneously image five subswaths. The overall
swath extension on the ground is in the order of 300 km.
A PRF of 2700 Hz and a processed Doppler bandwidth
of 1348 Hz are used, in order to have a more noticeable effect
of Doppler-dependent range ambiguity and RCM, leading to
a 6-m azimuth resolution. Accordingly, five strong ambiguous
echoes are received from the imaged swath. The reference
system is designed in a manner similar to TDL [12], includ-
ing a Tx/Rx module (TRM) with a peak power of 143 W
and a reflector antenna with a 15-m diameter. The sim-
ulated data in this article are obtained using the SCORE
technique, just like the implementation in TDL. Such a sys-
tem design ensures a noise equivalent sigma zero (NESZ)
below −25 dB.

The received radar data are simulated, according to the data
model in (13), starting from the real-backscatter coefficients
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Fig. 9. Flowchart of the proposed method.

TABLE I
REFERENCE SYSTEM PARAMETERS

provided by a calibrated SAR image.4 In particular, as shown
in Fig. 10, the raw data, range compressed data with uncor-
rected RCM, range compressed data with corrected RCM,
and focused SAR image, are simulated. It is worth pointing
out that the high-resolution wide-swath image would have a
much higher number of samples than the SAR image used
in this simulation. The width of each subswath is determined
by c · PRI/2−c · Tp, where c · Tp refers to the blind range

4A single-SAR image of the TDX mission [50] has been used in this
first demonstration of the new multibeam ambiguity suppression technique.
A follow-on paper will provide a comprehensive in-depth investigation of the
achievable ambiguity reduction performance for different terrain types using
a large set of SAR data. The results from this comprehensive analysis are
then used to develop a multichannel BSS calibration strategy to estimate the
mixing coefficients in a robust manner over the whole swath and Doppler
band.

Fig. 10. Simulated SAR signals using a TanDEM-X (TDX) complex
SAR image [50]. (a) Raw data. (b) Range compressed data with RCM
correction. (c) Range compressed data with RCM. (d) Focused SAR image.
The horizontal axis indicates the range direction, and the vertical the azimuth
direction. For each case, five data segments are simulated, corresponding
to areas separated by the distance of ambiguity. The performance of the
proposed method will be analyzed later for the SAR data at different domains,
i.e., raw data, range compressed with RCM and without RCM, and focused
SAR image.

caused by the transmit event. The resulting width for each
subswath is 46 km, which is equivalent to 5830 SAR image
range samples after downsampling. To avoid border effects
during the generation of raw data for the corresponding image,
the width of each subswath is further extended by the pulse
duration (corresponding to 1368 samples) on both the left and
right sides, resulting in a total width of 8566 samples, includ-
ing the extensions. However, due to the limited availability
of SAR image data and to accelerate computation, only a
segment of 7.1 km for each subswath is simulated. Specifically,
the original SAR image is processed to obtain 4500 range
samples (900 range samples for each of the five subswaths).
The simulated segments are assumed to be spatially separated
by the distance of the ambiguity. Finally, it is essential to note
that each subswath is simulated and processed individually.

If not otherwise stated, and in order to obtain a realistic
representation of the received signals, the mixing matrix
in (13) is generated based on the antenna patterns of the TDL
mission [2], [12]. To validate the method, the TDL pattern
and its corresponding mixing matrix, as shown in Fig. 11,
are considered as the actual pattern and actual mixing matrix,
respectively. As can be seen, the mixing matrix is consider-
ably low, with off-diagonal values between 0.0002 and 0.25,
averaging at 0.05.

As regards the weak ambiguity signals sWA in (13), the sim-
ulated range-ambiguous SAR data include one weak ambiguity
from the far-range region and one weak ambiguity from the
near-range region, which is realistic since the gain of the Tx
pattern rapidly approaches zero as it moves outward from the
illuminated swath. Specifically, only the ambiguity in the very
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Fig. 11. Mixing matrix, ATDL, extracted from TDL DBF antenna patterns.
The blue vertical lines indicate the boundary between the simulated swath
segments.

far range is expected to have a relatively high value. This
reflects the imperfect attenuation of range ambiguities in the
far range by the Tx pattern.5 In fact, here the angular separa-
tion between useful signal and ambiguity reduces. As regards
the additive white Gaussian noise in (13), a realistic scenario
characterized by an SNR of 10 dB is considered.

The performance of the proposed method is evaluated with
reference to the SAR image quality, as the RASR of the
focused SAR image

RASR(k) =

∑Na−1
j=0

∣∣x ′′(k, j) − s ′′(k, j)
∣∣2∑Na−1

j=0 |s ′′(k, j)|2
(24)

where k denotes the range sample index; j is the azimuth
sample index; Na is the number of azimuth samples; x ′′(k, j)
is the complex value of the received image; and s ′′(k, j) is
the complex value of the useful image. When evaluating the
RASR after applying the method, the received image x ′′ is
replaced by the ambiguity-suppressed image ŝ ′′.

Before starting with the analysis of the performance of
the proposed method for range ambiguity suppression, a few
considerations about the Gaussianity of the simulated useful
source signals are presented. The Gaussianity is evaluated for
the simulated L-band source signals by using the complex
signal kurtosis (CSK) metric [51]: a zero CSK corresponds to
a complex Gaussian distribution; a negative to a sub-Gaussian;
a positive to a super-Gaussian [52]. Accordingly, when the
CSK values depart from 0, the signal is expected to become
less Gaussian, which is favorable for the method.

The obtained results are reported in Table II. It can be
seen that the RCM correction makes the data, both raw and

5The issue could be solved by either having a better shape of the Tx pattern
or adding an additional auxiliary Rx beam to collect appropriate data from
the far-range distance.

TABLE II
CSK FOR DIFFERENT KINDS OF SAR DATA

range-compressed, more Gaussian as compared with when
RCM is not corrected. Furthermore, raw data are more Gaus-
sian than the range-compressed data, while the focused SAR
image is significantly more non-Gaussian. Additionally, the
range-compressed data in the Doppler domain is considerably
more Gaussian as compared with the range-compressed data
in the azimuth-time domain. The Doppler bandwidth reduction
also causes the data more Gaussian, as shown by the lower
CSK value of the range-compressed data with reduced Doppler
bandwidth.

In order to investigate the dependence of the BSS perfor-
mance on the SAR data, it is useful to first refer to a very
simple mixing matrix, with no dependence on the range time
and Doppler frequency (25), as shown at the bottom of the
next page.

This is similar to the mixing matrix in the classical cocktail
party problem.

Fig. 12 shows for this simple and artificial case the per-
formance of the selected JADE BSS method, when applied
to the simulated received raw data (with and without RCM
correction), range compressed data (with and without RCM
correction), range compressed data in the range-Doppler
domain, and the focused SAR image. Specifically, it reports
the RASR in (24) for the simulated SAR image after the
application of the JADE BSS and, as a comparison, the
RASR of the simulated received SAR image. First of all,
from Fig. 12(a)–(d), it can be seen that the BSS method
achieves better performance when applied to (raw and range-
compressed) data without RCM correction, rather than to
data with RCM correction. Moreover, the BSS completely
fails, when applied to the focused SAR image, as shown
in 12(f). This can be justified by the reciprocity property,
which is violated after RCM correction and/or azimuth focus-
ing (see Section III). In order to further clarify the joint impact
of reciprocity and Gaussianity on the BSS performance, it is
useful to relate Fig. 12 with Table II. From Fig. 12(b) and (c),
it can be seen that the reciprocity may have a more pronounced
effect than Gaussianity: even if the raw data without RCM
correction in Fig. 12(b), compared with the range-compressed
data with RCM correction in Fig. 12(c), exhibits higher
Gaussianity, as indicated by the lower CSK value in Table II
(1.6 versus 1.71), they allow to achieve a better RASR sup-
pression. However, when no RCM is applied, the BSS achieves
better performance on the range-compressed data, rather than
on the raw data, as shown by Fig. 12(b) and (d). This can be
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Fig. 12. RASR performance for input SAR data simulated using ASIM. The
JADE BSS is applied to different SAR data domains. (a) Raw data with RCM
correction (CSK = 1.0). (b) Raw data without RCM correction (CSK = 1.6).
(c) Range compressed data with RCM correction (CSK = 1.71). (d) Range
compressed data without RCM correction (CSK = 1.96). (e) Range com-
pressed in the range-Doppler domain without RCM correction (CSK = 0.83).
(f) Focused SAR image (CSK = 8.41). The blue vertical lines indicate the
boundary between the simulated swath segments. The red curve shows the
RASR for the original simulated SAR image; the green curve shows the RASR
for the ambiguity-suppressed image (after applying JADE BSS method). In (f),
the red curve is covered by the green curve.

attributed to the lower Gaussianity of the range-compressed
data, compared with the raw data (CSK of 1.96 versus 1.6).
Fig. 12(e) shows a degradation in performance in the range-
Doppler domain. This is due to the high Gaussianity level
(CSK = 0.83) in the Doppler domain compared with the time
domain (see Table II). Overall, Fig. 12 indicates that the best

Fig. 13. RASR performance for input SAR data simulated using ATDL.
The JADE BSS is applied to range-compressed data with RCM. The blue
vertical lines indicate the boundary between the simulated swath segments.
The red curve shows the RASR for the original simulated SAR image; the
green curve the RASR for the ambiguity-suppressed image (after applying
JADE BSS method).

RASR suppression is achieved from the range-compressed
data with uncorrected RCM. From now on the performance
analysis refers to the range-compressed data with RCM.

Let us now evaluate the JADE BSS performance in the
reference scenario, i.e., by considering the realistic mixing
matrix ATDL obtained from the TDL antenna patterns [6].
The obtained results are reported in Fig. 13. It is worth
to remark that the off-diagonal elements have two relevant
characteristics (see Fig. 11): 1) their value strongly varies,
especially along the range direction and 2) they can reach
very low values of −35 dB. This makes the successful
application of the BSS method very challenging, as can be
seen in Fig. 13. The comparison between Figs. 12(c) and 13
further evidences the dramatic effect of the mixing matrix
on the BSS performance. These first results highlight that a
reliable evaluation of the BSS performance must be based
on a realistic mixing matrix. In particular, the strong 2-D
dependence of the SAR mixing matrix on range and azimuth
cannot be neglected (see Section II).

As shown in Fig. 13, a mere application of the BSS
does not allow suppression of the range ambiguities when
a realistic SAR mixing matrix is considered. Let us then
additionally apply the proposed stacking optimization strategy.
The obtained results are plotted in Fig. 14, for different
values of the number of stacked azimuth lines: Nsta = 0,

30, 100, 900. The improvement introduced by the stacking
strategy is evident.

The dependence of the RASR performance on the number
of stacked azimuth lines is further investigated in Fig. 15,

ASIM =


1 0.3 + 0.3 j 0.23 + 0.11 j 0.17 + 0.15 j 0.2 + 0.1 j

0.2 + 0.2 j 1 0.32 + 0.21 j 0.23 + 0.1 j 0.18 + 0.15 j
0.23 + 0.21 j 0.3 + 0.2 j 1 0.2 + 0.1 j 0.15 + 0.09 j
0.17 + 0.15 j 0.23 + 0.11 j 0.3 + 0.2 j 1 0.1 + 0.3 j
0.2 + 0.1 j 0.17 + 0.15 j 0.23 + 0.11 j 0.3 + 0.2 j 1

. (25)
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Fig. 14. Assessment of stacking optimization strategy by RASR performance.
The BSS is applied to the range-compressed data with RCM. The number
of stacked azimuth lines is: (a) Nsta = 0; (b) Nsta = 30; (c) Nsta = 100;
and (d) Nsta = 900.

Fig. 15. Average RASR performance versus number of stacked azimuth
lines. The BSS is applied to range compressed data with RCM.

by means of the average RASR

RASR =
1
Nr

Nr −1∑
k=0

RASR(k) (26)

where k denotes range sample index and Nr is the number
of range samples. Fig. 15 indicates the necessity of empirical
analysis when dealing with the stacking strategy due to con-
tradicting requirements (see Section III-C). Three conclusions
can be drawn: 1) until Nsta = 100, the stacking strategy results
in significant improvement in RASR performance, despite the
range-dependent variations of the SAR mixing matrix; 2) from
Nsta = 100, the degradation due to range dependent variations
surpasses the improvement; and 3) from Nsta = 450, the
degradation is comparable to the improvement. Fig. 15 shows
that the optimum number of stacked azimuth lines for this
system is 100. However, it is important to note that one could
avoid the stacking approach to obtain a sufficient number of

Fig. 16. Assessment of azimuth-sub bands decomposition strategy by RASR
performance. The BSS is applied to the range-compressed data with RCM.
The stacking strategy (Nsta = 100) and the number of azimuth subbands is:
(a) Nsub = 1; (b) Nsub = 3; (c) Nsub = 7; and (d) Nsub = 15.

Fig. 17. Average RASR performance versus number of azimuth subbands.
The BSS is applied to range compressed data with RCM.

data samples and use instead more data in azimuth from longer
data takes when available.

Let us now include also the azimuth subband decomposi-
tion. The obtained results are shown in Fig. 16, for different
values of the number of subbands: Nsub = 1, 3, 7, 15. The best
result is achieved for Nsub = 7, as can be seen by comparing
Fig. 16(a) and (c). In particular, around the slant range of
790 and 840 km, the improvement for Nsub = 7 is about 8 dB
compared with the case of Nsub = 1.

Fig. 16 highlights also that the RASR is worse in the
far-range subswath compared with the RASR in the other sub-
swaths. This is due to the contribution of the weak ambiguity
in far range, which is still significant enough for this subswath.

The obtained results show that the azimuth subbands pro-
duce a lower improvement in the performance, compared
with the stacking strategy. This is justified by the fact that
the antenna pattern values, weighting the ambiguous signals,
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Fig. 18. Comparison of the proposed method with others, considering data
with: (a) SNR = 15 dB and (b) SNR = 10 dB. The orange curve represents the
sidelobe-constrained MVDR [53], the blue curve indicates SOBI BSS in [23],
and the green curve represents the proposed method. The spatial separation
between the simulated swath segments is not visualized.

already help suppress the range ambiguity components in the
nonzero-Doppler region.

The dependence of the RASR performance on the number of
azimuth subbands is further investigated in Fig. 17, by means
of the average RASR. The impact of the number of azimuth
subbands on the RASR performance can be associated with
four aspects: the variation of ATDL along the Doppler direction,
the RCM, the gain of the antenna pattern in nonzero Doppler,
and the statistics of the subband data. Based on this analysis,
two conclusions can be drawn: 1) until Nsub = 7, the
improvement due to the variation of ATDL and RCM effect,
as discussed in Section III, outweighs the degradation due
to the increased Gaussianity within the subband data and
2) beyond Nsub = 7, the degradation is greater than the
improvement. Accordingly, the optimum number of azimuth
subbands for this system is 7. In particular, for Nsub = 7 and
Nsta = 100, the proposed method achieves an improvement of
range ambiguity suppression of 6 dB on average.

Upon comparing Figs. 15 and 17, it becomes evident that
the RASR performance improvement achieved through the
stacking strategy is considerably greater than that obtained
from the azimuth subband decomposition strategy. This is due
to the effectiveness of the stacking strategy in providing a
large number of data, which is a significant factor responsible
for improving the performance of the BSS technique. Addi-
tionally, it is worth mentioning that the optimum number of
stacked azimuth lines and azimuth subbands depends mainly
on the assumed antenna patterns. Specifically, on how the
main-to-sidelobe ratio changes versus range and azimuth.
Accordingly, the obtained values should be valid also for
similar antenna architectures.

V. DISCUSSION

To highlight the advantage of the proposed method over
other range ambiguity suppression techniques, various compar-
isons are presented. Foremost, it is essential to inform that the
accurate information about the antenna pattern is crucial for
the successful implementation of most other range ambiguity
suppression methods. One of the sources of inaccuracies in
the antenna pattern knowledge arises from digital channel
errors. An investigation conducted in [53] reveals that when
using the sidelobe-constraint MVDR technique to suppress

Fig. 19. Simulated SAR images. (a) Ambiguity-free image. (b) Ambiguous
image. (c) Ambiguity-suppressed image. The horizontal axis indicates the
range direction, the vertical axis azimuth. The spatial separation between the
simulated swath segments is not visualized.

range ambiguities, where digital channel errors are present,
the range ambiguity suppression performance can degrade by
up to 10 dB for array-fed reflector antennas and up to 30 dB
for planar antennas.

Another range ambiguity suppression technique, LCMV
null-steering, is also addressed in [15], considering the impact
of topographic errors. These topographic errors can cause a
mismatch in the null steering, which is typically positioned
in the direction of range ambiguity. In the example provided
in [15], a terrain height offset of 1.5 km results in a significant
increase in ambiguities, up to −17 dB.
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The examples of the MVDR and LCMV techniques previ-
ously mentioned only focus on specific errors, namely, digital
channel error and topographic error, respectively. However,
it is important to recognize that there are many other errors
that collectively contribute to the inaccuracy of the actual
antenna pattern in real-world scenarios. Some of these errors
include thermoelastic deformation [54], pattern uncertainty,
pulse extension loss, pulse extension over range, and pulse
bandwidth [55]. When all these errors are considered, one
could reasonably expect that the actual antenna pattern devi-
ates significantly from the ideal pattern, potentially leading
to a significant degradation of range ambiguity suppression
performance.

APC is another type of technique [7] that can be influenced
by the knowledge of the antenna pattern. Additionally, the
technique is affected by the oversampling factor [8]. In con-
trast, the proposed method exhibits performance independence
with respect to the oversampling factor. This means that the
method’s effectiveness remains consistent, regardless of the
specific oversampling factor, making it less susceptible to
variations in the multichannel configuration. Another phase
encoding technique, known as waveform-encoded SAR [56],
is specifically suitable for scenarios with a very high range
ambiguity-to-signal ratio, which are not common in real-world
scenarios.

The multifrequency subpulse (MFSP) method [57] exploits
the radar signal bandwidth to increase the imaged swath
extension, without the emergence of range ambiguities. This
technique does not rely on knowledge of the antenna pattern.
Nevertheless, it is designed for burst modes (ScanSAR/TOPS)
and may not be well-suited for imaging a very wide swath
with high resolution in the stripmap mode, due to limitations
imposed by the power constraints and by the available signal
bandwidth.

Furthermore, it is also worth recalling that the significance
of this article is also referred to its adoption of a realistic
data model for formulating the range ambiguity problem.
Specifically, the model employs a complex-valued mixing
matrix with dependencies in both range-time and Doppler-
frequency directions, in contrast to the approach in [22]
and [23], which utilizes a real-valued mixing matrix and
incorporates only stationary values. Moreover, as explained
in Section III, the proposed higher order BSS is expected
to provide a better robustness to noise, compared with a
second-order BSS approach, as the one in [22] and [23].

In order to further, numerically, clarify the advantages of the
proposed method, it is useful to refer to Fig. 18. Here, two
methods for range ambiguity suppression are considered as
relevant benchmarks: the sidelobe-constrained MVDR in [53],
which requires the knowledge of the antenna pattern; the
BSS approach-based second-order blind identification (SOBI)
in [23], that does not need any knowledge of the antenna
pattern. To ensure more realistic input data, that account for
inaccuracies in knowledge of the antenna pattern, digital chan-
nel errors are included, with phase error standard deviation
levels σζ = 40◦ and magnitude standard deviation levels
σξ = 0.2, as described in [53]. Furthermore, two scenarios
with different noise levels are simulated: one with a mean

SNR of 15 dB and one with 10 dB. It is important to note
that both SNR values are realistic for advanced HRWS L-band
systems with an NESZ of −25 dB, considering that SAR
data can have varying SNR values depending on incident
angle and polarization type [58], [59]. The obtained results
are reported in Fig. 18(a) and (b), respectively, for the case
of SNR = 15 and 10 dB. They show that that the proposed
method outperforms the other ones in both the simulated
scenarios. In particular, an improvement up to 10 dB in the
near range can be achieved. Moreover, as expected from [36],
[37], and [38], the proposed method demonstrates a higher
robustness against noise than the BSS based on SOBI in [23]:
even in the case where the data is noisier, i.e., SNR = 10 dB,
the proposed method continues to perform well, whereas the
method in [23] show a degradation up to about 3 dB.

Finally, a qualitative assessment of the achieved ambiguity
suppression is provided in Fig. 19. It shows a compari-
son between the simulated ambiguity-free SAR image, the
ambiguous SAR image with an average RASR of 15 dB,
and the ambiguity-suppressed SAR image (the spatial sep-
aration between the simulated swath segments is here not
visualized, for simplicity). To highlight the achieved ambiguity
suppression, a closer view of the areas marked by red boxes
is taken. These show the noticeable improvement achieved by
the proposed method, especially over backscattering surfaces,
characterized by a low intensity, such as the sea, affected by
a strong ambiguous disturbance.

VI. CONCLUSION

This article tackles the problem of range ambiguity sup-
pression in advanced high-resolution wide-swath SAR systems
employing multiple elevation beams.

The range ambiguity suppression is mathematically
described as a 2-D problem and it has been shown that there
exists a close connection to the cocktail party phenomenon.
In particular, for the first time, the range-time and Doppler-
frequency dependence of the received signals is included in the
multichannel data model by using an equivalent 2-D antenna
radiation pattern that accounts for both the pattern variations
in azimuth and the time-dependent beamforming in elevation.
To suppress the range ambiguities, a novel solution, based on
the higher order BSS, is presented. The method is applied on
ground, without impacting the SAR instrument complexity.
The performance of the proposed method is numerically
analyzed, with reference to an array-fed reflector antenna
SAR system, by simulating a realistic acquisition scenario.
To this aim, real-SAR data and the actual antenna patterns
of the TDL mission proposal are considered. The obtained
results show that the proposed method can improve the average
range ambiguity-to-signal ratio by about 6 dB. An even larger
improvement is expected for low intensity backscattering
surfaces, like that of the sea, typically characterized by a
high-range ambiguity disturbance. These promising results
demonstrate that the proposed method provides a new and
effective tool for range ambiguity suppression in SAR systems
operating with multiple elevation beams. A systematic and
in-depth performance comparison for a variety of different
SAR scenes will be the subject of a follow-on paper together
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with the development of an associated calibration strategy for
multichannel SAR systems.
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