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Abstract
Dialectic mechanics was introduced as an approximative
modeling alternative to the classic Newtonian formulation
of mechanics. It allows for additional freedom in placing
a systems eigenvalues to facilitate simulation of systems,
that are not suitable for most integration methods, when
modeled according to the classic approach. The origi-
nal idea of dialectic mechanics enables the suppression of
high frequencies, but may still yield very stiff systems un-
suitable for explicit integration methods. An additional
term is added to enable real-time simulation with explicit
methods. The goal of this paper is an analysis of the result-
ing equations and a comparison to the classic Newtonian
formulation, aiming for an understanding of which appli-
cations most benefit from using dialectic mechanics.
Keywords: simulation, stiff systems, dialectic mechanics,
real-time

1 Introduction
Industrial robots are designed to move precisely and re-
peatably in the presence of external forces, leading to sys-
tems that are built stiffly. These properties pose problems
during simulation, since both within the robot itself as well
as in its interaction with the environment stiff springs are
an obvious choice for the modeler. While considering the
robots gear stiffness does not require special care, simu-
lation performance takes a significant hit, when the struc-
tural parts are explicitly modeled as flexible bodies with a
stiffness a few orders of magnitude higher.

Another challenge is the simulation of a process, that
requires the robot to touch a non-compliant object or en-
vironment. An example is the standard robot task of grip-
ping an workpiece and moving it. One way to include the
contact dynamics in the existing Modelica models would
be to model the contact between gripper and object as a
stiff spring and locking both parts together with friction.
As the simulation performance with realistic parameters
is unacceptable for most use cases of the model, approxi-
mations are usually necessary. Just reducing the stiffness
might get the simulation to run well, but has unwanted side
effects like larger oscillations and changed equilibriums.

Being able to simulate such processes in real-time
would enable model use cases like model predictive
control, virtual commissioning and Hardware-in-the-loop
testing. In these applications the bandwidth of interest is
often limited and well below the eigenfrequencies of very
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Figure 1. Concept drawing of damped dialectic mechanics. Ad-
ditionally to the first order filter a damper connects elastic and
kinetic domains.

stiff objects. Removing high frequency oscillations with
small amplitudes, that are not relevant to the models pur-
pose, is the main goal of dialectic mechanics.

1.1 Real-Time simulation of stiff systems
Stability is an essential property in both system dynam-
ics as well as solver methods. Even if a system is sta-
ble, simulating it stably require a careful choice of solver
method and step size. For a lot of solver methods stability
regions can be calculated, in which a systems eigenval-
ues have to be for a stable simulation. Although Higham
and Trefethen (1993) indicate looking at eigenvalues is
not enough in some cases, stability regions provide a use-
ful tool for most systems in explaining problems with
stiff systems. Higham and Trefethen (1993) summarized
the essence of stiffness of Ordinary Differential Equations
(ODE) as the case, when "Stability is more of a constraint
than accuracy". A remark earlier made by Hairer and
Wanner (1991) states, that "Stiff equations are problems
for which explicit methods don’t work". A remedy for
this is the usage of implicit methods as pointed out by e.g.
Dahmen and Reusken (2008). The authors mention back-
ward differentiation formula (BDF) methods as especially
useful, as well as higher order implicit Runge-Kutta meth-
ods.

When adding the requirements for real-time simulation,
the number of suitable integration methods reduces signif-
icantly. The analysis in Cellier and Kofman (2006) comes



to the conclusion, that mostly low-order explicit methods
fulfill the need for predictable, bounded execution times.
This creates a dilemma when planning to simulate a stiff
system in real-time. Two ways around this fact proposed
in Cellier and Kofman (2006) are linear implicit methods
and multi-rate integration which requires slow and fast dy-
namics to be contained in discernible subsystems. Arnold,
Burgermeister, and Eichberger (2007) mention the possi-
bility of having dedicated real-time models neglecting stiff
terms. This comes with the disadvantage of having to keep
all models consistent.

1.2 Extending the equations of dialectic me-
chanics

Figure 1 shows a concept drawing of a dialectic mass-
spring-damper-system. Although it cannot be used to de-
rive the equations because of the way forces are split up
between components it is helpful to explain the general
idea of dialectic mechanics. The system is split into a
massless elastic part on top and a kinetic part below. Both
parts are connected by a first order filter that allows for
low frequency interaction, but reduces high frequency ef-
fects. In addition to the system introduced in Zimmer and
Oldemeyer (2023) a damper is placed between the elas-
tic and kinetic parts. The resulting behavior, beneficial for
real-time simulation as will be shown in the following sec-
tions, limits high-frequency energy transfer within the two
domains.

The additional damper extends the equations presented
in Zimmer and Oldemeyer (2023) and is marked with
squared brackets in Equation 1b:

ds
dt

= vel (1a)

fel =−cs+mg [−del (vel − vki)] (1b)
dvki

dt
=

(vel − vki)

TD
(1c)

fki =−m
dvki

dt
−dvki (1d)

fel + fki = 0 (1e)

1.3 Content

Based on the change to the dialectic equations this publi-
cation will analyze and illustrate the properties of damped
dialectic mechanics. In section 2 the eigenvalues of the
dialectic mass spring damper system are formulated and a
choice for the added damping parameter is derived. Sec-
tion 3 compares the properties of damped dialectic me-
chanics with the standard modeling approach, before sec-
tion 4 illustrates the contents of the previous sections with
simulation examples implemented in Modelica. In the end
section 5 provides a summary and an outlook towards re-
maining work.
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Figure 2. Illustration of the eigenvalue limitation of dialectic
mechanics with added damping as shown by Equation 18. All
eigenvalues are transformed into the gray area.

2 Properties of damped dialectic me-
chanics

For an understanding of what effect damped dialectic me-
chanics has on a system’s dynamics Equation 1 can be
combined to form a second order differential equation.

(m+delTD) v̈ki +(d + cTD) v̇ki + cvki = 0 (2)

The eigenvalues λ ′ of the dialectic system are:

β
′ =

d + cTD

2(m+delTD)
(3a)

ω
′
d =

√√√√√β
′2 − c

m+delTD︸ ︷︷ ︸
D′

(3b)

λ
′ =−β

′±ω
′
d (3c)

Based on these equations it is interesting to derive limits,
within which the eigenvalues of the dialectic system lie.
The maximum absolute value of the eigenvalues is derived
differently depending on whether they are real-valued or
complex-valued.

∣∣λ ′∣∣=

∣∣∣−β

′−
√

D′
∣∣∣ , D′ ≥ 0 (4)∣∣∣−β

′± i
√
−D′

∣∣∣ , D′ < 0 (5)

Considering the assumptions made in Figure 1 the second
term of D′ is always positive, which in the first case leads
to the upper bound

β
′2 ≥ D′ (6)

With this upper bound Equation 4 is limited to∣∣∣−β
′−

√
D′
∣∣∣= ∣∣β ′∣∣+ ∣∣∣√D′

∣∣∣ (7)

≤
∣∣2β

′∣∣ (8)∣∣2β
′∣∣= d +TDc

m+delTD
(9)
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Figure 3. Dialectic transformation of eigenvalues for three different magnitudes of undamped eigenfrequecies. Original eigenval-
ues (�) are created by increasing damping in a system with a chosen undamped eigenfrequency. For each pair of original eigenvalues
the dialectic eigenvalues (×) are calculated based on Equation 3. The area to which transformed eigenvalues are constrained is
marked by the same gray (cut-off) semicircle in all figures corresponding to the chosen TD = 1×10−5 s. Each figure zooms in by a
factor of 10 when going from 3a to 3c.

In order to come to a useful conclusion, a suitable choice
for del is necessary. Setting del = d + cTD and using the
assumption m > 0 again, results in

d + cTD

m+delTD
=

d + cTD

m+(d + cTD)TD
(10)

<
d + cTD

(d + cTD)TD
(11)

d + cTD

(d + cTD)TD
=

1
TD

(12)

In the second case the absolute value simplifies to∣∣∣−β
′± i

√
−D′

∣∣∣=√
(−β ′)2 +
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)2
(13)

=

√
c
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With the same choice for del as in the first case and the
strict inequalities m > 0 and dTD > 0 this results in an
upper bound for the absolute value of the eigenvalues√

c
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√
c
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(15)
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c
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As a result Equations 4 and 5 can be replaced by the sim-
ple limitation of the absolute value of the eigenvalues of

the dialectic system:∣∣λ ′∣∣< 1
TD

∀ m,d,c,TD > 0 (18)

Together with the fact that β ′ > 0, which can be seen from
Equation 3a, Equation 18 enables the user to specify a
half-circle in the left half-plane in which all eigenvalue
of the dialectic system lies. The imaginary axis is not part
of the half-circle. An illustration is presented in Figure 2.
The radius depends only on one design parameter TD, that
can be adjusted to fit the stability requirements for a cho-
sen solver-method and step size.

Figure 3 illustrates the qualitative difference in the di-
alectic modification of eigenvalues depending on the scale
of the original eigenvalues. The original eigenvalues in
Figure 3c, lying well within the gray area, are changed
relatively little. In the middle figure, where the original
eigenvalues are of the same magnitude as the limit, the
transformation is considerably more obvious. Note that all
original real-valued eigenvalues become complex-valued.
For the highest magnitude, depicted on the left, the trans-
formation is very aggressive and shoves all eigenvalues
into the same region of the limit semicircle.

Another interesting observation is visible in the en-
larged part of Figure 3a. The real part of the transformed
eigenvalues are all very similar and appear to be bounded
by

β
′ <

1
2TD

(19)

This is explained by the steps taken to get from Equation 8
to Equation 11. The omission of m goes from just leading



to a valid inequality to being a decent approximation, if the
mass is far smaller than the rest of the denominator. This is
the case here, because of the fixed, high undamped eigen-
frequencies used to create the original eigenvalues. The
same is true for the inequality 18. Hence, when the un-
damped eigenfrequencies are increased even higher than
in the left picture, all transformed eigenvalues trend more
and more towards

λ
∗ =− 1

2TD
± i

√
3
4

1
TD

(20)

For systems with low stiffness and high damping however
this is not the case and there the transformed eigenvalues
stay real-valued and move towards

λ
† =− 1

2TD
± 1

2TD
(21)

Generally the properties of damped dialectic mechanics
discussed in this section are advantageous for real-time
simulation with explicit solvers. The semicircle boundary
provides a solid assumption about the placement of the
eigenvalues even in complex systems and is easily config-
ured by a single global parameter. A difference in mag-
nitude of 100 is enough to have a strong reduction in the
fast dynamics without changing the slow dynamics signif-
icantly. This behavior gets more pronounced, when there
are more orders of magnitude between fast and slow dy-
namics. Of course the user has to check in every applica-
tion, whether the model still fulfills its purpose with the
changes made to the system. This check, however, can be
conducted in an easy manner since the library enables the
global setting of TD. A corresponding sensitivity analysis
is thus quickly performed.

3 Comparison to the classic Newto-
nian formulation

Formulating the eigenvalues of a regular mass spring
damper system analogous to Equation 3 gives:

β =
d

2m
(22a)

ωd =

√
β 2 − c

m
(22b)

λ =−β ±ωd (22c)

A comparison of the eigenvalue equations shows that the
difference between Newton and dialectic mechanics can
be viewed as a modification of damping and mass, while
the stiffness remains untouched.

m′ = m+delTD (23a)
d′ = d + cTD (23b)
c′ = c (23c)

del = d + cTD (23d)
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Figure 4. Changes in eigenvalues from original eigenvalues (×),
when increasing d (�) or increasing TD (+) and stability regions
of selected integration methods. Systems are simulated stably, if
their eigenvalues lie within the plotted contours.

Results of numerical experiments related to this observa-
tion will be presented in subsection 4.1. Notice that with-
out the additional damper introduced in Equation 1b the
modification is limited to the damping parameter.

The design parameters del and TD allow a modification
of the system dynamics without explicitly changing the
values of m and d. Thus effects like gravity can still be
calculated based on the original values. This is beneficial,
as it prevents also changing the steady state of the system.

An advantageous choice of the additional damper pa-
rameter is del = d + cTD, as shown in section 2. With this
choice the eigenvalues of a stiff system with little damping
are modified depending on the remaining design parame-
ter TD as shown in Figure 4. While the imaginary part
of the eigenvalues becomes smaller with every increase in
TD, the real parts absolute value increases at first before
decreasing again as the dialectic transformation gets more
and more aggressive. In general the transformed eigen-
values show a strong trend towards the included stability
regions of the solver methods.

Figure 4 also shows what happens, if just the damping
of the original system is increased. As can be seen from
Equation 23b for a single pair of eigenvalues this is equiv-
alent to the modification done by dialectic mechanics as
presented in Zimmer and Oldemeyer (2023) without the
additional damper. The values of d were chosen based on
the varied TD according to Equation 23b to get a better
comparison between the two approaches. Since the trans-
formed eigenvalues travel along the semicircle with radius
of the eigenfrequency of the original system, they circum-
vent the solver stability regions of the explicit solver meth-
ods. This modification however is sufficient for the use of
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Figure 5. Two masses coupled by a spring as implemented by
example model in subsection 4.2

implicit methods, because it effectively lower the imagi-
nary part of the eigenvalues, thereby suppressing high fre-
quencies.

4 Modelica examples
In order to verify the theoretical results derived above, ex-
ample Modelica models are built with the dialectic planar
mechanics library introduced in Zimmer and Oldemeyer
(2023). The models are simulated using Dymola.

Equations 1b and 23d are added to the elastic compo-
nents, for which they are relevant.

4.1 Spring Damper System
Section 3 showed, that dialectic mechanics can be viewed
as a modification of the parameters of the Newton system,
for a simple mass spring damper system. To verify this the
system is built twice, once with the Modelica Standard Li-
brary (MSL) and once with the Dialectic Planar Mechan-
ics Library (DPM) introduced in Zimmer and Oldemeyer
(2023).

Table 1 lists the parameters used. The parameters on the
right have been calculated according to Equation 23. Both
models are simulated with the same solver settings using
an explicit fixed step solver. Dymola’s Linear Analysis
feature confirms, that both models have the same eigen-
values. The masses return to their equilibrium from the
same starting position.

When comparing the masses trajectory, a first order fil-
ter with time constant TD is required for the position s in
the dialectic model to receive the exact same output in
both models. This raises the question of whether to in-
clude first order filters in sensor implementations in the
DPM library.

Table 1. Parameterizations of Spring Damper models

DPM MSL

m = 1kg m = 2.1kg
d = 100 Ns

m d = 1100 Ns
m

c = 1×106 N
m c = 1×106 N

m
TD = 0.001s -

4.2 Moving two stiffly coupled masses
An example showing the capability of dialectic mechanics
to use stiff springs as a means for force transfer is shown
in Figure 5. Two bodies are connected by a stiff spring. A
force f of 10N is applied to m1 in such a way that it results
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Figure 6. Simulation results for DPM and MSL model of the
system in Figure 5. Plotted is an excerpt of the respective spring
forces beginning with a step of the applied force f from 10N
to 0N. Under the assumption that the modeler is mainly in-
terested in the macroscopic movement of the bodies, accuracy
in the high-frequency oscillations is not necessary to fulfill the
models purpose.

in a point-to-point motion of both bodies. The forces act-
ing between both bodies in the DPM model are compared
with the corresponding forces in the MSL model. Since
elastic and kinetic forces are separated in the DPM library,
the spring forces are calculated within the spring compo-
nent from the stiffness and the displacement. In contrast
to the previous example the MSL model is parameterized
with the same values as the DPM model. The stiffness c is
chosen together with the step size of the 3rd order Runge-
Kutta method to bring the MSL model close to the border
of the stability region. Figure 6 shows an excerpt of the
simulation results. The dialectic model reacts slower to
the start of the movement and oscillations of the force val-
ues die down much quicker towards a value of zero than
in the other model. Note that the oscillations in the MSL
model are damped as well despite there being no damp-
ing modeled. The damping is introduced by the solver
method itself as described by Cellier and Kofman (2006).
Looking at the mean value of the difference between both
signals, which is close to zero, verifies that the dialectic
model approximates the MSL model well by filtering the
high frequency oscillations. Although they have a high
amplitude, these oscillations have little effect on the large
movement of the two bodies. The oscillations are visible
in the difference between both bodies’ positions, but their
final positions are exactly the same.

After establishing the difference between MSL and
DPM models, it is time to make use of the advantages
of the DPM model and increase the stiffness beyond what
the MSL model could do without changing solver settings.
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Figure 7. Simulation results for DPM model of two stiffly coupled masses for different values of the spring stiffness. Plotted are
the differences of position between the two masses. The values have been scaled for the stiffer simulation runs by 1 ·106 and 1 ·1012

to have all curves in the same order of magnitude.

The order of magnitude of the spring stiffness is doubled
and tripled in successive simulation runs. While the MSL
model becomes unstable with these settings, the dialectic
simulates as expected as Figure 7 shows. The difference
in the masses positions gets smaller as expected, when in-
creasing the stiffness. In the plot this has been adjusted
by applying scaling in order to focus on the transient be-
havior. The small change in dynamics fits the observation
formulated in Equation 20. A TD of 0.001s leads to a limit
period of 0.00725s, which is roughly the distance that can
be measured between minima in Figure 7.

4.3 Performance considerations
The strength of damped dialectic mechanics mainly lies
in enabling the simulation with settings, that would oth-
erwise be unstable. More equations and variables lead
to a higher computational cost for function evaluations.
First observations indicate an increase of approximately
20% in the dialectic example models used in this section,
when compared to the MSL ones. Hence using the dialec-
tic model for systems suitable for simulation with classic
MSL models might slow down simulation.

Variable step solvers in combination with stiff sys-
tems benefit from using the dialectic approach by enabling
larger step sizes. Once the number of necessary function
evaluations decreases significantly, a simulation speed-up
is observed.

5 Discussion
Summing up the previous sections, damped dialectic me-
chanics appears to be a powerful tool for simulating
models including challenging eigendynamics with explicit
solvers. The central result is the guaranteed limit to the
absolute value of the transformed eigenvalues. Since this
limit is configured via a single parameter adaption to dif-
ferent use-cases should be straightforward. Heavily modi-
fying fast dynamics, while largely keeping slow dynamics
the same is another beneficial property. The integration
into the Dialectic Planar Mechanics library enables fur-
ther exploring example applications within existing tools.

Additional attention should be dedicated to more complex
systems and how dialectic mechanics works within higher
order or nonlinear systems.

For robotic applications a 3D implementation of dialec-
tic mechanics is necessary. Especially the inclusion of 3D
rotations might introduce different challenges, that require
addressing. Existing models will need to be rebuild for
use with dialectic mechanics. To avoid this the feasibility
of automatic model transformation or adapters between a
MSL and a DPM part in one model should be checked.
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