UTILIZING JOINT TSX-PAZ ACQUISITIONS FOR IMAGING OF ANTARCTIC GLACIER GROUNDING LINES

Lukas Krieger, Dana Floricioiu Institut für Methodik der Fernerkundung (DLR)

2023-10-19 TerraSAR-X/TanDEM-X Science Team Meeting, DLR Oberpfaffenhofen

Glacier grounding lines

Double difference technique

Quadruplet case:

Triplet case:

Existing grounding line products

 ESA's Antarctic climate change initiative
ERS – Sentinel-1 – TSX

MEaSUREs programERS – ALOS – Radarsat – (CSK)

 Dedicated individual efforts targeting single glaciers with other constellations

Pine island glacier – existing grounding line products

High ice velocity causes fast decorrelation

Incoherent Sentinel-1 6 day DInSAR combination

Coherent ERS 3-day DInSAR combination

Especially for some of the faster glaciers, the only available InSAR observations of the grounding line have been acquired during the ERS Tandem phases (1991/92, 1994 and 1995/96).

Regions of interest

- Especially the fastest glaciers are difficult targets with current constellations
- The fastest glaciers are scientifically most interesting and potentially contribute to rapid sea level rise
- Problems are: temporal decorrelation (deformation) located in S1 pole hole (need for left looking capabilities)

TSX/PAZ constellation

- In May 2021, a joint AO of DLR and the Spanish National Institute of Aerospace Technology (INTA) was released
- Temporal baseline reduced to 4 days

Constellation	Repeat pass time interval [days]	Resolution [m]	Band
Sentinel-1	6/12	5m x 20m	C-band
TerraSAR-X (TSX)	11	3m x 3m	X-band
ERS	3/1	8m x 4m	C-band
TSX/PAZ	4/7	3m x 3m	X-band
COSMO-SkyMed	1	3m x 3m	X-band
Radarsat-2	24	12m x 5m	C-band
NISAR	12	3-10m	L-band
ICEYE	1	3m x 3m	X-band
	_	0111710111	

First results – Smith glacier

- A dense fringe belt is characterizing the flexure zone
- The grounding line has retreated compared to previous ERS measurements
- Key to imaging the grounding line maintaining coherence

Conclusions

- Interferometric capability of the sensors TSX and PAZ has been demonstrated
- On Smith glacier the grounding line has retreated approx. 4km since it has last been imaged with ERS in 2011
- The TSX/PAZ constellation provides a unique opportunity to regularly image the grounding line with short temporal baselines
- The temporal baseline is reduced to 4 days which remains a rare opportunity in current constellations
- On some fast glaciers the last InSAR observations date back to the ERS tandem phase

Outlook & Recommendations

Future acquisition plan

- Exploit the scientific capabilities of the TSX/PAZ constellation and image the glacier grounding line for all fast glaciers
- Start a targeted & coordinated effort to cover the grounding zone

Open science questions:

- Analyse seasonal coherence variations in the regions of interest to inform a possible future campaigns
- Comparison of coincident grounding line observations with Sentinel-1 or TSX/PAZ on slower glaciers

Proposal IDs:

HYD3790

AO-003-004