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Introduction
A significant reduction of aircraft drag could be attained by achieving laminar flow on wings. The
need to control the laminar-turbulent transition process in swept-wing flows motivates the rese-
arch on three-dimensional boundary layers. Laminar-turbulent transition in swept wing boundary
layers is often initiated by stationary or travelling crossflow instabilities. At low levels of free stream
turbulence such as those in free-flight conditions, the transition process of three-dimensional flows
is known to be dominated by stationary crossflow vortices. Those vortices redistribute momentum
across the boundary layer and result in a distortion of the otherwise spanwise invariant boundary
layer. The distorted boundary layer is characterized by strong shear layers and is prone to the
growth of secondary instabilies that finally trigger the laminar breakdown.
The secondary instability problem of crossflow vortices can be studied with different approaches.
Koch et al. [1] used secondary instability theory and modelled the saturated crossflow vortices by
nonlinear equilibrium solutions. Groot et al. [2] employed two-dimensional linear stability theory
(LST-2D) to study an experimentally measured baseflow. Then, Casacuberta et al. [3] compared
the secondary instability modes computed with LST-2D with the ones extracted from an unsteady
direct numerical simulation (DNS). The LST-2D equations were derived in a non-orthogonal coor-
dinate system following the approach of Li and Choudari [4]. In this work, we go beyond established
approaches by employing both LST-2D and plane-marching parabolized stability equations (PSE-
3D) in a non-orthogonal coordinate system, validating these methodologies through a comparative
study with DNS results.

Numerical approach
A DNS computation of a swept-wing configuration was carried out with Nek5000 in a separate
study, providing both the distorted base flow and the data for the secondary instability analyses.
The NOLOT/LST-2D and NOLOT/PSE-3D codes have been employed to analyse the distorted
baseflow. The former is a local approach, which solves a generalized eigenvalue problem, the latter
is a nonlocal approach which is solved by a marching procedure in streamwise direction taking
into account the upstream flow information to march downstream.
To overcome the well known dilemma of the extraction procedure for the baseflow to use for
the stability analysis [5] the LST-2D/PSE-3D approach has been formulated in a non-orthogonal
coordinate system. This formulation simultaneously allows for the fulfillment of the periodicity in
the spanwise direction and accommodates the slow variation of the baseflow in the out-of-plane
direction required by the PSE-3D. In this study the aforementioned direction is taken to be the
one along which the derivative in the streamwise direction is the lowest, which closely resembles
the crossflow vortex axis direction.

Results
The instability results (LST-2D and PSE-3D) are compared against the DNS data in Figures 1
and 2 for a type III secondary instability for a frequency of 900 Hz. This type of secondary
instability is dominant in the near-wall region and can be interpreted as low-frequency travelling
crossflow instabilities which are modulated by the presence of the stationary crossflow vortices.
The integrated amplification rate versus the dimensionless surface arc length is shown in Figure 1.
It can be noted that the LST-2D computation underpredicts the values attained in the DNS, while
switching to a marching procedure (PSE-3D) allows for a more accurate match until station x/δ0



≈ 650, where transition to turbulence starts to take place. In Figure 2 the normalized magnitude
of the streamwise velocity amplitude function (|û|/|ûmax|) is shown for LST-2D (left) and PSE-3D
(right) at a station x/δ0 ≈ 450. Also, the PSE-3D approach yields improvements in the resulting
amplitude function compared to the LST-2D solution, demonstrating a generally good match with
the DNS data. Further analysis will be presented during the workshop.
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Figure 1: n-factor curves versus x/δ0 for a type III secondary instability for a frequency of 900 Hz
for: DNS (red dots), LST-2D (blue squares) and PSE-3D (yellow triangles). δ0 is the displacement
thickness at the first station of the instability computation.
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Figure 2: Normalized magnitude of the streamwise velocity component amplitude function
(|û|/|ûmax|) for a type III secondary instability for a frequency of 900 Hz at x/δ0 ≈ 700. DNS
(filled contour) compared with LST-2D (left) and PSE 3D (right) both represented in solid purple
lines. Isolines of streamwise velocity component of the distorted baseflow (solid black).
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