TIME SERIES FORECASTING USING MACHINE LEARNING IN COMPLEX SYSTEMS UNDER UNCERTAINTY

Felix Nitsch, Christoph Schimeczek, Valentin Bertsch

WAW ML 9, 14 Nov. 2023, Ulm

Motivation

What Will Electricity Markets Look Like in The Future?

- Well established field of energy systems modelling (ESM) Gilliland, 1975
- Modelling challenges due to growing complexity Pfenninger et al., 2014, Pye et al., 2021
- Agent-based modelling (ABM) a promising approach
 - incorporating the actors' perspective Nitsch et al., 2021
 - representation of heterogenous actors Kraan et al., 2018
 - execution of real-world examples computationally cheap Hansen et al., 2019
- Applying the ABM AMIRIS¹ to simulate electricity markets
 - integration of renewable energies & flexibility options in electricity systems
 - analysis of market effects caused by policy and remuneration schemes

AMIRIS

Agent-based Market model for the Investigation of Renewable and Integrated energy Systems

Model

- Electricity market simulation
- Open source (Apache 2)

Agents

- Conventional Plants
- Renewable Plants
- Traders
- Flexibilities
- Markets
- Policy
- Forecasting

Calculates

- Electricity prices
- Plant dispatch
- Market values
- Emissions
- System costs

Input Data: Feed-in of renewables, temperature, balance energy price, marginal cost, load, ...

Price Forecasting in AMIRIS

Limitations of Current Approach

FEAT Project

Flexible, Explainable, and Accurate Price Forecasts

SPONSORED BY THE

Concept of Improved Forecasting Agent

Providing Enhanced Price Forecasts

Aim

- Central forecast agent
- Price time series forecast of >=24h
- Input for schedule optimization of agents

Available Data

- Previous prices
- Previous residual load
- Future forecasted (residual) load
- Future forecasted RE generation

Concept of new Forecasting Agent in AMIRIS

Methodology

Testing Multiple Methods in Two Main Scenario Sets

Naïve Methods

■ t+1, t+24, naïve drifts

Serving as benchmarks

Regression Methods

■ Linear Reg., LightGBM¹, Exp. Smoothing

Common statistical approaches

Machine Learning Methods

■ NBeats², TemporalFusionTransformer³, DeepAR⁴

State-of-the art machine learning methods

Data

- Timespan 2003 2019
- EEX:
 - Day-ahead auction prices
- Simulated market results by AMIRIS

Scenarios

- I. Different shares of flexibility options
- II. Varying renewable energy expansion

¹ Ke G. et al. (2017): https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree

² Oreshkin B. et al. (2019): https://doi.org/10.48550/arXiv.1905.10437

³Lim B. et al. (2021): https://doi.org/10.1016/j.ijforecast.2021.03.012

⁴ Salinas D. et al. (2020): https://doi.org/10.1016/j.ijforecast.2019.07.001

Forecasting Performance – Flexibility Variation Overview and Price Impacts

Mean Absolute Error (MAPE) for four test scenarios with rising flexibility capacities

Scenario	ı	II	III	IV
Metric	No	Little	Mid	High
	Flex	Flex	Flex	Flex
Naïve t ₁	9.29	7.78	6.76	6.45
Naïve t ₂₄	8.57	7.54	6.27	5.91
Exponential Smoothing	8.06	6.70	5.73	5.46
N-BEATS	7.15	6.24	5.38	5.12
TFT	4.11	3.90	3.20	3.26
TFT w/ future covariates	3.12	3.45	3.26	2.86

Price dampening impact of different flexibility capacities in the four scenarios on electricity prices over a one-week period in November 2019.

Forecasting Performance – Renewable Expansion

Day-ahead forecast applying TFT

Forecasting performance in scenarios of varying renewable energy expansion

Conclusion

- Motivation: Precise time series forecasts in energy system models
- Method: Comparison of methods (naïve, regression, machine learning)
- Results: ML outperforms other methods depending on input data
- Discussion:
 - Challenging integration in existing models
 - Training for future scenarios

Outlook

- Fine-tune and further test models
- Integrate architectures in AMIRIS enabling endogenous & comprehensive forecasts
- Further analysis in FEAT project, see https://www.mlsustainableenergy.com/

Imprint

Topic: Time Series Forecasting using Machine Learning

in Complex Systems under Uncertainty

Date: 14.11.2023

Author: Felix Nitsch

Institute: Institute of Networked Energy Systems

Credits: DLR (CC BY-NC-ND 3.0) © (1) (S) (E)