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Motivation ‘#7
What Will Electricity Markets Look Like in The Future? DLR

Well established field of energy systems modelling (ESM) ciliiland, 1975

Modelling challenges due to growing complexity pfenninger et al., 2014, Pye et al., 2021

Agent-based modelling (ABM) — a promising approach
» incorporating the actors’ perspective Nitsch et al., 2021
= representation of heterogenous actors Kraan et al., 2018
= execution of real-world examples computationally cheap Hansen et al., 2019

Applying the ABM AMIRIS? to simulate electricity markets
» integration of renewable energies & flexibility options in electricity systems
= analysis of market effects caused by policy and remuneration schemes

Nitsch F. et al., Institute of Networked Energy Systems, 11/2023 1 https://dir-ve.qitlab.io/esy/amiris/home/
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AMIRIS

Agent-based Market model for the Investigation of Renewable and Integrated energy Systems

Model
— Electricity market simulation
— Open source (Apache 2)

Agents
— Conventional Plants
— Renewable Plants
— Traders
— Flexibilities
— Markets
— Policy
— Forecasting

Calculates

— Electricity prices
— Plant dispatch

— Market values

— Emissions

— System costs
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Input Data: Feed-in of renewables, temperature, balance energy price, marginal cost, load, ...
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Price Forecasting in AMIRIS
Limitations of Current Approach DLR

Inferior results based on
limited forecast quality
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FEAT Project
Flexible, Explainable, and Accurate Price Forecasts DLR
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Concept of Improved Forecasting Agent A#y
DLR

Providing Enhanced Price Forecasts

Market Clearing data Data provider ]

Aim
= Central forecast agent
= Price time series forecast of >=24h

» Input for schedule optimization of agents

Historical data

Forecasting
Agent

Agent A I Agent B

Energy Exchange

Price forecast

Available Data
* Previous prices
* Previous residual load
» Future forecasted (residual) load
= Future forecasted RE generation

Bids & Asks

Concept of new Forecasting Agent in AMIRIS

Nitsch F. et al., Institute of Networked Energy Systems, 11/2023 Nitsch et al.(2023d). Time Series Forecasting in Energy System Models. To be published soon.



Methodology 4#7
Testing Multiple Methods in Two Main Scenario Sets DLR

Naive Methods Data
" t+1, t+24, naive drifts * Timespan 2003 — 2019
Serving as benchmarks = EEX:
» Day-ahead auction prices
Regression Methods = Simulated market results by
= Linear Reg., LightGBM?, Exp. Smoothing AMIRIS
Common statistical approaches
Scenarios
Machine Learning Methods . Different shares of flexibility
= NBeats?, TemporalFusionTransformer3, DeepAR* options
State-of-the art machine learning methods . Varying renewable energy
expansion

1Ke G. et al. (2017): https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
2 Qreshkin B. et al. (2019): https://doi.org/10.48550/arXiv.1905.10437
3Lim B. et al. (2021): https://doi.org/10.1016/j.ifforecast.2021.03.012

Nitsch F. et al., Institute of Networked Energy Systems, 11/2023 4Salinas D. et al. (2020): https://doi.org/10.1016/.ijfforecast.2019.07.001
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Forecasting Performance — Flexibility Variation
Overview and Price Impacts DLR

Mean Absolute Error (MAPE) for four test scenarios with rising flexibility capacities

Scenario I I 1l \Y, %

Metric No  Litle  Mid  High )
Flex Flex Flex Flex £

Naive t; 9.29 7.78 6.76 6.45 % %
Naive t,, 857 754 627 501 .
Exponential Smoothing 8.06 6.70 5.73 5.46 ;m
N-BEATS 715 624 538 512 ) Lo
TFT 411 390 320 326 i — s
TFT w/ future covariates | 3.12 3.45 3.26 2.86 o110 20191120 20101101 20101122 20191125 20101106 20151125 2019_11_26

Price dampening impact of different flexibility capacities in the four
scenarios on electricity prices over a one-week period in November 2019.
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Forecasting Performance — Renewable Expansion
Day-ahead forecast applying TFT DLR

Weighted mean electricity price Mean absolute error by TFT Meazr(\mabsolute error by TFT with future covariates
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Forecasting performance in scenarios of varying renewable energy expansion

Note: Scenarios are considered as parameter variations and shall not
Nitsch F. et al., Institute of Networked Energy Systems, 11/2023 be interpreted as definitive, and complete future electricity systems




Conclusion #
DLR

» Motivation: Precise time series forecasts in energy system models
= Method: Comparison of methods (nhaive, regression, machine learning)
» Results: ML outperforms other methods depending on input data

» Discussion:
» Challenging integration in existing models
» Training for future scenarios

Outlook

* Fine-tune and further test models
* Integrate architectures in AMIRIS enabling endogenous & comprehensive forecasts
» Further analysis in FEAT project, see https://www.mlsustainableenergy.com/
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