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Effective government services rely on accurate population numbers to allocate resources. In Colombia and

globally, census enumeration is challenging in remote regions and where armed conflict is occurring.

During census preparations, the Colombian National Administrative Department of Statistics conducted

social cartography workshops, where community representatives estimated numbers of dwellings and

people throughout their regions. We repurposed this information, combining it with remotely sensed

buildings data and other geospatial data. To estimate building counts and population sizes, we developed

hierarchical Bayesian models, trained using nearby full-coverage census enumerations and assessed

using 10-fold cross-validation. We compared models to assess the relative contributions of community

knowledge, remotely sensed buildings, and their combination to model fit. The Community model was

unbiased but imprecise; the Satellite model was more precise but biased; and the Combination model

was best for overall accuracy. Results reaffirmed the power of remotely sensed buildings data for

population estimation and highlighted the value of incorporating local knowledge.

Keywords: modelled population estimates; population and housing census; GIS; remote sensing;
Bayesian statistics; community engagement
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Introduction

Census omissions due to geographic inaccessibility
disproportionately affect Indigenous populations
and cultural minorities as well as vulnerable popu-
lations living with insecurity due to armed conflict
(Fein 1990; Car-Hill 2013; Dias and Verona 2018).
Incomplete enumeration of these populations
creates challenges for planning essential services,
such as healthcare, education, and housing.
Because achieving a full-coverage national popu-
lation census is challenging even for the most devel-
oped countries, there is an increasing trend towards
less costly methods that rely on administrative
records and household surveys to supplement
census field enumerations (Ericksen and Kadane

1986; Myrskyla 1999; Jardim 2001; Valente 2010).
Even post-enumeration surveys (Hogan and Wolter
1988; Breiman 1994; UN 2010), which are used to
estimate census omissions, are themselves depend-
ent on access to regions where census coverage is
being assessed. When entire regions are difficult to
access and administrative records are incomplete,
these approaches may be less effective for assessing
coverage errors (which are needed to provide accu-
rate and complete demographic estimates).
In situations where census counts are outdated or

incomplete, modelled population estimates can
provide a relatively low-cost alternative for obtain-
ing up-to-date population estimates (UNFPA
2020). This provides stop-gap support in planning
essential services for undercounted populations,
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with the ultimate aim of informing future census
planning to achieve full-coverage enumeration.
There is a degree of uncertainty associated with all
modelled population estimates—dependent on
population characteristics, input data, and modelling
strategy—and recent work has focused on imple-
menting statistical methods that accurately account
for this estimation uncertainty (Leasure et al.
2020). Building on previous methods for modelled
population estimates (Mossoux et al. 2018;
Wardrop et al. 2018; Weber et al. 2018; Engstrom
et al. 2020), these hierarchical Bayesian methods
have been extended to use various types of input
data, ranging from routine household surveys to sat-
ellite-derived building footprints and other geospa-
tial data (Dooley et al. 2021; Boo et al. 2022). The
increasing availability of remotely sensed maps of
human settlements and building footprints is provid-
ing a valuable source of information for estimating
populations with fine-grained spatial resolution,
particularly in regions that are difficult to access
(Palacios-Lopez et al. 2021; Kashyap et al. 2022).
In Colombia there are areas, mainly in the Amazo-

nía, Orinoquía, and Pacífica regions, which are
characterized by their poor accessibility, low popu-
lation density, large territorial extent, and dense
forest. In addition, some have security problems,
mostly because of armed conflict. The sum of these
conditions results in greater challenges for both the
planning and operation of routine household
surveys and the decennial Population and Housing
Unit Census of Colombia. In addition, administra-
tive records in these areas are often incomplete,
and the administrative boundaries between munici-
palities are not well defined. In response to these
obstacles, the National Administrative Department
of Statistics in Colombia (DANE) implemented a
data collection method called ‘routes’ (rutas in
Spanish) for the 2018 Population and Housing Unit
Census.
The routes method consisted of working groups

travelling through the territory, along rivers, bridle-
ways, or logging roads that encompassed an area of
influence containing each of the existing commu-
nities and settlements. The routes were developed
using information from a series of social cartography
workshops (see Paulston and Liebman 1994 for a dis-
cussion of the social cartography concept) and other
sources, such as the third National Agricultural
Census, territorial planning documents, and adminis-
trative development plans (DANE 2014, 2021a,
2021b, 2022a). The social cartography workshops
collected information directly from community
representatives about the locations and basic

characteristics of difficult-to-access population
settlements: for instance, the approximate numbers
of housing units and people (DANE 2014).
We combined community knowledge obtained

from social cartography workshops with building
maps derived from satellite imagery, as well as
other geospatial covariates, to estimate total popu-
lation sizes for locations in Colombia that were not
fully accessible to census enumerators; this affected
mainly enumerations of minority ethnic groups in
remote locations. Our primary objectives were to:

(1) Estimate total population sizes and numbers
of buildings for each census enumeration
area not fully covered during the census;

(2) Provide robust estimates of uncertainty with
our estimates; and

(3) Assess the relative contributions of local
knowledge and remote-sensing observations
to the accuracy of modelled population
estimates.

To achieve these objectives, we developed a
bespoke hierarchical Bayesian statistical model that
was trained using full-coverage census enumerations
from nearby areas.

Methods

This work was approved by the Ethics and Research
Governance Online committee at the University of
Southampton (ERGO 61486 and 72234). All data
were aggregated and fully anonymized so that indi-
viduals could not be identified at any stage of ana-
lysis. The data and Bayesian model code for all
analyses are provided at doi.org/10.17605/OSF.IO/
DW4VR (Sanchez-Cespedes et al. 2022).

Data

Population and housing census. We used counts of
people and dwellings from the 2018 Population and
Housing Unit Census of Colombia, primarily from
the Amazonía, Orinoquía, and Pacífica regions. In
the census, municipalities from the study regions
were divided into operational coordination areas
called routes, and each of these was divided into
operational units, which we refer to here as census
enumeration areas. The enumeration areas were
the spatial unit of analysis for our statistical
models. In total, there were 394 routes, consisting
of 1,302 enumeration areas spanning 145
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municipalities (out of 1,121 nationally) and 23
administrative departments (out of 33 nationally).
On average (standard deviation in parentheses)
there were 3.3 (±1.9) enumeration areas per route,
8.9 (±11.3) per municipality, and 56.6 (±68.4) per
department.
During the census fieldwork, the number of enu-

merated properties was verified and controlled by
a geographic monitoring system that assigned a
colour to each enumeration area according to the
percentage of expected properties from the census
frame that were actually enumerated by census
workers (DANE 2014, 2021a, 2021b, 2022a). Enu-
meration areas with 90 per cent or more on this indi-
cator were coded as green, those in a range of 0–90
per cent were coded as orange, and units that were
not visited were coded as grey (Figure 1). We used
the green enumeration areas (n = 508) to train the
models because these areas were considered to be
fully enumerated, whereas the orange and grey enu-
meration areas (n = 628 and 166, respectively) were
not fully enumerated and hence needed estimates of
total population.

Social cartography workshops. Ethnic minority
groups occupy approximately 35 million hectares,
one-third of the national territory of Colombia,
with many living in regions that are difficult to

access. To involve these groups in the census activi-
ties, DANE implemented 90 social cartography
workshops with ethnic community representatives
—66 with Indigenous communities and 24 with
Afro-Colombian communities—which were held
between 2011 and 2014 for the National Agricultural
Census and updated in 2016 and 2017 for the 2018
Population and Housing Unit Census (DANE 2014,
2021a, 2021b, 2022a). The objective of the social car-
tography workshops was to establish the locations of
ethnic minority communities and their character-
istics to support operational planning for the
census (e.g. number of census takers and supervisors,
costs, and times). To achieve successful community
engagement, 14 separate agreements were reached
between DANE, Afro-Colombian organizations,
and Indigenous organizations (DANE 2014).
The ethnic minority organizations oversaw the

logistical aspects of the social cartography work-
shops and summoned community representatives.
The workshop participants were selected by each
organization as community leaders who were know-
ledgeable about the populations in these areas. The
organizations guided participants in producing esti-
mates of numbers of dwellings, families, and people
living in each community (Figure 2, left-hand
panel), alongside documenting logistical constraints
for census enumerators in accessing these remote
communities. During the workshops, the DANE

Figure 1 Maps showing percentage of expected properties from the census frame that were actually enumer-
ated by census workers: rural and urban areas, Colombia 2018
Notes: Left-hand panel: In rural areas, census enumeration areas in which 90 per cent or more of expected properties were
enumerated during census fieldwork are shown in green, areas where 0–90 per cent were enumerated are shown in orange,
and areas where no property was enumerated are shown in grey. Right-hand panel: In urban areas, colours are the same as
for rural areas, but the indicator was the percentage of expected dwellings in a census enumeration area.
Source: The methodology for determining census coverage is described by DANE (2022a). The image is taken from the
Geovisor tool used by DANE to monitor census coverage.
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team led cartographic exercises to help participants
locate their communities on the map. Working in
small groups based on Indigenous reservations, com-
munity councils, and geographic zones, the groups
mapped communities and estimated numbers of
dwellings, families, and people by reaching consen-
sus within their small groups. These exercises ident-
ified and located 12,067 communities: 8,010
Indigenous, 3,200 Afro-Colombian, and 857 colonist.
This information was used to construct the sampling
frame for the census in these remote areas, alongside
information from the 2014 National Agricultural
Census and municipal development plans (DANE
2021a, 2021b, 2022a).

Remotely sensed building coverage (hectares).
We used estimates of total building area per 90m
grid cell, obtained from World Settlement Footprint
3D (Figure 2, right-hand panel; Esch et al. 2020; Esch

et al. 2022). This provided essential information
about where buildings were located in these
remote areas and gave an indication of how many
buildings were likely in each location. These data
were derived from Sentinel-1 and Sentinel-2 satellite
imagery collected at 10 m spatial resolution between
2017 and 2019 with full coverage of Colombia, in
combination with 12 m digital elevation data and
radar imagery collected by the TanDEM-X mission.
The estimated building areas were validated using

building models with very high resolution (<50 cm),
which are available for 19 regions worldwide (Esch
et al. 2022). The accuracy assessments showed a
slight bias towards overestimation globally, with
mean errors (ME) ranging from −6.48 to 12.99 per
cent. Cartagena, Colombia, was included as one of
the validation sites: its estimated building areas
were the least biased of all validation sites, with an
ME of 0.29 per cent. Building area estimates were
also the most accurate in Cartagena with a mean

Figure 2 Maps of the study area in Colombia, 2018, showing two important predictor variables: Left-hand
panel shows community-based estimates of population size in each enumeration area; Right-hand panel
shows remotely sensed building coverage for 90m pixels
Source: National boundaries were obtained from Global Administrative Areas (GADM 2019) and the subnational bound-
aries fromDANE (2022b). The maps were created using ESRI ArcGIS pro v.2.5. Community-based estimates of population
size in each enumeration area were obtained from social cartography workshops. Remotely sensed building coverage for
90m pixels was obtained from World Settlement Footprint 3D.
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absolute error (MAE) of 6.52 per cent and root
mean squared error (RMSE) of 8.98 per cent. For
comparison, MAE ranged from 6.52 to 17.29 per
cent and RMSE ranged from 8.98 to 23.79 per cent
globally. It should be noted that most of the vali-
dation sites were urban areas, whereas our study
was focused on remote rural communities. Two of
the validation sites were rural areas of Bavaria,
Germany (ME = 0.93 per cent, MAE = 6.79 per
cent, RMSE = 10.24 per cent), and Gyeonggi,
South Korea (ME = 3.06 per cent, MAE = 9.93
per cent, RMSE = 14.19 per cent), which were
below or near the average accuracy values among
the validation sites.

Other geospatial covariates. We included a set of
six additional geospatial covariates that had full
coverage across the study area and were likely to
be correlated with population densities. Our final
set of covariates was selected from a larger set of
covariates based on expert opinion and avoiding
the inclusion of correlated covariates in the model.
The six geospatial covariates, xk,i, that we selected
were: (1) school density; (2) poverty index; (3)
elevation; (4) night-time lights; (5) distance to popu-
lated centres; and (6) total area of the census enu-
meration area. Covariates were defined as the
mean values within each enumeration area (except
for (6)); these were then log transformed, scaled,
and centred.
School densities were calculated for every

100 m grid square based on school locations
obtained from the Ministry of National Edu-
cation of Colombia. The poverty index rep-
resented the proportion of households in each
route that were determined to have unsatisfied
basic needs (INDEC 1984; Feres and Mancero
2001) based on their responses to the census
questionnaire (DANE 2020). Digital elevation
data were obtained at 30 m resolution from
NASA’s Shuttle Radar Topography Mission
(Farr et al. 2007) via Google Earth Engine (Gor-
elick et al. 2017). Night-time lights were obtained
at 500 m resolution from the Visible Infrared
Imaging Radiometer Suite (VIIRS; Elvidge
et al. 2017) via the Google Earth Engine image
collection ‘NOAA/VIIRS/DNB/MONTHLY_V1/
VCMSLCFG’. Monthly night-time lights values
were averaged to give a yearly value for 2018.
Distances to populated city centres were calcu-
lated as straight-line distances to city centroids
from the centroid of each census enumeration
area. Geospatial analyses were conducted using
ArcGIS software (Esri 2017).

Statistical analysis

We chose a hierarchical Bayesian modelling
framework to take advantage of its flexibility to
develop bespoke model structures for our data
and also to account for uncertainty in population
estimates. Accounting for uncertainty is essential
for any population estimates in these remote
areas where information is scarce, because the
uncertainty intervals may provide important
context when using population estimates for
decision-making (e.g. planning government ser-
vices, health initiatives, household surveys, and
census activities).
We compared four hierarchical Bayesian models

using a consistent base model structure and set of
geospatial predictor variables across models. We
varied whether or not we included additional predic-
tors derived from the social cartography workshops
and remotely sensed buildings data, to isolate the
contributions of these two sources towards improv-
ing model fit. These were all hierarchical models
with two levels: one level to estimate the number
of buildings and a second level to estimate the total
population (i.e. aggregate counts for each enumer-
ation area, not building-specific estimates). The
directed acyclic graph (Figure 3) illustrates both
sub-models and relationships between all par-
ameters and data in the model (Tables 1 and 2).
Models were fitted using training data from 489
census enumeration areas (out of 508 green areas),
selected because they were fully enumerated
during the census, hosted social cartography work-
shops, and were located in regions where some enu-
meration areas were not fully enumerated. This
approach included an unavoidable assumption that
relationships between predictors and populations
were the same in enumerated areas as in under-
covered areas.

Base model. The Base model for total population,
P, in enumeration area i was:

Pi � Poisson(Biri)

ri � LogNormal(�ri, s1)

�ri = ad + dm +
∑6
k=1

bk log (xk,i)

ad � Normal(m, s2)

dm � Normal(0, s3), (1a)

where Bi is the number of buildings (occupied or
not) and ri is the average number of people per
building (log scale). We included a log-normal
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regression on ri with a random intercept by adminis-
trative department, ad, and municipality, dm, along
with the effects, bk, of six geospatial covariates, xk,i,
selected a priori (Table 1). The random intercept
by department ad estimates the average number of
people per building (log scale) for department d
(assuming covariates equal zero), while the term
dm estimates deviations from this average for each
municipality, m, within a department. The residual
variance term s1 quantifies variation in ri (people
per building) that is not explained by the model.

The priors for all models are provided in a separate
subsection later.
The Base model for buildings, Bi, was:

Bi � Poisson(Aiui)

ui � LogNormal(�ui, ṡ1)

�ui = ȧd + ḋm +
∑6
k=1

ḃk log (xk,i)

ȧd � Normal(ṁ, ṡ2)

ḋm � Normal(0, ṡ3), (1b)

Figure 3 Directed acyclic graph (DAG) showing relationships between data (squares) and parameters
(circles)
Notes: The hierarchical model structure has a sub-model to estimate counts of buildings (B) that feeds into a sub-model of
population (P). Solid lines indicate stochastic relationships, while dashed lines indicate deterministic relationships. Black-
filled nodes were not included in every model. Key parameters included people per building (r) and buildings per
hectare (u). Parameters and data are defined in Tables 1 and 2.
Source: Authors’ own.

Table 1 Definitions of symbols for data

Symbol Definition Source

d Index: Department (administrative unit) Colombia administrative boundaries
m Index: Municipality (sub-admin unit) Colombia administrative boundaries
i Index: Census enumeration area Colombia census
Pi Count of people Colombia census
Bi Count of buildings Colombia census
Ai Area (hectares) of census unit Colombia census
Ci Building coverage (hectares) German Aerospace Center
Di Community estimated count of dwellings Social cartography workshops
Fi Community estimated count of families Social cartography workshops
Ii Community estimated count of individuals Social cartography workshops
x1,i School density (centred, scaled) Geospatial covariates
x2,i Poverty index (centred, scaled) Geospatial covariates
x3,i Elevation (centred, scaled) Geospatial covariates
x4,i Night-time lights (centred, scaled) Geospatial covariates
x5,i Distance to populated centre (centred, scaled) Geospatial covariates
x6,i Area (hectares) of census unit Geospatial covariates
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where Ai is the total area (hectares) of enumeration
area i, and ui is the average number of buildings per
hectare (log scale). The remaining parameters are
comparable to those in population sub-model (1a),
and this sub-model includes the same set of geospa-
tial covariates, xi. The number of buildings, Bi, was
observed during the census in accessible areas, and
the model estimated this parameter for inaccessible
areas. We include a dot above the parameter
symbols to distinguish them from population sub-
model (1a).
Our three additional models differed in whether or

not they included local knowledge from community
workshops, remotely sensed building coverage from
satellite imagery, or both. One of the key challenges
was estimating the number of buildings Bi, and we
had several resources at our disposal to inform this
portion of the model. The census recorded counts of
buildings, although with incomplete coverage in
some areas. We also had community-based estimates
of the number of dwellings,Di, from the social cartog-
raphy workshops, as well as satellite-based measure-
ments of building coverage, Ci.

Community-based model. This model used infor-
mation gathered from the social cartography work-
shops to help inform the models of population and
buildings:

Pi � Poisson(Biri)

ri � LogNormal(�ri, s1)

�ri = ad + dm +
∑6
k=1

bk log (xk,i)+ g1 log
Ii
Di

( )

+ g2 log
Ii
Fi

( )
, (2a)

where Ii, Di, and Fi, are the numbers of individ-
uals, dwellings, and families, respectively, reported
to be in enumeration area i during the social car-
tography workshops. We used these reports to
help estimate average numbers of people per
building, ri.
The Community model estimated building counts,

Bi, as a function of the community-based estimates
of dwellings, Di, and the total area, Ai, of each
enumeration area:

Bi � Poisson(Aiui)

ui � LogNormal(�ui, ṡ1)

�ui = ȧd + ḋm +
∑6
k=1

ḃk log (xk,i)+ ġ1 log
Di

Ai

( )
, (2b)

where ui is defined as the number of buildings Bi per
hectare Ai. Note that the full specifications for
random intercept parameters ad and dm are not
shown here, but they were the same as in the Base
model.

Satellite-based model. This model used the Base
model for total population:

Pi � Poisson(Biri)

ri � LogNormal(�ri, s1)

�ri = ad + dm +
∑6
k=1

bk log (xk,i). (3a)

The number of buildings, Bi, was estimated as a
function of the remotely sensed building coverage,

Table 2 Definitions of symbols for parameters

Symbol Definition

ri People per building for each census enumeration area (i)
ui Buildings per total area (hectares)
fi Building count per building area
�ri Expected value of ri
�ui Expected value of ui
�fi Expected value of fi
s1 Residual variation (i.e. uncertainty)
ad Random intercept by department
dm Random intercept adjustment by municipality
bk Effect of geospatial covariate k
g Effect of optional covariate(s) (i.e. satellite or community)
m Mean of ad among departments
s2 Variation in ad among departments
s3 Variation in dm among municipalities
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Ci, and the total area, Ai, of each enumeration area:

Bi � Poisson(Cifi)

fi � LogNormal(�fi, ṡ1)

�fi = ȧd + ḋm +
∑6
k=1

ḃk log (xk,i)+ ġ1 log
Ci

Ai

( )
. (3b)

Notice that unlike in the Community model, building
density, fi, is now defined as the building count per
hectare of building coverage, Ci, rather than the
building count per total area of the enumeration
area, Ai (i.e. like the Community model parameter
ui � Bi/Ai). The satellite-based estimates of build-
ing coverage strongly constrain the portion of each
enumeration area where buildings may be present.

Combined model. This model was the same as the
Community model for estimating total population:

Pi � Poisson(Biri)

ri � LogNormal(�ri, s1)

�ri = ad + dm +
∑6
k=1

bk log (xk,i)+ g1 log
Ii
Di

( )

+ g2 log
Ii
Fi

( )
, (4a)

where Ii, Di, and Fi, are numbers of individuals,
dwellings, and families reported during the social car-
tography workshop to be within enumeration area i.
The building sub-model combined community-

based estimates of dwellings, Di, with the satellite-
based estimates of building coverage, Ci, in an
attempt to better approximate the observed total
building counts, Bi, from the census:

Bi � Poisson(Cifi)

fi � LogNormal(�fi, ṡ1)

�fi = ȧd + ḋm +
∑6
k=1

ḃklog(xk,i)+ ġ1log
Di

Ci

( )

+ ġ2log
Ci

Ai

( )
. (4b)

Priors, implementation, and diagnostics. All
priors used in these models were designed to be
minimally informative within a realistic range of par-
ameter values:

b, g, m, ḃ, ġ, ṁ � Normal(0, 3)

s1, s2, s3, ṡ1, ṡ2, ṡ3 � Uniform(0, 3). (5)

The same priors were used across all models to
ensure comparability of results. We chose uniform

priors for standard deviations rather than the half-
Cauchy priors suggested by Gelman (2006), to
avoid a long tail that included unrealistic parameter
space on the log scale.
We implemented statistical models using JAGS

software (Plummer 2003; Eddelbuettel 2021) from
the R statistical programming environment (R
Core Team 2020) with the runjags and coda packages
(Plummer et al. 2006; Denwood 2016). Model con-
vergence was assessed using the potential scale
reduction factor (PSRF) statistics (Gelman and
Rubin 1992). All models were run until they
achieved PSRF < 1.1, indicating convergence
(Brooks and Gelman 1998).
We used randomized 10-fold out-of-sample cross-

validation to assess model fit and robustness of
uncertainty intervals. This iterative procedure
involved fitting models to subsets of the data that
each excluded a random 10 per cent of the locations
and then predicting values for these out-of-sample
locations to assess prediction accuracy. This pro-
cedure was repeated 10 times, omitting a different
subset of the data each time, until all data had
been withheld once. We used out-of-sample predic-
tions, ŷi, to estimate the following measures:

bias = mean
ŷi − yi
ŷi

( )

imprecision = sd
ŷi − yi
ŷi

( )

inaccuracy = mean
ŷi − yi
ŷi

∣∣∣∣
∣∣∣∣

( )

r2 = 1− sum((ŷi − yi)
2)

sum((yi −mean(y))2)
. (6)

These out-of-sample fit statistics were calculated
for the response variables (i.e. population, Pi, and
buildings, Bi) and used for comparing models.
Robustness of uncertainty intervals was assessed by
calculating the proportion of out-of-sample obser-
vations that fell within their 95 per cent prediction
intervals, with the expectation that about 95 per
cent of observations should fall within the prediction
intervals.

Results

All models achieved convergence, including 10-fold
cross-validation models. Uncertainty intervals
appeared robust, if not a bit conservative, because
they contained approximately the expected pro-
portion of out-of-sample observations, suggesting
appropriately specified error structures for the

8 Lina Maria Sanchez-Cespedes et al.



models (Table 3). For prediction intervals of less
than 95 per cent, a greater than expected proportion
of out-of-sample observations fell within the predic-
tion intervals indicating that prediction intervals may
be conservative at these (wider than necessary)
uncertainty levels. We provide maps of predicted
populations and building counts from the Combined
model in Figure 4 for all of the census enumeration
areas where the routes method was conducted, to
show the geographic variation in model outputs.

Model comparison

We compared models in terms of bias, imprecision,
inaccuracy, and percentage variance explained, r2

(Figure 5). The Base model explained 51.4 per cent
of variance in building counts and 54.3 per cent of
variance in population counts observed during the
census (bottom panel). The Base model included a
set of geospatial predictors that was incorporated
in all models but did not include local knowledge
from social cartography workshops or remotely
sensed buildings. All models contained a positive
bias for estimates of total population and building
counts, although the degree of bias varied between
models (Figure 5). This positive bias was most pro-
nounced for enumeration areas with the lowest
population sizes.
The Satellite model included satellite-derived esti-

mates of building coverage for every 90m grid
square. This information increased the variance
explained to 53.4 per cent for building counts and
56.8 per cent for population counts. Compared with
the Base model, the remotely sensed building cover-
age helped primarily to reduce the imprecision of
estimated building counts. It also slightly reduced
the bias of building counts and population estimates
compared with the Base model.

The Community model included estimates of
people, families, and dwellings provided by local
community members during the social cartography
workshops. This information increased the variance
explained to 64.1 per cent for buildings and 66.2
per cent for total population. While this was a notice-
able increase in variance explained compared with
the Base and Satellite models, it is important to
note that this model produced more imprecise popu-
lation estimates than any other model (i.e. more
random noise). Conversely, the Community model
produced the least biased estimates of building
counts and population estimates of any model.
The Combined model explained the largest pro-

portion of variance in out-of-sample observations,
with 65.1 per cent of variance in building counts
and 67.9 per cent of variance in population counts
explained. This model was the most precise of any
model, although it gave slightly more biased popu-
lation estimates than the Community model. The
Combined model showed the highest overall accu-
racy (i.e. a measure that incorporates both bias and
imprecision) of any model we tested. The predicted
values and prediction intervals from this model are
plotted against out-of-sample observations in
Figure 6. This shows that model predictions per-
formed reasonably well for unobserved locations
and that the prediction intervals accurately rep-
resented uncertainty in the population estimates.

Covariate effects

Estimated covariate effects on the expected values
of buildings per hectare (�ui) and buildings per built
hectare (�fi) are shown in Figure 7, while covariate
effects on expected values of people per building
(�ri) are shown in Figure 8. One trivial result from
Figure 7 that is important to note was that covariates

Table 3 Proportion of out-of-sample observations that were within each model’s prediction intervals

Parameter Model

Credible interval width

CI 95 CI 90 CI 80 CI 50

P Base 0.961 0.955 0.896 0.626
P Satellite 0.965 0.949 0.894 0.622
P Community 0.957 0.941 0.904 0.640
P Combined 0.963 0.953 0.898 0.648
B Base 0.967 0.939 0.888 0.644
B Satellite 0.963 0.937 0.879 0.648
B Community 0.967 0.941 0.879 0.650
B Combined 0.967 0.943 0.883 0.640

Note: Approximately 95 per cent of observations (i.e. 0.95) should fall within well-specified 95 per cent credible intervals (CI).
Source: See Data subsection for information on data sources used to calculate values in this table.
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containing the unit of area used as the denominator
for buildings per hectare (i.e. total area, Ai, or build-
ing coverage, Ci) always had significant negative
effects as expected. We also want to emphasize
that strong covariate effects do not necessarily
imply causality, because these data were observa-
tional rather than experimental. We defined ‘signifi-
cant’ effects as b estimates where at least 95 per cent
of the marginal posterior mass was either above or
below zero.
Another general pattern worth noting was that

the effects of geospatial covariates from the Base
model were found to be very similar (although
not always identical) in the other models. The
poverty index and elevation always had significant
positive relationships with numbers of people per
building, �ri. Numbers of schools always had a sig-
nificant positive relationship with buildings per
hectare, �ui. Distance to city centre showed a
slight positive relationship with numbers of
people per building, and the poverty index had a
slight positive relationship with building per

hectare. In models that did not contain satellite-
based estimates of building coverage, the intensity
of night-time lights had a slight positive relation-
ship with buildings per hectare, but this slight
effect was not present in models that included
remotely sensed building areas.
In the Community model, the numbers of dwell-

ings per hectare reported during the social cartog-
raphy workshops had a significant positive effect
on expected values of buildings per hectare, �ui.
Reported values of individuals per family had a sig-
nificant positive effect on expected values of people
per building, �ri, but reported values of individuals
per dwelling did not. This latter result may have
been due to correlation (r = 0.65) between the two
covariates.
In the Satellite model, total building coverage had

a significant negative effect on expected values of
buildings per hectare, �fi, as expected, because build-
ing density was defined in this model as buildings per
hectare of building coverage. The proportion of the
total enumeration area covered by buildings had a

Figure 4 Predicted counts from the Combined model of population (left-hand panel) and building counts
(right-hand panel) for all census enumeration areas where the routes method was conducted, Colombia 2018
Source: National boundaries were obtained from Global Administrative Areas (GADM 2019) and the subnational bound-
aries from DANE (2022b). The maps were created using ESRI ArcGIS pro v.2.5. See Data subsection for information on
data sources used to calculate values displayed in this map.
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slight negative relationship with expected values of
buildings per hectare, �fi, but this was not significant
at the 95 per cent level.
The Combined model included a covariate

measuring dwellings per building coverage that com-
bined information from the social cartography work-
shops with information from remotely sensed

buildings. This covariate had a significant positive
relationship with expected values of buildings per
hectare, �fi. The covariate of reported individuals
per family from the social cartography workshops
did not have a significant effect on people per build-
ing in the Combined model although it did in the
Community model.

Figure 5 Comparisons of model fit across four models (Base, Satellite, Community, and Combined) for the
two response variables (population and buildings) in each hierarchical model
Notes: Fit statistics were calculated using out-of-sample predictions from 10-fold cross-validations. Bias, imprecision, and
inaccuracy are reported as proportions of the predicted values. R-squared values quantify the proportion of variance
explained by each model. Note that x-axes do not start at zero.
Source: See Data subsection for information on data sources used to calculate values in this figure.
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Discussion

We have demonstrated a novel approach, combining
information from space-based Earth observations
with local knowledge gathered from social cartog-
raphy workshops to fill census gaps in locations
where access was challenging for fieldworkers. We
were encouraged by the degree to which local knowl-
edge contributed to model fit, and it was reassuring
that we were able to fine-tune population estimates
based on the relatively imprecise information on
remotely sensed buildings. On one hand, the Com-
munity model exhibited the most unbiased esti-
mations for both population sizes and building
counts; on the other hand, the Satellite model
increased precision of population estimates com-
pared with the Community model. When both
types of information were used simultaneously, we
obtained unbiased estimates similar to the Commu-
nity model along with increased precision and accu-
racy, achieving the highest r-squared across all of the
models.

The social cartography workshops in Colombia
provide a powerful example of engaging poten-
tially undercounted communities with the census
process. Community engagement and social
mapping exercises are already used to gather infor-
mation to support planning for censuses and
household surveys (Marcil et al. 2016; Green
et al. 2020; Open Street Maps 2022), but we are
not aware of a previous example where the data
collected have been directly used in population
estimation to help address census omissions. The
methodological framework that we proposed used
local knowledge to improve population estimates,
which will guide appropriate resource allocation
for essential services back into these communities.
To account for the subjective nature of social car-
tography exercises, our approach incorporated
objective information from remote sensing and
other geospatial data, and the model was fitted
to full-coverage census enumerations from nearby
locations to ensure rigorously produced population
estimates.

Figure 6 Model fit for the Combined model showing out-of-sample model predictions vs observed data from
census enumeration areas that were fully enumerated (≥90 per cent coverage), Colombia 2018
Notes: The diagonal line is a 1:1 relationship where predictions are equal to observations. Vertical lines show 95 per cent
prediction intervals.
Source: See Data subsection for information on data sources used to calculate values in this figure.
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It is important to incorporate knowledge of esti-
mation uncertainty into decision-making processes
that are based on modelled population estimates
(UNFPA 2020), and this is particularly relevant
for remote locations where data are sparse. Our
hierarchical Bayesian modelling approach provided
robust estimates of uncertainty similar to previous
work (Leasure et al. 2020; Dooley et al. 2021; Boo
et al. 2022). The current model differed from pre-
vious examples because it included a sub-model
that explicitly estimated building counts for inac-
cessible locations. This was necessary because we
did not have enumerations of buildings from the
census cartography nor from remote-sensing data;
our remotely sensed building data (Esch et al.
2022) measured building coverage for each 90m

grid cell but did not include individual building
footprints. Because of the hierarchical nature of
the statistical model, the uncertainty around our
population estimates also accounted for uncertainty
in building estimates.
High-resolution building footprints are available

from a variety of sources with global coverage,
but costs are often prohibitive. These data sets
are increasingly becoming openly available (e.g.
Google 2022; Microsoft 2022) or crowdsourced
with incomplete coverage (e.g. Geofabrik GmbH
2018; OpenStreetMap 2022), but full-coverage
high-resolution building footprints are not yet
openly available globally. Our approach addressed
this limitation in Colombia by using census-based
building counts from fully accessible census

Figure 7 Covariate effects (ḃ and ġ) on the expected values of buildings per hectare (�ui) or buildings per built
hectare (�fi) for all four models, Colombia
Notes: Covariates are defined in the Methods section and Table 1: Schools (x1), Poverty (x2), Elevation (x3), NightLights
(x4), DistToCenter (x5), and Area (x6). BldgCover refers to building coverage.
Source: See Data subsection for information on data sources used to calculate values in this figure.
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enumeration areas to train a sub-model to estimate
building counts using satellite-based estimates of
building coverage (Esch et al. 2022), community-
based estimates of numbers of dwellings (DANE
2014), and other geospatial covariates. We would
expect estimation uncertainty for our modelled
population estimates to be reduced if high-reso-
lution building footprints were available, and
opportunities are now arising to pursue this
option (Microsoft 2022).
We included a small set of geospatial covariates

that was consistent across all of our models so that
we could isolate the influences of data from social
cartography workshops and remotely sensed build-
ing coverage. We evaluated many geospatial

covariates before finalizing the set of covariates pre-
sented here, but covariate development and selec-
tion was beyond the scope of the current study.
However, it is important to note that the selection
of covariates must be dependent on data availability
and the specific context of the population estimation.
For example, the intensity of night-time lights may
not be a good predictor of populations in remote
regions where electricity is not commonly available,
whereas it otherwise may provide valuable infor-
mation. We chose a small set of orthogonal covari-
ates using the best available data for these remote
regions of Colombia, but additional work may be
able to uncover additional covariates that could
improve model fit.

Figure 8 Covariate effects (b and g) on the expected values of people per building (�ri) for all four models,
Colombia
Notes: Covariates are defined in the Methods section and Table 1: Schools (x1), Poverty (x2), Elevation (x3), NightLights
(x4), DistToCenter (x5), and Area (x6).
Source: See Data subsection for information on data sources used to calculate values in this figure.
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Conclusions

While emphasis is often placed on new technologies
such as satellite remote sensing to fill data gaps, we
have provided evidence to serve as a reminder that
innovative technologies are sometimes most effec-
tive when combined with traditional low-tech
sources of information, such as local knowledge
obtained through community engagement. We
have highlighted the importance of social cartog-
raphy workshops to engage potentially under-
counted communities of Colombia in the census
process. The statistical approach that we demon-
strated incorporated community-based estimates of
numbers of dwellings, families, and people with sat-
ellite-derived estimates of building coverage and
other geospatial covariates to estimate building
counts and population sizes in remote regions of
Colombia where a full-coverage census enumeration
was not possible. This project has provided a step
forward in the science of modelled population esti-
mates to support censuses and highlighted the
value of community engagement as well as govern-
ment–academic partnerships in searching for innova-
tive solutions for real-world challenges.
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