A COMPARISON OF FRACTIONAL VEGETATION COVER IN CAMARENA, SPAIN FROM DESIS AND ENMAP OBSERVATIONS.

WHISPERS Athens, Greece 02. Nov 2023

2nd DESIS User Workshop

D. Marshall ^{1*}, <u>K. Kühl¹</u>, U. Heiden¹, M. Bachmann², T. Schmid ³

¹ IMF-PBA, DLR, Münchener Straße 20, 82234 Weßling, Germany *<u>david.marshall@dlr.de</u>
², DFD-LAX, DLR, Münchener Straße 20, 82234 Weßling, Germany
³ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain

Why is Fractional Vegetation Cover important ?

- Reliable identification of open/bare soil
- Soil carbon largest carbon pool of the terrestrial Earth
- EO suitable for soil organic carbon content estimation
- Allows conclusions on:
 - Areas vulnerable to erosion
 - Soil specific parameters (SOC)
 - Input for modelling
- Fractions of subpixel abundance for
 - Photosynthetically active Vegetation (PV)
 - Non-Photosynthetically active Vegetation (NPV)
 - and Bare Soil (BS)
- Hyperspectral sensors taking advantages of spectral features (SWIR)

Absorption features of A: Xylan & Cellulose B: Lignin & Cellulose C: Cellulose

Overview

- fCover Processor:
 - M.Bachmann, D.Marshall

Based on:

- Spatial Spectral Endmember Extraction (SSEE)
- Linear spectral unmixing (µMESMA)

Content:

- Small adjustment of existing fCover methodology
- Example for DESIS & EnMAP Camarena
- fCover Validation Munich

D. Marshall^{1*}, <u>K. Kühl</u>¹, U. Heiden¹, M. Bachmann², T. Schmid³

Calculating fCover from Single Scene

First large-scale processing of single scenes reveals:

- High spectral similarity, leads to difficulties in EM extraction.
- Unexpected use of wrong class EM.
- Unidentified and unmasked clouds/haze have a major impact on the unmixing process.
- As a result sometimes, inconsistent unmixing over multiple images within one strip

Adjustment of existing fCover methodology

D. Marshall^{1*}, <u>K. Kühl¹</u>, U. Heiden¹, M. Bachmann², T. Schmid³

Study Site Camarena

- Land is mainly used for rainfed agriculture
- Semi-arid region
- High risk for soil erosion
- Low soil organic carbon content

Comparison

DESIS

EnMAP

Spectral range	400nm -1000nm VNIR	Spectral range	420nm - 1000nm VNIR 900nm - 2450nm SWIR
Spectral resolution:	2.55nm	Spectral resolution:	6-10nm
Spectral channels:	235VNIR	Spectral channels:	95VNIR 135 SWIR
Ground resolution	30m x 30m	Ground resolution:	30m x 30m
Orbit:	Non-sun-synchronous	Orbit:	Sun-Synchronous / 97.96°
Launch Date:	29.06.2018	Launch Date:	01.04.2022

D. Marshall 1*, K. Kühl¹, U. Heiden¹, M. Bachmann², T. Schmid³

EnMAP - Camarena fCover Abundances(EM Bundle)

- Green PV Red BS Blue NPV
- Sub-pixel information about the abundances of PV,NPV and BS
- Color gradients consist of more than one class
- Area-wide consistent unmixing over all classes
- Excellent identification/separation of individual cultivation areas
- Good representation of NPV at field edges and dry patches
- Overall low RMSE
- Lower RMSE for Soil & pure PV

EnMAP - Camarena fCover Abundances(EM Bundle)

- Measurable transition from PV to NPV
- Clear NPV patches within fields
- Ability to detect & measure rapid changes in vegetation
- Possibly conclusions about plant health conditions

Comparison EnMAP - DESIS (EM-Bundle)

Validation Campaign EnMAP 25.09.23

- Overall 5 Campaigns since June 2023
 - Recorded spectra on over 20 sites
 - Different recording techniques tested and improve
- EnMAP overflight on 25.09.2023 / 11:55am
- Collected ASD spectra on 6 different fields
- Smartphone & UAV Data

Sentinel 2: 29.09.2023 RGB

Validation Campaign EnMAP 25.09.23

25.09.2023

- One 30*30 EnMAP Pixel spectra
- Subpixel abundances:
 - 93 % Bare Soil
 - 7% NPV
 - 0% PV
 - 4.55 RMSE
- 55 ASD spectra
- ASD, EnMAP & reconstructed spectra are well in line
 - EM extraction & selection works pretty good (SSEE+AMUSES)
 - Overall low RMSE
- Cellphone & UAV data support the calculated abundances of the fCover-Processor

Validation Campaign EnMAP 25.09.23

25.09.2023

- One 30*30 EnMAP Pixel spectra
- Subpixel abundances:
 - 28 % Bare Soil
 - 56% NPV
 - 16% PV
 - 9.42 RMSE
- 41 ASD spectra
- ASD, EnMAP & reconstructed spectra are well in line
 - EM extraction & selection works pretty good (SSEE+AMUSES)
 - Overall low RMSE
- Cellphone & UAV data support the calculated abundances of the fCover-Processor

Conclusion

- Coherent unmixing of successive scenes
- Minimizes the use of "incorrect" Endmembers
- Higher unmixing accuracy + lower RMS values
- Preserves the greatest possible spectral variability within and between classes
- Creation of region-specific Endmember libraries

DESIS – fCover Abundances 26.07.2022 vs 03.08.2022

07.04.2023

Two classes PV & NPV+BS

- Due to missing SWIR
- No direct soil detection possibility
- Area-wide consistent unmixing over all classes
- Overall low RMSE (Reflectance)
- Haze increases RMSE values

-

- Leads to higher or lower subpixel fraction values

DESIS – AMUSES - fCover Abundances 26.07.2022 vs 03.08.2022

D. Marshall^{1*}, <u>K. Kühl¹</u>, U. Heiden¹, M. Bachmann², T. Schmid³