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Abstract—As maritime traffic strongly relies on Global Navi-
gation Satellite Systems (GNSS) such as GPS or Galileo, there
are efforts to mitigate the risks that come with this reliance. One
such effort is the development of VDES R-Mode, which aims to
provide a terrestrial contingency system to GNSS that is based
on the VHF Data Exchange System (VDES).

Terrestrial VDES provides a bandwidth of 100 kHz. To make
best use of the available bandwidth, VDES R-Mode can use a
signal that is optimized for a high effective bandwidth. This signal
however, has a very regular structure that leads to ambiguities
that degrade the ranging performance at lower SNRs. We found
that this drawback can be mitigated by evaluating the signals
of multiple base stations jointly in a direct position estimation
approach.

To assess the improvement, we applied the Ziv-Zakai Bound
and performed simulations. We found that using the direct
position estimation approach can significantly lower the SNR
at which it is still possible to resolve the ambiguities caused by
the regular signal structure.

I. INTRODUCTION

Maritime shipping nowadays greatly relies on Global Nav-
igation Satellite Systems (GNSSs) such as GPS and Galileo.
This reliance creates a vulnerability to outages and jamming.
In order to mitigate this vulnerability, there are efforts to
provide alternative sources for position, navigation and timing
(APNT) information. One such system is called R-Mode
(Ranging Mode). It aims to extend maritime communication
systems in such a way that range information between a ship
and a number of base stations can be obtained. Specifically,
the IALA beacon system and the VHF Data Exchange System
(VDES) are candidates for a GNSS backup. In this paper, we
consider VDES R-Mode.

In a previous paper we considered theoretical bounds on
the ranging performance of VDES R-Mode [1]. We showed
that the optimal signal for range estimation depends on the
expected Signal to Noise Ratio (SNR) at the receiver. If a
signal is used that is optimized for good SNR, it causes
ambiguities at lower SNRs. Due to this, the VDES standard
includes a design parameter γ for the ranging signal, which
influences at which SNR the signal is best. Figure 2 shows
the autocorrelation of the R-Mode signal for different values
of the design parameter γ. A low value of γ is more suitable
for lower SNRs, while a high value is more suitable for higher
SNRs. It can be seen in the figure, that for higher γ-values,
the autocorrelation exhibits strong secondary peaks, which at
lower SNRs can not be distinguished anymore from the main
peak, causing ambiguities. In this paper we consider whether
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Fig. 1. The VDES R-Mode system consists of multiple terrestrial VDES base
stations.

these ambiguities can be resolved by directly estimating a
position instead of estimating the position from individually
estimated ranges.

In Section II we introduce the VDES R-Mode system.
In Section III we introduce the considered signal model.
In Section IV we present the direct positioning estimation
approach. In Section V we describe applicable theoretical
bounds. In Section VI, simulation results are presented.

II. THE VDES R-MODE SYSTEM

Modern maritime shipping relies heavily on GNSS for
navigation purposes. Even though GNSS are an accurate
source of position information in most circumstances, they are
not entirely free of failures. Especially jamming and spoofing
can cause problems. To mitigate the reliance on GNSS, R-
Mode aims to provide a backup system by utilizing terrestrial
communication systems.

There are two related but different R-Mode efforts: MF R-
Mode utilizes the Medium Frequency IALA beacon DGPS
transmitters [2], [3]. VDES R-Mode utilizes the terrestrial
VHF Data Exchange System [4]. Both of these efforts follow



the same principle of extending a communication system in
such a way that range measurements between a receiver and
the shore based communication transmitters becomes possible.
With a sufficient number of base stations, this allows for
position estimation. Figure 1 shows this principle. In this paper
we only consider VDES R-Mode.

VDES is a maritime data exchange system that was recently
standardized by the International Telecommunication Union
(ITU) [5]. It is a general purpose maritime communication
system, allowing shore to ship communication as well as ship
to ship communication. It comprises a terrestrial component, a
satellite component, and the existing Automatic Identification
System (AIS). VDES R-Mode is based on the terrestrial
component.

Terrestrial VDES utilises Frequency Division Duplex (FDD)
and has two frequency ranges available, one for up-link and
one for down-link. Each of these frequency ranges has a band-
width of 100 kHz. It uses a linear single carrier modulation
scheme and Time Domain Multiple Access (TDMA) with
individual transmission slots having a duration of 26ms. The
maximum transmission power is 12.5W

VDES R-Mode must integrate into this communication
system and its constraints. This means that the R-Mode signals
are also constrained to 100 kHz of bandwidth, a 26ms slot
length, and a navigation signal that is the result of a linear
single carrier π

4 -QPSK modulation and must adhere to the
parameters given by the VDES standard.

III. SIGNAL MODEL

We consider a situation where N base stations each transmit
a ranging signal s(t) that is received by a mobile station. The
mobile station then receives

ri(t) = αi · s
(
t− di

c0

)
+ ni(t), (1)

from the i-th base station. Where αi is the received amplitude
of the signal, and di is the distance between the position
(xm, ym) of the mobile station and the position (xi, yi) of
the i-th base station:

di(xm, ym) =
√

(xi − xm)2 + (yi − ym)2 (2)

ni(t) is additive white Gaussian noise with a noise power
spectral density of N0 and a different realization for each base
station. c0 is the speed of light. We consider a two-dimensional
position, as the receiver is assumed to be at a known height
relative to the water level.

IV. POSITION ESTIMATION METHODS

In [1], we investigated the achievable estimator performance
for the estimate of d̂i. We showed that the optimal ranging
signal depends on the SNR at the receiver. At high SNRs,
a signal with high effective bandwidth is desirable. At lower
SNRs, a signal with low side-peaks in the autocorrelation per-
formance is better. Therefore we introduced a design parameter
γ which represents a trade-off between a signal optimized for
high SNRs and a signal optimized for low SNRs. In Figure 4,
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Fig. 2. The autocorrelation of the R-Mode ranging signal for different values
of the design parameter γ.

the Ziv-Zakai Bound (ZZB) on the ranging error is shown for
different values of γ. It can be seen that a higher γ leads
to worse performance at lower SNRs. Figure 2 shows the
autocorrelation of the signal for different values of γ. It can
be seen that the autocorrelation function for higher values
of γ exhibits strong side-peaks, which cause ambiguities at
lower SNRs as an estimator is not able to reliably distinguish
between the main peak and the side peaks.

To estimate the ranges, we used a maximum likelihood
approach where the estimate d̂i is obtained as:

d̂i = argmax
di

∫ ∞

−∞
ri(t) · s∗

(
t− di

c0

)
dt. (3)

A numerical optimizer was used for each of the base stations,
in order to individually estimate the range for each available
base station.

Our primary interest is the position of the mobile station
rather than the individual ranges. We therefore consider an
approach where the information from all available base sta-
tions is used simultaneously. The previously used maximum
likelihood approach can be extended to this case:

x̂m = [x̂m, ŷm] =

argmax
xm,ym

N∑
i=1

Esi

2N0

∫ ∞

−∞
ri(t) · s∗

(
t− di(xm, ym)

c0

)
dt. (4)

ri(t) is the received signal from the i-th base station. Esi =
α2
iEs is the received signal energy, with Es =

∫∞
−∞ |s(t)|2dt

being the ranging signal’s energy. It is assumed that (xm, ym)
remains constant during the reception of the signals. Figure 3
shows the two-dimensional likelihood function that is max-
imised in (4) for a noise-free scenario.

This approach of directly estimating the position, helps with
resolving the ambiguities that occur at lower SNRs.

Of special interest is the case where γ = 1, as it offers
the best performance at high SNRs, and is most affected by
degradation at low SNRs. Therefore, this case can benefit the
most of the direct position estimation approach.



Fig. 3. The noise free likelihood function as used in (4)

To investigate this, we consider a scenario with three
base stations and a mobile station in fixed positions. Each
of the base stations is assumed to transmit an R-Mode
ranging signal with γ = 1, as defined in [4]. The base
stations are located at x1 = [−7000m, 7000m],x2 =
[7000m, 7000m],x3 = [0m,−7000m], and the receiver is
located at xm = [0m, 0m]. For simplification, we assume that
the received signal energy Es is identical for all base stations.
A square area of interest spanning 40 km×40 km is assumed.
The geometry of the base stations and the receiver can be seen
in Figure 3. For this scenario, we utilize the Ziv-Zakai Bound
and simulations to assess the advantage that direct position
estimation provides.

V. ESTIMATION BOUNDS

A. Cramér-Rao Bound

The Cramér-Rao Bound (CRB) is a lower bound on the
variance of an unbiased estimator.

It can be used to evaluate the possible ranging performance
of VDES R-Mode [6]. The Cramér-Rao Bound for range
estimation is given by [7]:

var(d̂) ≥ c20
Es

N0/2
β2

. (5)

Where Es =
∫∞
−∞ |s(t)|2dt is the signal energy, N0 is the

noise power density, and β2 is the signals squared effective
bandwidth:

β2 =

∫∞
−∞(2πf)2 |S(f)|2 df∫∞

−∞ |S(f)|2df
. (6)

S(f) is the frequency domain representation of s(t).
The Cramér-Rao Bound can also be applied to position

estimation [8]. We consider the CRB for a fixed geometry.
We denote the base station positions as xi = [xi, yi], and the
mobile station position as xm = [xm, ym]. The CRB can then
be stated as

C(x̂) ≥ I−1(x) = CRB(x), (7)
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Fig. 4. The Ziv-Zakai bound for range estimation according to (11).

where I(x) is the Fisher information matrix of x. The
greater or equal operator in (7) means that the difference of
the matrices is non-negative-definite. The Fisher information
matrix for this case has been shown to be:

I(x) = P⊤β2ΓP , (8)

with

P =
1

c0


xm−x1

||xm−x1||
...

xm−xN

||xm−xN ||

 (9)

Γ = diag

([
Es1

N0/2
, . . . ,

EsN

N0/2

])
(10)

The || · || operation denotes the Euclidian vector norm.
The results of the CRB applied to the scenario described in

Section IV can be seen in Figure 6. Notably, the CRB does
not depend on whether the two step or the direct approach to
positioning is used.

Only the squared effective bandwidth β2 of the signal and
the geometry affect the result. The presence or absence of
secondary peaks in the signal’s autocorrelation function does
not affect the result.

B. Ziv-Zakai Bound
In contrast to the Cramér-Rao bound, the Ziv-Zakai bound

takes into account the entire autocorrelation of the signal. We
previously applied the Ziv-Zakai bound for range estimation
to VDES R-Mode [1], [9], [10].

For range estimation, the Ziv-Zakai bound is given by [11],
[1]:

var(d̂) > c20

∫ T

0

h ·
(
1− h

T

)
· Pe(h)dh. (11)

The integration interval [0, T ] represents an a priori time
interval within which the arrival time of the signal at the
receiver is assumed to be uniformly distributed.

Pe(h) = Q

(√
Es

2N0
(1− real(ρ(h)))

)
(12)



is the error probability of an optimal detector that decides
between the signal hypotheses s(t) and s(t−h). The autocor-
relation ρ(h) is given by

ρ(h) =
1

Es

∫ ∞

−∞
s(t)s∗(t− h)dt, (13)

and the Q-function is defined as

Q(x) =
1√
2π

∫ ∞

x

e
−u2

2 du. (14)

Figure 4 shows the Ziv-Zakai bound on range estimation for
different signal parameters.

It is possible to extend the Ziv-Zakai bound to vector
estimation problems [12] and to apply it to direct position
estimation.

In case of position estimation, the achievable performance
depends not just on the signal and its SNR, but also on the
geometry of the base stations relative to the mobile station. We
consider the bound for the case of the mobile station being in
a deterministic position xm. The Ziv-Zakai bound for this case
is given as [8]:

a⊤Rϵa|x=xm
≥
∫ ∞

0

max
a⊤δ=h

Pe(xm,xm + δ)hdh. (15)

The direction vector a specifies which component of the error
we are interested in. E.g. choosing a=[1,0] would result in the
ZZB on the x-component of the error.

Rϵ = E{ϵϵ⊤} (16)

is the correlation matrix of the error vector ϵ = x̂m − xm.
Analogous to the range estimation case, Pe(xm,xm+δ) is the
error probability of an optimal detector that decides between
two position hypotheses a and b. Notably, the error probability
is zero when one of the hypotheses is outside of the a-priori
area. The probability can be calculated as

Pe(xm,xm + δ) = Q
(√

C(xm, δ)
)
, (17)

where C(xm, δ) is defined as

C(xm, δ) =

N∑
i=1

Esi

2N0

(
1− ρ

(
di(xm)− di(xm + δ)

c0

))
.

(18)
This means that a weighted sum of the correlation functions
is used for calculating the error probability instead of a single
correlation function as in Equation 12 for the range estimation
case. As described in Section IV, we consider a case where
the signal energies of all base stations are identical. Figure 5
shows the sum of the correlation functions for this case.

As Equation 15 requires taking the maximum of the error
probability Pe, it is worth noting that the Q function and the
square root function are both monotonic. Thus, the maximum
can also be found by only considering the aforementioned
sum of correlation functions, and then continuing the cal-
culation with that maximum. Figure 5 shows the result of
maxa⊤δ=h C(xm, δ) for a = [1, 0] as a function of h, and
the autocorrelation of a single range for comparison.

Fig. 5. The correlation functions used for calculating the ZZB.
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Fig. 6. The results of CRB, ZZB and simulation for range and position
estimation.

We used this approach to calculate the position estimation
ZZB for the scenario described in Section IV. Once with a =
[1, 0] and once with a = [0, 1]. The sum of which is the
ZZB for the absolute positioning error, which can be seen in
Figure 6.

C. Ziv-Zakai Bound for Two-step position estimation

In order to compare the direct position estimation approach
with the two-step approach where ranges are estimated first,
and the position is then estimated from the range estimates,
we employ a method suggested in [13]. The calculation of the
position CRB in Equation 7 and Equation 8 exhibits a structure
where the dependency on the geometry is contained in P and
the dependency on the individual range estimates is contained
in β2Γ. The position CRB can be expressed in terms of the
ranging CRB and the Jacobi Matrix of the delays. If we denote
σ2
CRB,i to be the result of the ranging CRB for the i-th ranging

link, as defined in Equation 5, the Fisher information matrix
for position estimation can be expressed as:

I(x) = P⊤c20 diag
(
σ−2
CRB,1, . . . , σ

−2
CRB,N

)
P (19)



The same concept can be applied with the result of the ranging
ZZB as defined in Equation 11. By denoting σ2

ZZB,i to be the
result of the ranging ZZB for the i-th base station, we can
analogously calculate

IZZB(x) = P⊤c20 diag
(
σ−2
ZZB,1, . . . , σ

−2
ZZB,N

)
P (20)

This approach does take into account that ambiguities occur
at lower SNRs. It does not however take into account any
information that can only be used by joint processing.

VI. SIMULATIONS

To verify our theoretical findings and to confirm that the
ZZB is a useful tool to assess the ranging and positioning
performance, we also performed simulations.

Three different simulations were performed:
1) A simulation of maximum likelihood range estimation

as described in Equation 3.
2) A simulation of two step positioning, utilizing the results

of the first simulation to obtain a position estimate.
3) Direct position estimation with a maximum likelihood

estimator, according to Equation 4.
The geometry used in the position estimation scenarios was

the same as described in Section IV. For each base station, a
sampled representation of the scaled R-Mode signal was added
to a vector of Noise samples. This was performed for a range
of signal energy to noise power density ratios Es

N0
. For each

given signal level, 1000 iterations with different realizations
of the noise vector were performed.

The argmax operation in Equation 3 and Equation 4, was
performed by first searching on a fixed grid of samplepoints,
with sufficiently fine spacing to avoid local maxima, and then
using the best gridpoint as the starting point for a numerical
optimizer.

The results of the simulations are shown in Figure 6. It can
be seen that each simulation matches the corresponding ZZB,
with the simulation results always on or above the limit given
by the lower bound.

Of particular interest is the point where the ZZB diverges
from the CRB. It can be seen in the results that the simulation
and the ZZB deviate from the CRB at the same point. It
can also be seen that the accuracy of the simulated estimates
decreases sharply at SNRs below that point. From a practical
point of view, this means that resolution of the signal’s ambi-
guities is possible down to that SNR, and that the navigation
signal is only useful above that.

The simulation thus confirms that the ZZB is a useful tool
to determine at which SNR the navigation signal is useful in
a certain scenario.

VII. SUMMARY AND CONCLUSION

We applied the Cramér-Rao bound and the Ziv-Zakai bound
to direct position estimation for VDES R-Mode and performed
simulations for a static scenario with three base stations and
one mobile station.

While the Cramér-Rao bound gives information about the
estimator performance at high SNRs, it provides little infor-
mation at lower SNRs where the direct position estimation
approach is beneficial. The Ziv-Zakai bound however is a use-
ful tool to assess the benefits of the direct position estimation
approach. It shows a threshold effect at the point where the
ambiguities in the signal can no longer be resolved due to
too much noise. The simulations we performed confirm that a
maximum likelihood estimator can achieve the ZZB until the
SNR where it starts to deviate from the CRB.

From the results in Figure 6, we can see that the SNR at
which the ZZB starts to deviate from the CRB is 12 dB lower
for the direct position estimation approach than it is for range
estimation.

We are planning to apply this concept to measurement data
that we have gathered during previous experiments.
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