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Why Quantum Sensors and Timing? 2t

They are here NOW!!!

e Quantum Clocks define time since 1967

e Quantum Clocks underpin Satellite Navigation

e Early Quantum Magnetometers and Quantum Gravimeters are
commercially available

 Quantum Sensors for acceleration, rotation, electric fields,
electromagnetic fields from RF to THz,... have all been demonstrated in
the laboratory to be , better” than classical sensors

Sensors and Timing underpin more of our economy than most think!




Sensors Changing the Economy

From Nobel Prize to Disruptive Business Opportunity
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Quantum Clocks Potential to Change Business Models f DLR

Timing Today: Centralized Model

Timing via Global Navigation Satellite Systems:

'/ * ,Free“touse
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Communication and "~ - Finance ; 39 ns within UTC. .
energy networks Wl.d'espreac.j use .|n industry and
critical national infrastructure
UTC . - Can be easily spammed or spoofed
% mostly jL - Is not available everyehere (e.g. underwater)

- Risk to critical infrastructure in case of conflict
- Potential limits to communication
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Quantum Clocks Potential to Change Business Models f DLR

Timing Future: ,,Edge” Model
* ‘& Quantum ,,Edge” Timing:

*  Resilience

A /
EIEI(*W** :i?i\? * Network architectures with higher bandwidth
Communication and Finance and better energy efficiency
energy networks Local timing * Architectures for safe autonomous vehicles
. * Improved air and space surveillance
with
synchronization
% - Not ,free“ to use

- Will need 10-15 years of development to
reach full potential
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How do Quantum Clocks Work? Enm

A quantum clock replaces the manmade frequency reference in a classical clock (e.g. a pendulum) with an atom

Always made the same by nature
Precision governed by the laws of physics




Microwave (old) and Optical (new) Quantum Clocks I: DLR

A quantum clock replaces the manmade frequency reference in a classical clock (e.g. a pendulum) with an atom

Microwave atomic clock Optical atomic clock
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—> faster sychronization & higher precision




1000 I, 1 kW, €1M

100 I, 100 W, €100k

101, 10 W, €10k

100 ml, 100 mW, €1k

So far: “linear” relationship between SWAP-C and stability

Why are Optical Clocks Disruptive?
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Why are Optical Clocks Disruptive? Enm

So far: “linear” relationship between SWAP-C and stability

Optical Lattice or
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Roadmap for Optical Clock Applications E DLR

Business Advantage through Quantum Timing

Credit: ESA Credit: DLR -
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Next generation Long distance Urban airspace mme-level global height
GNSS 3d imaging radar control reference system

GNSS resilient operation High bandwidth Autonomous vehicles
communication



Magnetic Sensor Overview — Scale vs Sensitivity
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Sensors 2021, 21(16),
5568:; https://doi.org/10.3390/s21165568



https://doi.org/10.3390/s21165568
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Roadmap for Magnetic Sensor Applications E DLR

Business Advantage through Quantum Magnetometry

&+

Oil and Mineral Quantum Routine Clinical
Exploration Magnetoencephalography Diagnostics Gaming

2020 2030 2040

Microsample Brain Machine
Chemical Analysis Battery diagnostics Interfaces




Opportunities in ,Mapping the Underworld” DLR

>$1 trillion investment in irrigation (QUANTUM SENSING AND MEASUREMENT

and water management to 2050
http://www.fao.org/docrep/017/i1688e/i1688e.pdf
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Image: Quantum Blackett Report:
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Microgravity Surveys and their Limitations

Example: Brown Field Site Survey

Classical microgravity sensors are sufficiently
sensitive to deliver useful information!

BUT:
They take 5-10 min/measurement point

Sensor drift needs to be corrected by
periodically returning to a calibration point

In this example: 1 month for 1 ha with 3
sensors and 4 persons

- Commercial uptake hindered by cost of
operation, not the sensitivity of the instrument

UK
Quantum Technology Hub
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Why do Gravity Measurements take so much Time?

—_

Requirement to

e Acceleration vs gravity achieve 1 ng

Better gravity
sensors only
provide calibration
benefits, not lower
measurement
time/point !!!

o _ _
30-100 ng Minutes / point

d

0.001° alignment

\ g cos(¢) ¢ g
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Solution: Gravity Gradiometry

—_

Requirement to
achieve 1 ng/m

e
- ) ) As fast as your Common laser
* Suppression of Accelerations instrument beam
-1 s/ point

_ Near-Perfect

. eie acceleration

* Reduced Tilt Sensitivity SupsrEsston En

alignment in Atom

N . Interferometry
3¢ alignment

Ag cos(d) ® Ag (300 ng/m)
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World first detection for quantum gradiometry

- Survey over tunnel
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Credible interval bands
Gradiometer data

----- Site model

Position {m)

Tunnel centre localised to: =0.19 m, horizontal; -0.59/+2.3 m, vertical
Nature volume 602, pages590-594 (2022)



https://www.nature.com/

Enabling Gravity Cartography

Soil compaction Bu1ilg(i)ngs
- Relevant to a range of 0D . e —

applications, including: e St
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Nature volume 602, pages590-594 (2022)
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Schematic Setup of a Quantum Navigation System

Acceleration
Sensors

Rotation rate
Sensors

Inertial Sensing

Time

Time

Acceleration in
lab system

2

2.

2

Velocity

| [

I$ Position

2\ O\ ﬁ
Orientation

il il

Correction
Coriolis Acceleration

<

T

Correction
local Geoid

i

Gravity map

4

~

Gravity/Gravity
Gradient sensing
+ Map Matching

Mag Gradient
+ Map Matching




Roadmap to Applications

Atoms sensing Atorns sensing Atoms sensing
GRAVITY MAGNETIC INERTIAL
GRADIENTS FIELD SENSING

Atoms sensing £1bn E7bn £500M Atoms sensing

GRAVITY THz Atloms making

£300M £400M
Atoms sensing QUANTUM
Earth |: ZI LIGHT
TIME ﬁ Nuwga i

£500M observation - £100M
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Atoms based QT platform
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For Atom Interferometry, see also: Nature Reviews Physics 1, 731 (2019)
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UK National QT Hub in Sensors and Timing
Funders, Partners and Collaborators
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EPSRC funding £59.5M, collaborative projects with over 85 companies: £150M
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If we don‘t act, others will harness the opportunity!
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