COMMERCIAL APPLICATION OPPORTUNITIES AND DISRUPTIVE POTENTIAL OF QUANTUM SENSORS

Prof. Dr. Kai Bongs DLR Institut für Quantentechnologien, Ulm

Why Quantum Sensors and Timing?

They are here NOW!!!

- Quantum Clocks define time since 1967
- Quantum Clocks underpin Satellite Navigation
- Early Quantum Magnetometers and Quantum Gravimeters are commercially available
- Quantum Sensors for acceleration, rotation, electric fields, electromagnetic fields from RF to THz,... have all been demonstrated in the laboratory to be "better" than classical sensors

Sensors and Timing underpin more of our economy than most think!

Sensors Changing the Economy

From Nobel Prize to Disruptive Business Opportunity

Quantum Clocks Potential to Change Business Models

Timing Today: Centralized Model

Timing via Global Navigation Satellite Systems:

- * "Free" to use
- Worldwide availability
- ⁺ 30 ns within UTC
- → Widespread use in industry and critical national infrastructure
- Can be easily spammed or spoofed
- Is not available everychere (e.g. underwater)
- Risk to critical infrastructure in case of conflict
- Potential limits to communication

Quantum Clocks Potential to Change Business Models

Timing Future: "Edge" Model

Quantum "Edge" Timing:

- + Resilience
- Network architectures with higher bandwidth and better energy efficiency
- Architectures for safe autonomous vehicles
- * Improved air and space surveillance
- Not "free" to use
- Will need 10-15 years of development to reach full potential

How do Quantum Clocks Work?

A quantum clock replaces the manmade frequency reference in a classical clock (e.g. a pendulum) with an atom

Always made the same by nature Precision governed by the laws of physics

Microwave (old) and Optical (new) Quantum Clocks

A quantum clock replaces the manmade frequency reference in a classical clock (e.g. a pendulum) with an atom

Microwave atomic transition is used to discipline a quartz oscillator

Optical atomic transition is used to discipline a laser

100.000 higher frequency → faster sychronization & higher precision

Why are Optical Clocks Disruptive?

So far: "linear" relationship between SWAP-C and stability

Why are Optical Clocks Disruptive?

So far: "linear" relationship between SWAP-C and stability

Roadmap for Optical Clock Applications

Business Advantage through Quantum Timing

Magnetic Sensor Overview – Scale vs Sensitivity

5568; https://doi.org/10.3390/s21165568

Quantum-Magnetoencephalography – Spin off from QT

Cerca:

Joint venture spin-off between Magnetic Shields and Nottingham University Founded in 2020

First systems delivered internationally £6M turnover in first year >£50M requests for quotations

Impact Opportunities:

Epilepsy: 60M people worldwide

Dementia: 1% GDP

Schizophrenia: 1% of population

Trauma: 100.000 / year in UK

A new generation of quantum sensors have enabled 'wearable' brain imaging technology

50 channel whole head system 2020

Roadmap for Magnetic Sensor Applications

Business Advantage through Quantum Magnetometry

Opportunities in "Mapping the Underworld"

Image: Quantum Blackett Report:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/564946/gs-16-18-quantum-technologies-report.pdf

Microgravity Surveys and their Limitations

Example: Brown Field Site Survey

UNIVERSITY^{OF} BIRMINGHAM

Classical microgravity sensors are sufficiently sensitive to deliver useful information!

BUT:

They take 5-10 min/measurement point

Sensor drift needs to be corrected by periodically returning to a calibration point

In this example: 1 month for 1 ha with 3 sensors and 4 persons

→ Commercial uptake hindered by cost of operation, not the sensitivity of the instrument

Why do Gravity Measurements take so much Time?

Solution: Gravity Gradiometry

World first detection for quantum gradiometry

Survey over tunnel

Tunnel centre localised to: ± 0.19 m, horizontal; -0.59/+2.3 m, vertical

<u>Nature</u> **volume 602**, pages590–594 (2022)

Enabling Gravity Cartography

- Relevant to a range of applications, including:
 - Water monitoring
 - Infrastructure
 - Archaeology
 - Agriculture
 - Navigation

Schematic Setup of a Quantum Navigation System

Roadmap to Applications

For Atom Interferometry, see also: Nature Reviews Physics 1, 731 (2019)

UK National QT Hub in Sensors and Timing Funders, Partners and Collaborators

EPSRC funding £59.5M, collaborative projects with over 85 companies: £150M

If we don't act, others will harness the opportunity!

THANK YOU FOR LISTENING – QUESTIONS?