PREDICTIVE CONTROL UNDER

CLOUD PASSAGES OF A
SOLAR TOWER PLANT WITH AN
OPEN-VOLUMETRIC RECEIVER
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Problem - Cloud Passage

» Usually, a "cloud standby scenario” is set
—> Avoiding damage
* Problems:

» The available solar energy is not fully
utilized during cloud passage
- Reduction of the efficiency

» Colder heat transfer medium for
downstream process
- Reduction of the efficiency of the
downstream processes

 Solution:

» Control the mass flow and the
heliostats during cloud passage to
increase the efficiency

- What about safety?
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Objective

» Control of the air outlet temperature in compliance
with the given temperature limits by manipulating
the mass flow and heliostat aim points.

« Consider cloud forecasts.

* Analysis of the control performance under different

cloud scenarios.

» Analysis of the robustness of the controller to

uncertainties in cloud forecasting.
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Approach: Model Predictive Controller ‘#7
DLR
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» Specifics of model predictive controller:
» Possibility to include predictable disturbances/model states (e.g. cloud predictions)
» Control of MIMO systems possible (e.g. mass flow and aim points)
 Input and output variables as well as model states can be limited (e.g. surface temperatures)






Model for the MPC
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* Flux distribution by a
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» Considering one critical cup out
: of 6x6 cups.
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Model for the MPC

optical model
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model with to 2
states and 2

« Fan dynamics

- 4 inputs

- 62 ordinary
differential
equations

-> 60 algebraic
equations
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Optimizer

Estimator

Cloud Forecast

Observer
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* Optimizer: IPOPT

» Objective function considers:
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» Deviation from set point temperature —
T < Tmax

» Soft constraints for surface temperature
» Rate term for manipulated variables Aall | AAA

« Sample time: 10 s (3s for MPC, 3-6s heliostat movement)
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Definition of Test Case 1
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[3] T. Hirsch, "Dynamic system simulation and design of the separation system for direct solar evaporation in parabolic trough collectors", University of Stuttgart, 2005.



Test Case 1: Comparison of the Control Performance ‘#7
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Cloud standby

forecast
) 150
f 150 [ 150 - RMSE hardly dependent on
L 120 .
125 120 E cloud velocity
e BEEN W - Influence of the control
75 0 o § 0 s . .
: | ~ g 3 particularly large with low
- 0 " 50 s :
g . - . 0 ¢ shading
_ L | = i - Up to 50 K or 86% lower
’ . 0 | o o RMSE
Lightszans,,,. 50 20 ds‘,eecl\m‘ "-ightztrsa - < 20 Qee:!\"“‘e'\
ISSiop I%) 75 15 oV nsfnfgsj()n %) = 15 C\oﬂd B L,



Definition of Test Case 2

DLR

duration
« Complete shading of the heliostat field with 25 % 100 : Predicted
transmissivity of the cloud. J
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[3] T. Hirsch, "Dynamic system simulation and design of the separation system for direct solar evaporation in parabolic trough collectors", University of Stuttgart, 2005.
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Test Case 2: Robustness against Uncertainties

» Analyzed the operational reliability of the power plant (limitation of the front temperature) with respect to

forecast inaccuracies of cloud velocity

Predicted cloud speed [m/s]
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Robustness against Uncertainties in the Forecast ‘#7
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* If the cloud speed prediction is too slow, the
heliostats are defocused too late

» The cloud speed prediction must not fall below
the real value by more than -11%

» Faster cloud speed predictions are not

problematic




Conclusion ‘#7
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* Designed a MPC including the system model for an open-volumetric receiver
» Objective:

* Designed predictive control considering cloud predictions

» Control of air outlet temperature meets given temperature limitations

- Dependent on quality of cloud prediction
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