PREDICTIVE CONTROL UNDER CLOUD PASSAGES OF A SOLAR TOWER PLANT WITH AN OPEN-VOLUMETRIC RECEIVER

Solar Paces 2023, Sydney

David Zanger

Institute of Solar Research @ German Aerospace Center, Cologne

Problem - Cloud Passage

- Usually, a "cloud standby scenario" is set
 → Avoiding damage
- Problems:
 - The available solar energy is not fully utilized during cloud passage
 - \rightarrow Reduction of the efficiency
 - Colder heat transfer medium for downstream process
 - → Reduction of the efficiency of the downstream processes
- Solution:
 - Control the mass flow and the heliostats during cloud passage to increase the efficiency
 - \rightarrow What about safety?

Heliostat field

Objective

- Control of the air outlet temperature in compliance with the given temperature limits by manipulating the mass flow and heliostat aim points.
- Consider cloud forecasts.
- Analysis of the control performance under different cloud scenarios.
- Analysis of the robustness of the controller to uncertainties in cloud forecasting.

Heliostat field

Approach: Model Predictive Controller

- Specifics of model predictive controller:
 - Possibility to include predictable disturbances/model states (e.g. cloud predictions)
 - Control of MIMO systems possible (e.g. mass flow and aim points)
 - Input and output variables as well as model states can be limited (e.g. surface temperatures)

MODEL OF THE SOLAR TOWER JUELICH

Model for the MPC

Model for the MPC

Optimizer

• Sample time: 10 s (3s for MPC, 3-6s heliostat movement)

RESULTS

Definition of Test Case 1

- Complete shading of the heliostat field.
- Shading duration: 120 seconds
- Cloud transmissivity: 0%, 25%, 50%, 75%,
- Cloud speed actual and predicted (Only influence on ramp length):
 15, 20, 25, 30 m/s

Test Case 1: Comparison of the Control Performance

- → RMSE hardly dependent on cloud velocity
- → Influence of the control particularly large with low shading
- → Up to 50 K or 86% lower RMSE

Definition of Test Case 2

Test Case 2: Robustness against Uncertainties

- Analyzed the operational reliability of the power plant (limitation of the front temperature) with respect to forecast inaccuracies of cloud velocity

Robustness against Uncertainties in the Forecast

- If the cloud speed prediction is too slow, the heliostats are defocused too late
- The cloud speed prediction must not fall below the real value by more than -11%
- Faster cloud speed predictions are not problematic

Conclusion

- Designed a MPC including the system model for an open-volumetric receiver
- Objective:
 - Designed predictive control considering cloud predictions
 - Control of air outlet temperature meets given temperature limitations
 - \rightarrow Dependent on quality of cloud prediction

Thanks for your attention!

Topic:	Predictive Control under Cloud Passages of a Solar Tower Plant with an Open-Volumetric Receiver
Date:	06.10.2023
Author:	David Zanger (david.zanger@dlr.de)
Institute:	Institute of Solar Research, German Aerospace Center, Cologne