DEEP LEARNING INVERSION OF A RAYTRACER FOR HELIOSTAT SURFACE PREDICTIONS

Jan Lewen¹²³, Max Pargmann¹, Daniel Maldonado Quinto¹, Mehdi Cherti², Jenia Jitsev², Robert Pitz-Paal¹³

[1] Institute of Solar Research @ German Aerospace Center, Cologne, Germany

[2] Jülich Supercomputing Center @ Research Center Jülich, Jülich, Germany

[3] Chair of Solar Technology @ RWTH Aachen University, Aachen Germany

- Motivation
- Method: Deep Learning Inversion of a Raytracer
- Results: Heliostat Surface and Flux Density Prediction
- Conclusion
- Outlook

DLR

J. Contraction

Flux density distribution

Flux Density Distribution

- most important control parameter
- superposition of single flux densities

SolarPaces Sydney – Jan Lewen - 13.10.2023

Flux density distribution

Flux Density Distribution

- most important control parameter
- superposition of single flux densities

Aim Point Control

- optimizes the flux density distribution
- mass center of flux density at designated aim point (*tracking*)
 Fully automatic calibration is established
- flux density shape should be incorporated in aim point control
 - heliostat specific
 - depends on sun position
 - currently no fully automatized, cheap and reliable method to predict flux density shapes

ō

Potential of Automatized Flux Density Prediction

 reduction of safety limits during operation leads to higher yield

Potential of Automatized Flux Density Prediction

SolarPaces Sydney – Jan Lewen - 13.10.2023

Heliostat Surface Shape

Heliostat Surface Shape

- mirror surface shapes
- facet alignment
 - heliostat flux density is non-ideal

Deflectometry Measurement

Heliostat Surface Shape

- mirror surface shapes
- facet alignment
 - heliostat flux density is non-ideal

Deflectometry Measurement

- precise measurement of heliostat surface shape
- not used at commercial power plants for automatized flux density prediction:
 - expensive in material and execution
 - error prone to weather conditions
 - Is it possible to replace the Deflectometry Measurement by a Deep Learning model?

J. Constanting

DLR

Digital Twin of a Heliostat | State of the Art

<mark>SOTA</mark>

- geometry model from calibration
- ideal heliostat assumption

Digital Twin of a Heliostat | Deep Learning Enhanced

<mark>SOTA</mark>

- geometry model from calibration
- ideal heliostat assumption

Deep Learning Enhanced

- model predicts heliostat surface shape from target images
- flux density shape predictable for all sun position
- heliostat surface shape described by a spline
- no new hardware necessary
 > minimal-cost

Solar Tower Jülich

Deep Learning Inversion of a Raytracer

Raytracing

- accurate description of physics
- high similarity between target image and simulated flux density when scene known

Deep Learning Inversion of a Raytracer

- predicting the heliostat surface from a target images is the inverse problem to raytracing
- training data can be simulated with a raytracer

13

Generation of Artificial Training Data

14

Deep Learning Model

Neural Net

- Encoder-Decoder structure
- styleGAN-Generator as Decoder

Training

- with simulated raytracer dataset
- on JUWELs at Research Center Jülich

CERTERIES BEREFERENCE

Results

Validation Set

- deflectometry measured surfaces of heliostats at Solar Tower Jülich
- raytracing to obtain simulated flux densities as input for the deep learning model

Inverse Deep Learning Raytracing

- surface prediction
- comparison with the deflectometry surface
- flux density prediction for all sun position possible

17

Results Surface Prediction

Inverse Deep Learning Raytracing

- very precise surface prediction
- deviations are possible (Heliostat 2)
- mean absolute error:
 - ➤ MAE = 0.18 ± 0.08mm
- surface deviation range: 2-4mm

Examples of the Surface Prediction (validation set)

Results Flux Density Prediction

Examples of the Flux Density Prediction (validation set)

Raytracing the Predicted Surface

very precise flux density prediction

 even details can be predicted with high accuracy

 less accurate surface predictions can still result in good flux density prediction (Heliostat 2)

19

Summary

Deep Learning Inversion of a Raytracer

 minimal-cost deep learning approach to predict heliostat surfaces from target images

model performs very good in simulative condition
 mean absolute error = 0.18 ± 0.08mm

 allows modern aim points strategies reducing the safety margins and hence increase the power plants yield

Outlook

Sim2Real Transfer

- transfering the simulative model to real data
- target images replace the simulated flux density as input
- zero-shot sim2real transfer

Outlook

Sim2Real Transfer

- transfering the simulative model to real data
- target images replace the simulated flux density as input
- zero-shot sim2real transfer

Training without Deflectometry Data

- deflectometry not available for all power plants
- replace deflectometry data by FEM simulation of possible heliostat deformation

FE Model of a Heliostat taken from Vásquez Arango 2016 "Dynamic wind loads on heliostats"

Bildquelle hier angebei

THEFTER PROPERTY AND IN THE PROPERTY AND INTERPORTY AND INTERPORT

THANK YOU FOR YOUR ATTENTION!

