
Enabling Rapid Development of On-board
Applications: Securing a Spacecraft Middleware by

Separation and Isolation
Andreas Lund∗ , Carlos Gonzalez Cortes† , Zain Haj Hammadeh† , Fiona Brömer∗ ,

Glen te Hofsté∗, Daniel Lüdtke†

∗Institute for Software Technology
German Aerospace Center (DLR)

Weßling, Germany

†Institute for Software Technology
German Aerospace Center (DLR)

Braunschweig, Germany

Today’s space missions require increasingly powerful hardware to achieve their mission objectives, such as high-resolution
Earth observation or autonomous decision-making in deep space. At the same time, system availability and reliability require-
ments remain high due to the harsh environment in which the system operates. This leads to an engineering trade-off between the
use of reliable and high performance hardware. To overcome this trade-off, the German Aerospace Center (DLR) is developing
a special computer architecture that combines both reliable computing hardware with high-performance commercial-off-the-
shelf (COTS) hardware. This computer architecture is called Scalable On-Board Computing for Space Avionics (ScOSA) and
is currently being prepared for demonstration on a CubeSat, also known as the ScOSA Flight Experiment [1].

The ScOSA software consists of a middleware to execute distributed applications, perform critical on-board software
functionalities, and do fault detection and recovery tasks. The software is based on the Distributed Tasking Framework which is
a derivate of the open-source, data-flow oriented Tasking Framework [2], for this reason, developers organize their applications
as a set of tasks and channels. The middleware handles the task distribution among the nodes [3]. ScOSA will detect failing
compute nodes and reallocate tasks to maintain the availability of the entire system. The middleware can also change the set
of allocated tasks to support different mission phases. Thus, ScOSA allows software to be reloaded and executed after startup.
By this the software can be tested quickly and safely on the system. Combined with an upload strategy, ScOSA can be used
for in-situ testing of on-board applications.

Since ScOSA will also perform mission-critical tasks, such as an Attitude and Orbit Control System or a Command and Data
Handling System, the opening of the platform leads to the problem of mixed criticality [4]. This problem is already present in
the ScOSA Flight Experiment, since the demonstration will include typical satellite applications developed by different teams in
the DLR. Thus, not only the teams implement different quality standards for their software, but also the applications themselves
have different Technical Readiness Levels (TRLs).

The challenge of mixed criticality is often met by completely separating and isolating the different software components,
e.g. by using a hypervisor or a separation kernel [5], [6]. Due to the distributed nature of the ScOSA system and its execution
platform a separation using hypervisor technique is not easily achievable.

For this reason, we discuss in this work how we separate the critical services and communication components into their
own Linux process to guarantee that best-effort applications are not inflicting the critical components of the middleware. We
also consider and discuss in this work how to implement further mechanisms of the Linux kernel in order to strengthen
the separation, i.e. the cgroups and the kernel namespaces. However, a complete isolation between software components is
undesirable, due to the necessary interaction between them. Given that the applications themselves can be spread over several
nodes, the application tasks need to communicate and this can be only done if the critical software components relays messages
from other nodes to the separated application processes. For this reason the middleware provides a relay service which takes
care of the intra-node-inter-process-communication. Using a relaying mechanism simplifies development and does not require
a complete rewrite of the existing middleware network stack.

The proposed techniques were applied in a case study to integrate applications of unknown quality standards into the ScOSA
software system in an agile way. We discuss how the presented measures ensure that the resultant software is sufficiently tested
and meets the required quality level.

Finally, we discuss possible improvements to our existing separation and isolation solution for ScOSA and outline how these
techniques can be used in other platforms such as the RTEMS operating system.

Index Terms

Mixed-Criticality, On-board software, Fault-Tolerance, Computer Architecture

https://orcid.org/0000-0002-3828-2088
https://orcid.org/0000-0001-5936-9708
https://orcid.org/0000-0001-7539-2393
https://orcid.org/0000-0003-1788-7173
https://orcid.org/0000-0002-6758-1562


REFERENCES

[1] C. J. Treudler, H. Benninghoff, K. Borchers, B. Brunner, J. Cremer, M. Dumke, T. Gärtner, K. J. Höflinger, D. Lüdtke, T. Peng, E.-A. Risse, K. Schwenk,
M. Stelzer, M. Ulmer, S. Vellas, and K. Westerdorff, “ScOSA - scalable on-board computing for space avionics,” in International Astronautical Congress
(IAC), Bremen, Germany, Oct. 1-5, 2018.

[2] Z. A. H. Hammadeh, T. Franz, O. Maibaum, A. Gerndt, and D. Lüdtke, “Event-driven multithreading execution platform for real-time on-board software
systems,” in 15th Workshop on Operating Systems Platforms for Embedded Real-Time applications (OSPERT), Stuttgart, Germany, July 9, 2019,
A. Lackorzynski and D. Lohmann, Eds., 2019, pp. 29–34. [Online]. Available: https://elib.dlr.de/128249/

[3] A. Lund, Z. A. H. Hammadeh, P. Kenny, V. Bensal, A. Kovalov, H. Watolla, A. Gerndt, and D. Lüdtke, “ScOSA system software: The reliable and
scalable middleware for a heterogeneous and distributed on-board computer architecture,” CEAS Space Journal, Mai 2021.

[4] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department of Computer Science, University of York, Tech. Rep, 2022.
[5] E. Salazar, A. Alonso, and J. Garrido, “Mixed-criticality design of a satellite software system,” IFAC Proceedings Volumes, vol. 47, no. 3, pp.

12 278–12 283, 2014, 19th IFAC World Congress. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474667016435688
[6] D. Sanán, A. Butterfield, and M. Hinchey, “Separation kernel verification: The xtratum case study,” in Verified Software: Theories, Tools and Experiments:

6th International Conference, VSTTE 2014, Vienna, Austria, July 17-18, 2014, Revised Selected Papers 6. Springer, 2014, pp. 133–149.

https://elib.dlr.de/128249/
https://www.sciencedirect.com/science/article/pii/S1474667016435688

	References

