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1. Introduction

As climate change is advancing, the need for renewable energy
sources becomes increasingly urgent. Solar power is one of the

most promising forms of renewable
energy, offering a clean and abundant
source of electricity. However, the amount
of solar radiation reaching the Earth’s
surface, i.e., solar irradiance, is highly vari-
able. Apart from seasonal and diurnal
changes, solar irradiance depends primar-
ily on atmospheric conditions. Variations
in conditions are mainly caused by aerosols
and clouds. This variability poses a chal-
lenge for the efficient operation and inte-
gration of solar power plants into the
grid. For example, a sudden drop of solar
irradiance of a few 100Wm�2 min�1 due
to passing clouds, directly impacts the
power output of a photovoltaic (PV) plant.
Especially for grids with an increased share
of solar energy, such volatile conditions can
lead to large mismatches in energy supply
and demand. As a result, plant operation
and grid integration have to become more
flexible to allow further expansion of these
intermittent energy sources.[1,2] A prerequi-
site for dealing with such problems is to
anticipate future conditions. In previous

studies, it has been shown that solar forecasts could significantly
reduce mitigation measures and corresponding costs.[3–5]

There are generally two distinct approaches to solar forecast-
ing. First, data-driven approaches which obtain forecasts purely
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Intermittent solar irradiance due to passing clouds poses challenges for inte-
grating solar energy into existing infrastructure. By making use of intrahour
nowcasts (very short-term forecasts), changing conditions of solar irradiance can
be anticipated. All-sky imagers, capturing sky conditions at high spatial and
temporal resolution, can be the basis of such nowcasting systems. Herein, a deep
learning (DL) model for solar irradiance nowcasts based on the transformer
architecture is presented. The model is trained end-to-end using sequences of sky
images and irradiance measurements as input to generate point-forecasts up to
20 min ahead. Further, the effect of integrating this model into a hybrid system,
consisting of a physics-based model and smart persistence, is examined.
A comparison between the DL and two hybrid models (with and without the DL
model) is conducted on a benchmark dataset. Forecast accuracy for deterministic
point-forecasts is analyzed under different conditions using standard error
metrics like root-mean-square error and forecast skill. Furthermore, spatial and
temporal aggregation effects are investigated. In addition, probabilistic nowcasts
for each model are computed via a quantile approach. Overall, the DL model
outperforms both hybrid models under the majority of conditions and aggre-
gation effects.
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from learned patterns on historic training data. In this
category, all statistical or machine learning methods fall.
Second, physics-based approaches that model physical processes
in the atmosphere to generate forecasts, like cloud kinematics or
transmittance. It should be emphasized that also physical models
often include some data-driven methods in their processing
pipeline[6] and vice versa.[7] Thus, in this context, we categorize
models as physics-based when they incorporate implementations
of physical processes and as data-driven when they rely on data
without explicit modeling of physics.

Apart from data-driven versus physics-based, solar forecasting
can be categorized into three main groups based on forecast
horizon and exogenous data[8]: numerical weather predictions
(NWP), satellite-based, and approaches based on local observa-
tions (e.g., irradiance measurements from ground stations or
sky images). NWP are usually applied for larger forecast horizons
like day-ahead forecasts,[9] although in recent studies also
hour-ahead forecasts have been investigated using NWP.[10]

Generally, satellite-based methods are typically used for intraday
forecasts.[11,12] Forecasts based on local observations such as
all-sky imagers (ASI) are a common choice for intrahour
forecasts.[6,13,14] Combined with a network of cameras, also an
increased nowcast horizon and spatial coverage can be
achieved.[15] The rationale behind this categorization stems from
the stochastic behavior of cloud dynamics on a local scale. Since
temporal and spatial resolutions are lower for NWP and satellite-
based models than for models derived from local observations,
these irradiance forecasts are typically limited in considering
such dynamics.

Hence, to deal with short-term fluctuations induced by cloud
passings, highly resolved intrahour forecasts are needed. Such
shortest-term forecasts for the next minutes to the next hour
are here referred to as nowcasts. Classic ASI-based approaches
are built upon physical modeling.[6,16] Recent developments how-
ever indicate a trend toward data-driven approaches,[13,14,17]

reflecting the great success of deep learning (DL) in computer
vision. However, there are still limitations regarding the accuracy
of such models. As stated in ref. [13], the analyzed DL models are
not yet capable of anticipating ramp events, i.e., a sudden
increase or drop of irradiance, but they rather behave like better
persistence models (as defined in 3.1.1).

Another category of forecasting models is so-called hybrid
models. Here, predictions of distinct forecasting models are
combined to generate an improved forecast. Previous studies
have shown that combining distinct models in such a hybrid
setup can improve the forecast accuracy.[6,18]

A major challenge for all methods is the inherent uncertainty
coming with the forecast. For end users like plant operators,
this information is crucial as it can determine actions the
operator will take. Therefore, the solar forecasting community
encourages to provide probabilistic information instead of purely
deterministic predictions.[19] As a result, recent studies also focus
on probabilistic forecasts.[20–22] There are basically two types of
probabilistic methods applied in solar forecasting: quantile and
ensemble forecasts.[23] The latter is common practice in NWP,
where an ensemble forecast is generated by running the model
multiple times with slightly modified initial conditions. In case of
satellite and sky image data, and thus for solar nowcasting, quan-
tile forecasts are more widely used. Quantiles are used to

summarize a predictive distribution and represent threshold val-
ues below which an event occurs with a certain probability. Given
two quantiles with probability levels τ1 and τ2, a corresponding
prediction interval (PI) can be derived. A PI quantifies the uncer-
tainty by providing a range within which the true value is
expected to fall with a certain level of confidence. For instance,
a centered PI with coverage rate of 95%, can be estimated when
quantiles qτ¼ 0.025 and qτ¼ 0.975 are known. Using quantile regres-
sion models, quantiles can be predicted directly.[24] Like in
regular regression, the model’s parameters are optimized by
minimizing the so-called quantile loss, i.e., the error of predict-
ing a certain quantile. Alternatively, quantiles from a distribution
of historic prediction errors can be combined with the determin-
istic forecasts in a postprocessing procedure to generate PIs.[22]

In both cases, parametric, i.e., assuming a distribution function,
and nonparametric methods are applicable.

Furthermore, the accuracy of nowcasting systems heavily
depends on the prevailing cloud conditions and thus location
and time. For an expressive comparison to other methods, a com-
mon database is therefore required. A recent benchmark study[25]

has compared several state-of-the-art ASI nowcasting systems
using selected dates of versatile cloud conditions. Evaluating
most common error metrics for solar forecasting, the study
can serve as baseline for new developments.

In this work, we evaluate a new DL model based on the trans-
former architecture, as well as the combination of this DL model
with a physics-based model, representing a new hybrid model.
Both approaches show significant enhancements in nowcast
accuracy compared to previous results shown in the benchmark
study.[25]

2. Data

In the following sections, we describe the data basis of this work.
First, we give an overview on the measured data. Next, a more
detailed look is taken on the training data for the DL model.
Lastly, we briefly present the validation data from the benchmark
study.

2.1. Data Overview

All measurement data utilized in this work were acquired from
ground-based meteorological stations at CIEMAT’s (Spanish
research institute: Centro de Investigaciones Energéticas,
Medioambientales y Tecnológicas) Plataforma Solar de Almería
(PSA), located in southern Spain (37° 5 0 38 00 N and 2° 21 0 32 00 W).
Being surrounded by multiple mountain ranges, very complex
cloud conditions are often observed at PSA, making it a challeng-
ing site for irradiance nowcasts, as also previously analyzed in
ref. [26]. In another study,[27] it was also shown that the distribu-
tion of clouds, with respect to cloud base height, is quite uniform
at PSA, characterized by a slightly higher prevalence of low-layer
clouds overall.

Regarding measurement devices, we used ISO 9060 class A
pyranometers for global and diffuse horizontal irradiance
(GHI/DHI) and class A pyrheliometers for direct normal irradi-
ance (DNI). Sky images were recorded by off-the-shelf Q24 and
Q25 Mobotix surveillance cameras. These sky images and
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measurement data are utilized for different applications in this
study. First, we define a dataset for training the DL model. These
data come from a single station (ID 1). Second, we evaluate our
nowcasting models on a 28 days benchmark dataset. For this pur-
pose, the DL model uses images and irradiance data from the
station ID 2. The physical model, as part of the hybrid setup,
employs a stereoscopic approach to detect cloud height and rely
on supplementary sky images from a secondary ASI (ID 10).[6]

Third, validation is conducted on the 28 days using reference
measurements from the stations with the IDs 1–9. Fourth, the
probabilistic nowcasts are obtained by employing a quantile
approach, which is individually applied to each of the investi-
gated nowcasting models. The necessary quantile analysis uti-
lizes a dataset of 657 days (excluding validation data),
consisting of reference data from station IDs 1–9 and corre-
sponding to deterministic nowcasts from each nowcasting
model. The individual outcomes of the quantile analysis are then
applied to the deterministic nowcasts of the 28 days lasting vali-
dation dataset, thereby generating probabilistic nowcasts for each
model under investigation. Lastly, the climatological probabilistic
baseline model relies on a 13-year-long dataset comprising irra-
diance measurements from station ID 1. An overview of the dif-
ferent datasets and their applications is given in Table 1 and the
position of each station is drawn in Figure 1.

2.2. Training Data Selection

For training our DLmodels, we use sky images from a single ASI
located at the station 1 (see Figure 1). In addition to the sky
images, irradiance measurements from the same station are
included. The dataset encompasses more than 3 million images
distributed over the years 2015–2021. Thus, versatile conditions
for all seasons and solar positions are considered. It should be
highlighted that these data (i.e., sky images and irradiance meas-
urements) were only used for model training and not for validat-
ing the DL approach against the other nowcasting systems.

We filter out training data for all cases with a sun elevation
lower than 10°. Conditions with a sun elevation angle of less than
10° are more strongly affected by disturbing objects (vegetation,
buildings, etc.) in the image as well as increased distortion effects
of the ASI fish-eye camera lens. Moreover, we eliminate instan-
ces of low variability, such as clear sky and complete overcast con-
ditions. Thereby, we obtain a more balanced dataset in relation to

cloud conditions and we reduce training effort as instances of
low variability offer no insights into how transient clouds impact
solar irradiance. This is particularly necessary because PSA pre-
dominantly experiences clear sky conditions. To identify these
conditions, a DNI variability classification based on ref. [28]
and adapted according to ref. [29] was applied. The classes give
information on the optical properties of the prevailing clouds and
therefore an implicit information on the cloud types. A variability
class is determined by analyzing DNI over the past 15min, rang-
ing from clear sky (class 1) to overcast (class 8). The classification
procedure combines 13 established variability indices from the
literature, like average clear sky index. An overview of all classes
is given in Table 2. Instances of classes of 1, 2, and 8 are then
partly removed. This corresponds to a reduction of around 90%
and 75% for classes 1 and 2, respectively, and almost 60% for

Table 1. Utilized datasets and their application in this work. It should be
emphasized that the 28 days benchmark dataset was used exclusively for
nowcast validation.

Application Station ID
(camera)

Station ID
(reference)

Time period

DL training 1 1 2015–2021

Nowcast validation
(deterministic/probabilistic)

2, 10 1–9 28 days (2019)

Analysis of error quantiles
(probabilistic nowcasts)

2, 10 1–9 657 days (2019–2021)

Climatological baseline
model (CSD-Clim)

– 1 2006–2018

Figure 1. Positions of reference stations and ASIs (Source: Google Earth
Google 2021, accessed 25 May 2021). Spatial averaging is conducted for
validation (Section 3.4).

Table 2. Overview of DNI variability classes according to ref. [28].

Class Sky conditions Clear sky index Variability

1 Mostly clear sky Very high Low

2 Almost clear sky High Low

3 Almost clear sky High/intermediate Intermediate

4 Partly cloudy Intermediate High

5 Partly cloudy Intermediate Intermediate

6 Partly cloudy Intermediate/low High

7 Almost overcast Low Intermediate

8 Mostly overcast Very low Low
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class 8. To obtain temporally contiguous data within the dataset,
only full hours that are completely dominated by one of these
three classes are removed. The distribution of the data before
and after filtering by DNI variability classes is shown in
Figure 2a.

Besides reference measurements, model-based data are also
incorporated for training the DL model. Solar azimuth and
elevation values for the reference station are computed using
the NREL SPA algorithm[30] while clear sky irradiance for
GHI, DNI, and DHI is obtained based on the Linke turbidity
(TL) according to ref. [31]

Regarding data splitting, we split training and validation by
randomly selecting complete days with a ratio 0.8–0.2. The
assumption is that each day is independent of its predecessor
in terms of short-term variability.

2.3. Data Preprocessing

To exploit the temporal resolution of the sky images (resolution
of 30 s) compared to the irradiance measurements (resolution of
1min), the temporal resolution of irradiance measurements is
increased to 30 s by linear interpolation. We further normalize
GHI, DNI, and DHI, by the corresponding clear sky irradiance,
which is derived according to ref. [31], obtaining clear sky
indices k�irr:

k�irr ¼ irr=irrclear (1)

where irr refers to GHI, DNI, and DHI, respectively. Thereby,
seasonal and daily variations due to varying solar positions
and atmospheric turbidities are taken into account. Moreover,
the input data x for the DL models, i.e., time series and image
data, is standardized using data from the training set, as defined
in Equation (2).

x�f ;t ¼ ðxf ;t � μf Þ=σf (2)

where f defines the feature (e.g., k�GHI) for time series data or the
RGB channel for sky images, t specifies a timestamp, and μ and σ
represent the (feature/channel-wise) mean and standard devia-
tions over the training dataset. Images for DL training are further
cropped to the fish-eye section and resized to squares of shape
128� 128 whereby the round fish-eye view is retained.

2.4. Benchmark Dataset

In this work, we evaluate our models on a recent benchmark
dataset presented in ref. [25] In this benchmark, five ASI-
nowcasting models were compared on data of 28 manually
selected days between September and November 2019. The days
were selected to obtain a versatile dataset of varying cloud
conditions. Despite choosing mainly variable days with cloud
passages for the benchmark, clear sky conditions remain domi-
nant as can be seen in the distribution of DNI variability classes
shown in Figure 2b.

3. Methodology

In this section, we describe the appliedmethodology of this work.
First, we give an overview of the applied nowcasting models, in
particular the newly developed DL model in Section 3.1 and
the combination of models into a hybrid approach (Section 3.2).
We briefly summarize the calculation of probabilistic nowcasts
(Section 3.3) and present the utilized baseline model
(Section 3.3.1), however, for a more detailed description, the
interested reader is referred to ref. [22]. Afterward, we present
the validation procedure for deterministic and probabilistic now-
casting (Section 3.4).

3.1. Nowcasting Models

In the following subsections, we briefly present the individual
deterministic nowcasting models that are analyzed in this
work and which are used for the hybrid approach. We start with
the smart persistence (SP) model, continue with the physical
model and finally describe the new DL model. Each of these
models produces minute-resolution predictions of GHI for
every future time step (lead time (LT)) throughout the entire
20min forecast horizon. The focus is on GHI, as for nonconcen-
trating PV applications, it is the most relevant quantity of solar
irradiance.

3.1.1. SP Model

Assuming mostly stationary conditions, the so-called SPmodel is
one of the simplest time series forecasting models. SP irradiance

(a) (b)

Figure 2. Distribution of DNI variability classes for: a) training dataset before and after filtering out data of low variability conditions and b) benchmark
(test) dataset.[25] A larger share of clear sky conditions is included as completed days were selected.
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nowcasts can be calculated according to ref. [31] The formula
described in ref. [31] for GHI can be applied directly. I0 describes
the solar constant and h the height at the site. The TL parameter
is calculated frommost recent GHI measurements and kept con-
stant, while the solar elevation angle α and air mass AM are
adjusted according to the required LTs. Hence, the only differ-
ence to the most recent GHI measurement is due to changes in
the sun position influencing α and AM.

GHI ¼ a1 ⋅ I0 ⋅ sinðαÞ ⋅ expð�a2 ⋅ AM ⋅ ðf h1 þ f h2 ⋅ ðTL� 1ÞÞÞ
a1 ¼ 5.09� 10�5 ⋅ h þ 0.868

a2 ¼ 3.92� 10�5 ⋅ h þ 0.0387

f h1 ¼ expð�h=8000Þ
f h2 ¼ expð�h=1250Þ

(3)

3.1.2. Physical Model

The second nowcasting model that is part of this study is the
physical model as presented in ref. [6] The basis are two Q25 ASI
which are positioned 890m apart as well as ground-based DNI
and DHI measurements at one of the ASI sites (see Figure 1).
Nowcasts are generated by the following processing pipeline:
1) detect clouds from the individual images via a convolutional
neural network;[32] 2) compute 3-D cloud models based on a ste-
reoscopic approach;[33] 3) estimate cloud motion vectors from a
sequence of images using cross correlation;[33] 4) predict future
cloud positions by extrapolating cloud movement; 5) apply
shadow projection of modeled clouds via ray tracing;[34] and
6) predict irradiance by analyzing radiative effect of clouds using
cloud height and DNI measurements.[27]

The resulting outputs are irradiance maps (GHI/DNI) cover-
ing a space of about 64 km2 up to 20min ahead, with a spatial

resolution of 20m, a temporal resolution of 1min, and an update
rate of 30 s. Figure 3 shows an overview of the processing pipe-
line of the physical model.

3.1.3. DL Model

The applied DL model serves as a multistep point forecast model
for predicting solar irradiance (GHI). This entails generating a
singular scalar value for each LT within the forecast horizon
(20min). It can be considered as a multimodal model, consisting
of two branches for extracting features from irradiance measure-
ments and images. Unlike many previous data-driven
approaches in solar forecasting,[17] we do not utilize recurrent
neural networks to learn temporal dependencies, instead, we
apply two attention-based transformer architectures.

For time series data, consisting of irradiance measurements of
GHI, DNI, and DHI, and sun elevation/azimuth values, we use
the transformer architecture presented in ref. [35] based on the
implementation of the Python package tsai.[36] The sequence
length, i.e., the size of the input time series, is fixed to 30min
with one value per minute. In preliminary studies, this value has
proven to work best for 20min forecast horizons. As described in
the original article, each time series input vector xts,t for time-
stamp t is first linearly projected to a new vector uts,t. After adding
a learnable positional encoding vector to uts,t, the encoded input
is fed into a standard transformer encoder architecture as
defined in ref. [37], resulting in time series representation vectors
zts,t of shape [512� 1].

To extract features from ASI sequences, we use the
timeSformer architecture.[38] Here, spatial and temporal depen-
dencies in the image sequence are learned via a combined atten-
tion mechanism. The ASI input sequence length is set to 5min,
as larger values significantly prolong training duration. At the
same time, longer ASI sequences do not lead to significant
improvements in this setup as preliminary experiments

Figure 3. Illustration of processing pipeline of physical ASI model (reproduced from[6]).
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indicated. While temporal attention is achieved by attending over
the sequence of images, spatial attention is done via the
ViT architecture,[39] dividing each image into patches of
16� 16 pixels. For the combination of both attention mecha-
nisms, we follow the “Divided Space-Time Attention” method
as defined in ref. [38]. In this case, the model applies temporal
and spatial attention separately. Temporal attention is limited to
the respective patch over the image sequence whereas spatial
attention is carried out only on the patches of the same image.
The representation of each sky image sequence zasi,t of shape
[512,1] is then concatenated to the time series representation
zts,t forming the final representation vector of shape [1024,1].
By feeding this vector to a two-layer fully-connected network,
the multistep forecasts are obtained. A schematic graph is
depicted in Figure 4.

As mentioned before, the DL model is trained end-to-end on
predicting GHI. Thus, we optimize both parts, the time series
transformer and the vision transformer together in a single train-
ing without any pretraining. Batch-wise data augmentation tech-
niques, i.e., random rotations and flips, are applied to artificially
enlarge the training data and prevent overfitting. Optimization is
conducted via the AdamW optimizer[40,41] with weight decay of
0.01 and mean-square-error (MSE) as loss function. We use
the one-cycle policy[42] for learning rate scheduling with
lrmax= 0.001. The model is trained for 10 epochs with a batch
size of 16 using the Python fastai library.[43] An overview of
all training hyperparameters is given in Table 3.

3.2. Hybrid Model

In a previous work, a hybrid model has been presented, combin-
ing predictions from the aforementioned physical and
persistence models.[6] The combination is based on real-time
accuracy weighting as defined in ref. [44] The weighting is deter-
mined by a sliding validation based on computing recent
root-mean-square errors (RMSE) of the respective GHI nowcasts
to the corresponding reference measurements (ref ) for the past
5min. For each LT, the weighting is calculated separately
depending on how well a model predicted GHI at this specific

LT in the recent past. In this work, we now add our novel DL
model as third nowcasting method. The final hybrid nowcast
is thus defined as:

RMSELT,j ¼
1
N

XN¼5

i¼1

ðGHIref ðtiÞ � GHILT,jðtiÞÞ2
 !

0.5

(4)

GHILT ¼ 1P3
j¼1

1
RMSELT,j

X3
j¼1

GHILT,j
RMSEE,j

(5)

where LT specifies a lead time between 1 and 20min and the
index j determines the nowcasting model, i.e., persistence,
physical, or DL model.

Figure 4. Schematic graph of generating forecasts with our DL model.

Table 3. Training setup and hyperparameter selection of DL model.

Training parameter Value

ASI input shape 128� 128� 3� 5
(height� width� channel� sequence length [min])

Time series input shape 5� 30 (num feats � sequence length [min])

Time series features k�GHI, k
�
DNI, k

�
DHI, sun elevation [°], sun azimuth [°]

ASI normalization mean
(R, G, B)

(0.174, 0.170, 0.172)

ASI normalization std
(R, G, B)

(0.138, 0.123, 0.118)

Time series normalization
mean

(0.883, 0.686, 2.39, 37.09, 179.96)

Time series normalization std (0.273, 0.373, 1.48, 17.25, 61.59)

Data augmentation (ASI) Rotations, horizontal/vertical flips

Validation size 20%

Loss function MSE

Optimizer AdamW (β1= 0.9, β1= 0.99)

Weight decay 0.01

Maximum learning rate 0.001

Learning rate scheduler one-cycle policy

Batch size 16

Number of epochs 10
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3.3. Probabilistic Nowcasts

The major drawback of deterministic nowcasts is the lack of
information on how certain the model is with respect to its
prediction. Solar energy applications however need reliable
uncertainty estimations to effectively use such nowcasts.
A well-suited approach to obtain information on a model’s uncer-
tainty is by calculating probability distributions over future
events. From this, intervals can be derived that provide a measure
of uncertainty. In ref. [22], a nonparametric probabilistic quantile
nowcasting method has been presented which serves as a basis
in this work. This approach and a climatological baseline model
serving as validation model are presented in the following
sections.

3.3.1. Baseline Model Clear-Sky-Dependent Climatology
(CSD-Clim)

As baseline model, we chose the commonly used CSD-Clim
model according to ref. [45] It is a climatological model solely
based on historical data, in our case GHI measurements from
13 years period in 1min resolution. CSD-Clim is statistically con-
sistent and independent of forecast horizons or LTs. The main
principle is the creation of clear sky index (k�) distributions by
grouping historic irradiance data into equal-sized bins of clear
sky irradiance. Thereby, effects of varying sun positions and
atmospheric turbidities are considered. We chose the same num-
ber of bins (30) as in the original study. A probabilistic nowcast
from CSD-Clim is then obtained by taking the distribution of k�

that corresponds to the clear sky irradiance at nowcast time.
Irradiance distribution in Wm�2 and hence nowcast PIs are
determined by multiplying the k� distribution by the correspond-
ing clear sky irradiance at nowcast time.

3.3.2. Quantile-Based Approach

The applied approach is based on the idea that the primary
source of uncertainties in solar nowcasts lies in the variability
of prevailing irradiance.[22] As a nonparametric method, no spe-
cific distribution function (e.g., Gaussian) is assumed; instead,
the probability distribution for each nowcast is derived from his-
torical prediction errors observed under similar conditions. To
identify the prevailing conditions, we employ the identical
DNI variability classification as introduced in Section 2.2.
Using a dataset spanning 657 d, irradiance prediction errors
and corresponding reference measurements, both normalized
to k�, are calculated, sorted, and used to compute quantiles of
the error Δk� with probability level (τ) from 1% to 99% for each
LT. These quantiles are grouped by DNI variability classes to cre-
ate a look-up table. Since DNI variability classes are determined
from DNI values of the past 15min, pure reference measure-
ments cannot be used for LTs >0. Instead, a combination of
DNI measurements and DNI predictions based on the LT rep-
resents the predicted DNI variability class. Given the LT-specific
DNI variability classes of the nowcast, the quantiles of the
expected error Δk� are used to compute the quantiles of
the nowcast:

k�τ ¼ k� � Δk�1�τ (6)

By multiplication with the respective clear sky irradiance, the
irradiance quantile in Wm�2 is obtained. Finally, the PIs for a
given nowcast and LT can be deduced by the corresponding
lower and upper-bound nowcast quantiles. Figure 5 provides
an overview of how probabilistic nowcasts are generated using
this approach. Separate look-up tables are constructed for each
of the three models under evaluation.

Figure 5. Process flow of quantile-based postprocessing approach to generate probabilistic nowcasts from deterministic ones as described in ref. [22] As
input (orange), the current deterministic nowcast, recent reference measurements, and the look-up table of quantiles of historical errors are required.
Interim results are depicted in blue and the output is the final probabilistic nowcast (green).
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3.4. Validation Procedure

All our models are validated on the benchmark dataset from
ref. [25], briefly described in Section 2.4. Thereby, a direct com-
parison to the other models from this benchmark, particularly
the predecessor of the hybrid (DL) model can be made. Since
all presented models provide multistep forecasts, i.e., for each
time step, the model generates predictions for LTs 1–20min into
the future, we also evaluate many metrics for individual LTs. To
give a more expressive insight on the accuracy of the nowcasting
models depending on atmospheric conditions, we further discre-
tize the dataset by DNI variability classes as described in
Section 2.2. For the validation, DNI variability classification of
each timestamp is done using reference DNI measurements
only, to have the same distribution for all models.

3.4.1. Validation for Deterministic Nowcasts

For the deterministic nowcasts, we evaluate our models on stan-
dard forecasting metrics RMSE, MAE, mean bias error (MBE),
and forecast skill (FS), often also referred to as skill score.
The latter is of particular value in solar forecasting research as
it enables comparisons to results from different locations and
times, and thus should always be incorporated.[19] A more
detailed definition is given in Table 4.

Apart from evaluating point forecasts matching the reference
station, we also evaluate our models on the surrounding area.
Hereby, we exploit the availability of multiple meteorological
measurement stations at PSA. In total, we evaluate our nowcast-
ing on 9 different stations as depicted in Figure 1 and calculate
error metrics with respect to the individual station and to an
arithmetic field average. For the hybrid models, nowcasts of
the individual stations are obtained by looking at the respective

pixel of the provided irradiance maps which matches the sta-
tion’s position. Persistence and DL predictions, however, are
pure point forecasts, thus the same predictions are applied for
all reference positions.

As mentioned before, we also calculate the arithmetic mean of
the 9 reference stations to get a field average of the entire site
(PSA). In case of the hybrid models, the average is calculated
by the arithmetic mean on a sub-field of the irradiance map
as highlighted in yellow in Figure 1. The DL and SP point pre-
dictions are compared directly with the arithmetic mean from the
9 reference stations.

Lastly, we also take a look into temporal aggregation of now-
casts up to 15min, as such averages represent a more relevant
measure when it comes to estimating short-term energy yield.
Thereby, we calculate the average of the last nowcasts for each
LT. For instance, when calculating the 10min temporal average
for LT 7, we take the arithmetic mean of the last 10 predictions of
LT 7. This value is then compared to the mean of the reference
measurements corresponding to these predictions.

3.4.2. Validation for Probabilistic Nowcasts

The evaluation of probabilistic nowcasts involves assessing three
key attributes: sharpness, reliability, and resolution. Sharpness rep-
resents a measure of concentration of the predictive distribution
independent of reference measurements. Reliability determines
statistical consistency of nowcasts by examining whether the pre-
dicted probabilities align with the observed reference distribution.
Resolution evaluates the ability to account for varying initial ambi-
ent conditions. In this work, we validate our probabilistic approach
with a subset of themost relevant scores as proposed by refs. [46,47]
For PI and quantile-dependent metrics, we evaluate interval score
(IS) and quantile score (QS). Furthermore, we analyze continuous
ranked probability score (CRPS), a single value score, aggregated
over the predictive distribution. IS, QS, and CRPS are negatively
oriented, meaning lower is better. As common reliability metric,
we use PI coverage probability (PICP). We discuss the RMSE
between PICP and PI, as PI can be treated as reference for the
PICP. Thus, it is possible to evaluate an aggregated metric over
the entire distribution. Lastly, we calculate a probabilistic nowcast
skill based on CRPS, referred to as CRPSs. CSD-Clim serves here
as baseline model. Table 5 gives a brief summary of the utilized
probabilistic error metrics.

4. Validation Results

This section presents the validation results of our nowcasting
approaches as described in Section 3.1–3.3. For a comprehensive
examination of our validation methodology, refer to Section 3.4.
We initiate the analysis by comparing deterministic nowcasts,
with a specific emphasis on the integration of the DL approach
within the hybrid setup. Subsequently, we delve into the out-
comes of probabilistic nowcasting. In this analysis, we refer to
the deep learning model as DL, the hybrid model including the
DL as Hybrid (DL), and the hybrid model as presented in ref. [6]
as Hybrid. To put the absolute error values in relation, we
included Table 6 of the mean GHI of the 28 days validation set.

Table 4. Utilized error metrics for deterministic nowcasting with
observations y, i.e., measured reference GHI, and predictions ŷ, i.e.,
predicted GHI, over all data points N in the validation.

Mathematical notation Short description

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
N
i¼1 ðŷi � yiÞ2

q
RMSE: Measures forecast accuracy of a model by

quantifying the average magnitude of the differences
between predicted ŷiÞ and observed (yi) values. Larger
deviations are heavily penalized due to squaring.

MAE ¼ 1
N

P
N
i¼1 jŷi � yij MSE: Assesses the model accuracy by measuring the

average magnitude of absolute differences between
predicted and observed values. However, it does not

penalize outliers as much as RMSE.

MBE ¼ 1
N

P
N
i¼1ðŷi � yiÞ MBE: Quantifies the average bias or systematic error

of a forecast model. It calculates the average
difference between predicted and observed values.

FS ¼ 1� RMSEmodel
RMSEref

FS: Measures the forecast accuracy of a model to a
baseline model. In this work, we use the SP model as
described in Section 3.1.1 as baseline and RMSE as
error metric. A positive skill score indicates that the
forecasting model performs better than SP, while a
negative score implies that SP outperforms the

model.
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4.1. Comparison of Deterministic Models

We first evaluate the nowcasting models on RMSE, MAE, MBE,
and FS for the entire 28 days benchmark dataset. In Figure 6, the
error metrics for the different models are depicted. The solid line
represents the base reference station (ID 2) and surrounding
measurement stations are represented as shaded area. We see
that for RMSE, all methods outperform SP starting from LT
2, as persistence is still quite accurate for LT1. However, while
the difference to SP is rather small for the Hybrid model, the
Hybrid (DL) model, and even more the standalone DL model
achieve much lower RMSE values for LT> 3min. This behavior
is directly reflected in the FS plot, showing a great advantage of
the DL model in terms of RMSE. Even for the more distant sta-
tions, a clear advantage of the DLmodel is visible. However, such
a clear difference between the models is not visible when looking
at MAE. Here, the Hybrid model and SP are almost equivalent,
SP even performing slightly better for low LTs. The Hybrid (DL)
model represents the best model in terms of MAE, as the DL has
weaker accuracy on LT< 4min. Still, when looking at other sta-
tions, the DL model occasionally achieves the best MAE for
LT> 4min. Regarding MBE, SP reaches the best value for the
base station (ID 2), but with a clear overestimation when looking
at other stations. This overestimation is even stronger for the
hybrid models while the DL is the only model showing a ten-
dency to underestimate.

Next, we evaluate the models on the arithmetic field average,
as presented in Figure 7. Overall, the results are similar to the
results at individual stations. DL has a clear advantage over the
other models in terms of RMSE and thus FS. But here, DL also

shows the best overall performance for MAE, however very close
to the MAE of the Hybrid (DL). Only for the first 2 min, the
Hybrid (DL) provides a clear benefit. This is to be expected
due to the inclusion of SP. For MBE, all models show a slight
increase compared to the MBE of station 2, resulting in positive
values for all models and LTs and thus indicating some overesti-
mation in general. This behavior can already be observed in the
spread of the MBE in Figure 6, where the MBE of station 2 is
close to the lower edge of the spread. For the remaining reference
stations, mainly a positive and more pronounced bias is
observed. This is not unexpected, given that the nowcasts were
generated using station 2, where the predictions undergo a self-
calibrating process.

An advantage of the DL model is also evident when analyzing
nowcast accuracy for different irradiance conditions. In Figure 8,
RMSE on the field average is shown discretized by DNI variabil-
ity classes. As expected there is no significant difference between
the models for mostly static conditions, like class 1 and 8, as solar
irradiance changes mainly due to the sun position. For variable
conditions, however, the DL model almost always reaches the
lowest RMSE with a few exception at some isolated LTs where
the Hybrid (DL) model is better.

As shown in Figure 9, higher temporal aggregation leads to
reductions of RMSE and MAE for all models, while MBE
remains almost the same. Reductions up to 50% are visible,
when applying temporal aggregations of 15min. Such behavior
can be expected, as averaging over longer time spans smoothens
fluctuations of the predictions. However, as can be seen in the
plots for FS, SP also benefits from temporal aggregation, result-
ing in a decrease of FS for all models. Overall the DL model
remains the most accurate approach.

In total, the data-driven DL approach has shown to be very
effective in deterministic solar irradiance nowcasting. Due to
MSE optimization of the DL model, a good score in RMSE
and thus FS could be expected when analyzing GHI point fore-
casts at a single reference station. However, the DL model has
turned out to generate better predictions than the hybrid models
even when analyzing a limited surrounding area (≈1 km2). This
is also surprising to us, as the hybrid models incorporate spatially

Table 5. Utilized error metrics for probabilistic nowcasting with observations y, i.e., measured reference GHI, and predictions ŷÞ, i.e., predicted GHI.

Mathematical notation Attribute Short description

PICPPI ¼ 1
N

P
N
i¼1 1yi∈½Li,PI ,Ui,PI � Reliability PICP: Evaluates whether an observations yi lies within the lower and upper bounds

(Li,PI, Ui,PI) of a specific PI.

ISPI ¼ 1
N

P
N
i¼1ðUi,PI � Li,PIÞ

þ 2
α ðLi,PI � yiÞ1yi<Li,PI

þ 2
α ðyi � Ui,PIÞ1yi>Ui,PI

Sharpness and reliability IS: Measures the width of PIs, adding penalty values for observation falling outside of the
interval. The amount of penalty is determined by the statistical significance level α.

QS ¼ 1
N

P
N
i¼1 ψτðyi � ŷi,τÞ

ψτðuÞ ¼
�
τu if u ≥ 0

ðτ � 1Þu if u < 0

Reliability and resolution QS: Quantifies the deviation of observations to a predicted quantile τ, thus checking if a
quantile is over- or underestimated.

CRPS ¼ 1
N

P
N
i¼1 ∫

1
0½Fŷi ðxÞ � Fyi ðxÞ�2dx Reliability and resolution CRPS: Measures the discrepancy between the cumulative distribution function (CDF) of

the nowcast Fŷi and the CDF of the observation Fyi . It takes into account both the

location and shape of the predictive distribution.

CRPSs ¼ 1� CRPSmodel
CRPSref

Reliability and resolution CRPS skill: Probabilistic nowcast skill based on CRPS and CSD-Clim as baseline model.
Analogously to the FS for deterministic nowcasts, a positive CRPSs indicate a better

probabilistic nowcast than obtained by the baseline model.

Table 6. Mean GHI values from reference measurements for the whole
validation dataset and discretized by DNI variability classes.

Total DNI variability classes

1 2 3 4 5 6 7 8

Mean GHI [Wm�2] 504 622 519 510 504 489 445 352 274
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Figure 6. Comparison of deterministic nowcasting models for GHI predictions. The Hybrid (DL) model includes nowcasts from the presented DL model.
Error metrics corresponding to the base reference station (ID 2) are highlighted as lines while the error metrics corresponding to the remaining eight
reference stations are depicted as shaded area. FS is computed with respect to RMSE and SP.

Figure 7. Deterministic nowcasts on field average. Left: RMSE, MAE, and MBE for all models. Right: FS.
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resolved nowcasts from the physical model. The following factors
could account for these results. First of all, throughout the last
decade, DL has proven to be very effective in all types of com-
puter vision applications compared to traditional image

processing methods. Moreover, an advantage of our new DL
approach compared to the physical model is certainly the end-
to-end training. As the DL model gets raw data in form of images
and measurement values as input, it can learn to extract features

Figure 8. RMSE on field average discretized by DNI variability classes. MAE and MBE can be found in Appendix A1.

Figure 9. Error metrics of nowcasting models on field average for temporal aggregations of 5 (left), 10 (center), and 15min (right).
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and complex patterns that are not evident or too complex to be
integrated into a physical model. In particular for the sky images,
information on cloud dynamics can be learned instead of clouds
being modeled as rigid objects moving in a single direction.
Lastly, there is no error propagation in such an end-to-end
model compared to a physical model consisting of a long process
chain.

Still, we should be careful to declare the DL model as unre-
servedly superior. First, it can be seen in Figure 8 that in some
cases, the Hybrid (DL) model performs equally well or better.
Second, the spatial resolution of the irradiance maps from the
hybrid models is much larger (>60 km2) than the analyzed area
(≈1 km2). Third, due to the higher penalization of larger
errors, the DL model often predicts more conservatively.
When the irradiance fluctuates significantly, the DL model
tends to generate predictions around an average irradiance
without capturing the actual conditions. Consequently, ramp
events are less likely to be anticipated. In contrast, the
hybrid or physical model can represent such highly variable
conditions. At the same time, small temporal inaccuracies
automatically lead to high errors. Hence, to analyze such char-
acteristics, further error metrics are required, as also pointed
out by ref. [48]

4.2. Evaluation of the Probabilistic Model

In this section, probabilistic validation results are presented. The
results are computed as before on the field average, calculated by
the 9 reference stations. As indicated earlier, we evaluate CRPS,
CRPSs, IS, QS, and PICP for DL, and the two hybrid models and
make a comparison.

An overview of aggregated scores, averaging over all LTs, is
presented in Table 7. In case of PICP, we calculate the RMSE
of PICP and PI to specify nowcasting reliability, since PICP
would match PI for a perfectly reliable nowcast distribution.

To compute PICP, quantiles 1,2,…,99% were used for each LT
separately. Here, an advantage of the hybrid models is visible on
average. Poor reliability from the DL model can be observed in
particular for static irradiance conditions, as shown in Figure 10.
For DNI variability classes 1 and 8, representing mostly clear sky
and overcast conditions, RMSE(PICP,PI) of up to 20% occurs in

the predictions of the DL model. From the deterministic predic-
tions (Figure 8 and A1), it can be seen that the error for classes 1
and 8 is relatively low, leading to smaller PIs in general.
Consequently, even slight deviations of a few Wm�2, e.g.,
due to aerosol variability or very thin clouds, can cause predic-
tions to fall outside the PI. For the DL model, the high
RMSE(PICP,PI) for classes 1 and 8 indicate that for these con-
ditions the prevailing bias is sufficient to cause such outliers
(refer also to Figure A2). In case of more variable conditions,
however, the RMSE(PICP,PI) curve of the DL model is mostly
below the ones of the hybrid models, showing that under these
conditions the bias does not influence PICP as much. Due to the
high share of class 1 conditions in the dataset, the DL model still
gets a higher RMSE(PICP,PI) on average (Table 7).

For the IS, we look at two specific PIs, namely the ones with
coverage probability corresponding to one and two standard devi-
ations (σ, 2σ) from a normal distribution. As shown in Table 7, all
models achieve scores in a similar range of around 200Wm�2

for PI68.3%, with the DL model having the best mean over all LTs
of 181.9Wm�2. At PI95.4% differences between the models in IS
are again within 20Wm�2. Though, this time the Hybrid (DL)
model reaches the best mean of 487.6Wm�2. Analyzing IS on
DNI variability class level, as depicted in Figure 11, it becomes
evident that DL and the Hybrid (DL) model show similar behav-
iors under most conditions. The largest differences are visible for
classes 1, 5, 7, and 8. A higher average IS for DL at PI95.4% comes
mainly from the aforementioned relatively poor reliability under
class 1 conditions.

Similar behavior can be observed for the QS. Independent of
the probability level τ, all models reach average scores deviating
only about 1 or 2Wm�2 from each other. Nevertheless, the DL
model has the best scores. This coincides with the results plotted
in Figure 12. The typical shape of higher scores for the most var-
iable conditions and lower scores for more static conditions is
clearly visible for all models, whereas DL mostly outperforms
the hybrid approaches.

Lastly, we look at CRPS and CRPSs. Described as one of the
most important scores in probabilistic solar forecasting,[47] CRPS
represents a comprehensive probabilistic metric compressed
into a single numerical value. Moreover, by computing the now-
cast skill of the CRPS using CSD-Clim as baseline model, a rela-
tive analysis is carried out. The last row of Table 7 shows the

Table 7. Comparison of probabilistic nowcasting between DL, Hybrid, and
Hybrid (DL) based on PICP, CRPS, IS, and QS. Nowcasts are evaluated on
the field average of the 9 reference stations. For each model, the mean
score and its standard deviation over LTs are given. Best values
highlighted in bold..

Metric DL Hybrid (DL) Hybrid

RMSE (PICP,PI) [%] 8.8� 0.7 4.5� 0.9 3.0� 0.7

IS (PI68.3%) [Wm�2] 181.9� 30.0 192.8� 30.8 202.9� 32.4

IS (PI95.4%) [Wm�2] 506.5� 16.6 487.6� 34.0 495.2� 41.0

QS (τ= 20%) [Wm�2] 18.3� 2.7 19.5� 2.9 19.7� 2.9

QS (τ= 50%) [Wm�2] 20.0� 3.4 20.3� 3.9 22.0� 4.2

QS (τ= 80%) [Wm�2] 13.3� 2.7 13.7� 2.6 15.6� 3.0

CRPS [Wm�2] 23.5� 4.9 24.5� 5.6 26.0� 6.3

Figure 10. RMSE(PICP, PI) grouped by DNI variability classes in percent-
age. The line represents the average of overall LTs while the error bars
show the standard deviation for each class.
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average CRPS over all LTs, where the DL outperforms the hybrid
models slightly by 1 to 1.5Wm�2. In Figure 13, the CRPSs are
presented grouped by LT and DNI variability classes. A notewor-
thy observation is the presence of a plateau among all models at
LTs ranging from 9 to 13min (left plot of Figure 13), indicating
that CRPS of CSD-Clim increases more slowly around these LTs.
The biggest advantages of the DL model compared to the hybrid
models are visible for intermittent and high variability classes
3–6. Under these conditions, the wide distributions of climato-
logical baseline models are comparatively strong, leading to

lower skills in general. This is contrary to the behavior of FS for
deterministic predictions. Deterministic persistence approaches
are by definition incapable to predict ramps, and therefore per-
form poorly during variable conditions. This means that in par-
ticular for conditions of highest uncertainty, the DL model can
provide more reliable predictions compared to the hybrid mod-
els. This outcome is not surprising, as all models rely on the
same quantile approach for estimating the expected distribution.
Considering that DL scored best for deterministic nowcasting, it
was expected to see an advantage also for the probabilistic

Figure 11. IS grouped by DNI variability classes for PIs of coverage probabilities 68.3% and 95.4%. The line represents the average of overall LTs while the
error bars show the standard deviation for each class.

Figure 12. QS grouped by DNI variability classes for quantiles corresponding to probability levels 20%, 50%, and 80%. The line represents the average of
overall LTs while the error bars show the standard deviation for each class.
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nowcasts. Moreover, the smallest standard deviations can be
observed for the DL model (see Table 7), indicating higher sta-
bility over LTs. Nonetheless, all models still demonstrate signifi-
cant uncertainties under highly variable conditions as can be
seen in Figure 11 and 12, where the highest scores are domi-
nated by classes 4 and 6, followed by classes 3 and 7.

5. Conclusion

In the last years, purely data-driven approaches for solar irradi-
ance nowcasting have gained significant attention in the solar
research community for their ease of implementation and strong
performance. In this work, we showed that state-of-the-art trans-
former architectures are a well-suited choice for this task.

We analyzed the deterministic nowcast accuracy in terms of
RMSE, MAE, MBE, and FS for our standalone DL model and
compared it to a hybrid system, including and excluding the
DL model. Achieving the best FS values, the strengths of the
data-driven DL model became clear. Optimization based on
MSE loss naturally leads to lower RMSE and higher RMSE-based
FS values. Although the hybrid model benefits from the DL
model, it does not reach the RMSE of the purely data-driven
approach. Even for limited areas (≈1 km2), the DL model
provides better RMSE than the hybrid approach with its
irradiance maps. Here, the DL even achieves the best MAE val-
ues for most LTs. For temporal aggregation, the error for all
models, including SP, reduces for higher aggregation windows.
It shows that the temporal resolution is decisive when analyzing
models. A comparison of nowcasting systems with different
resolutions is only legitimate if all systems are aligned in space
and time.

In terms of probabilistic nowcasting, similar tendencies are
visible with an advantage of DL compared to the hybrid models.
However, the Hybrid (DL) model comes close to the DL model in
terms of overall performance. All three models clearly achieve a
positive skill score. Learning tominimize the error however often

comes with some artifacts. As previous studies have already
shown,[13] such data-driven models often generate “smoothed”
irradiance curves. These could lead to a reduced-average
RMSE but may not accurately capture the present conditions
of highly variable irradiance. A smoothed nowcast curve might
exhibit similar mean absolute errors but with a significantly
lower frequency and magnitude of pronounced errors.
Precisely those outliers are penalized strongly by the RMSE.
Already showing great potential for solar irradiance nowcasting,
the limitations of data-driven approaches should be the focus of
future research. Accurately anticipating the influence of individ-
ual clouds causing ramp events should be the main objective in
upcoming investigations, requiring error metrics apart from
RMSE, MAE, and FS.

Finally, the advantages of the DL approach presented in this
study should not be interpreted as physics-based models being
obsolete. The potential for spatial forecasts on larger areas has
not been discussed here. A good example is the application of
such physical models in a network[15] or in solar power plants
covering large areas. Here, DL techniques could also further
improve network forecasts. Future research should therefore
concentrate on combining the strengths of both approaches
further.

Appendix

A1 Deterministic error metrics by DNI variability classes

Figure A1 and A2 show MAE and MBE for DL, SP, and hybrid
models over LTs discretized by DNI variability classes.
Qualitatively, the MAE curves look similar to the ones from
RMSE. For classes 3–8, DL performs best also in MAE. In case
of MBE, a significant bias is visible for the DL model for class 8.
This is likely to cause the high RMSE (PICP, PI) in the probabi-
listic nowcasting.

Figure 13. CRPSs over LTs (left) and DNI variability classes (right) with CSD-Clim as reference model. In the right plot, the average of overall LTs is
depicted as line with the error bars as standard deviations for each class.
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Figure A1. MAE on field average discretized by DNI variability classes. Upper row shows classes 1–4, lower row shows classes 5–8 (left to right).

Figure A2. MBE on field average discretized by DNI variability classes. Upper row shows classes 1–4, lower row shows classes 5–8 (left to right).

www.advancedsciencenews.com www.solar-rrl.com

Sol. RRL 2024, 8, 2300808 2300808 (15 of 17) © 2023 The Authors. Solar RRL published by Wiley-VCH GmbH

 2367198x, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/solr.202300808 by D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein., W

iley O
nline L

ibrary on [02/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.solar-rrl.com


Acknowledgements
This research received funding from the German Federal Ministry for
Economic Affairs and Climate Action funded within the SolarFuelNow
project (grant agreement no. 03EE5042A) on the basis of a decision by
the German Bundestag.

Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
Research data are not shared.

Keywords
all-sky imagers, deep learning, hybrid nowcasts, solar nowcasting

Received: October 6, 2023
Revised: December 1, 2023

Published online: January 21, 2024

[1] R. Perez, K. R. Rábago, M. Trahan, L. Rawlings, B. Norris, T. Hoff,
M. Putnam, M. Perez, Energy Policy 2016, 96, 27.

[2] M. Emmanuel, R. Rayudu, Renewable Sustainable Energy Rev. 2017,
67, 207.

[3] R. Perez, E. Lorenz, S. Pelland, M. Beauharnois, G. Van Knowe,
K. Hemker, D. Heinemann, J. Remund, S. C. Müller,
W. Traunmüller, G. Steinmauer, D. Pozo, J. A. Ruiz-Arias, V. Lara-
Fanego, L. Ramirez-Santigosa, M. Gaston-Romero, L. M. Pomares,
Sol. Energy 2013, 94, 305.

[4] C. Wan, J. Zhao, Y. Song, Z. Xu, J. Lin, Z. Hu, CSEE J. Power Energy
Syst. 2015, 1, 38.

[5] J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. M. de Pison,
F. Antonanzas-Torres, Sol. Energy 2016, 136, 78.

[6] B. Nouri, N. Blum, S. Wilbert, L. F. Zarzalejo, Sol. RRL 2022,
6, 5.

[7] J. O. Kamadinata, T. L. Ken, T. Suwa, Renewable Energy 2019, 134,
837.

[8] D. Yang, W. Wang, C. A. Gueymard, T. Hong, J. Kleissl, J. Huang,
M. J. Perez, R. Perez, J. M. Bright, X. Xia, D. van der Meer,
I. M. Peters, Renewable Sustainable Energy Rev. 2022, 161,
112348.

[9] D. Z. Yang, J. Kleissl, C. A. Gueymard, H. T. C. Pedro,
C. F. M. Coimbra, Sol. Energy 2018, 168, 60.

[10] G. Zhang, D. Yang, G. Galanis, E. Androulakis, Renewable Sustainable
Energy Rev. 2022, 154, 111768.

[11] P. Blanc, J. Remund, L. Vallance, in Renewable Energy Forecasting,
Woodhead Publishing Series in Energy (Ed: G. Kariniotakis),
Woodhead Publishing, Sawston, CA 2017, pp. 179–198, ISBN 978-
0-08-100504-0, https://www.sciencedirect.com/science/article/pii/
B9780081005040000068 (accessed: December 2023)

[12] S. D. Miller, M. A. Rogers, J. M. Haynes, M. Sengupta,
A. K. Heidinger, Sol. Energy 2018, 168, 102.

[13] Q. Paletta, G. Arbod, J. Lasenby, Sol. Energy 2021, 224, 855.
[14] H. R. Wen, Y. Du, X. Y. Chen, E. Lim, H. Q. Wen, L. Jiang, W. Xiang,

IEEE Trans. Ind. Inf. 2021, 17, 1397.

[15] N. B. Blum, S. Wilbert, B. Nouri, J. Stührenberg, J. E. Lezaca Galeano,
T. Schmidt, D. Heinemann, T. Vogt, A. Kazantzidis, R. Pitz-Paal,
Remote Sens. 2022, 14, 22.

[16] C. W. Chow, B. Urquhart, M. Lave, A. Dominguez, J. Kleissl, J. Shields,
B. Washom, Sol. Energy 2011, 85, 2881.

[17] P. Kumari, D. Toshniwal, J. Cleaner Prod. 2021, 318, 128566.
[18] Y. H. Chu, H. T. C. Pedro, C. F. M. Coimbra, Sol. Energy 2013, 98, 592.
[19] D. Z. Yang, J. Renewable Sustainable Energy 2019, 11, 2.
[20] Y. H. Chu, C. F. M. Coimbra, Renewable Energy 2017, 101, 526.
[21] D. W. van der Meer, J. Widen, J. Munkhammar, Renewable Sustainable

Energy Rev. 2018, 81, 1484.
[22] B. Nouri, S. Wilbert, N. Blum, Y. Fabel, E. Lorenz, A. Hammer,

T. Schmidt, L. F. Zarzalejo, R. Pitz-Paal, Sol. Energy 2023, 253, 285.
[23] M. Sengupta, A. Habte, S. Wilbert, C. Gueymard, J. Remund, NREL/

TP-5D00-77635 2021, https://doi.org/10.2172/1778700.
[24] P. Lauret, M. David, H. T. C. Pedro, Energies 2017, 10, 10.
[25] S. A. Logothetis, V. Salamalikis, S. Wilbert, J. Remund, L. F. Zarzalejo,

Y. Xie, B. Nouri, E. Ntavelis, J. Nou, N. Hendrikx, L. Visser,
M. Sengupta, M. Po, R. Chauvin, S. Grieu, N. Blum, W. van Sark,
A. Kazantzidis, Renewable Energy 2022, 199, 246.

[26] B. Nouri, S. Wilbert, N. Blum, P. Kuhn, T. Schmidt, Z. Yasser,
T. Schmidt, L. F. Zarzalejo, F. M. Lopes, H. G. Silva, M. Schroedter-
Homscheidt, A. Kazantzidis, C. Raeder, P. Blanc, R. Pitz-Paal, in
SolarPACES, AIP Publishing, College Park, MD, October 2020.

[27] B. Nouri, S. Wilbert, L. Segura, P. Kuhn, N. Hanrieder, A. Kazantzidis,
T. Schmidt, L. Zarzalejo, P. Blanc, R. Pitz-Paal, Sol. Energy 2019, 181,
251.

[28] M. Schroedter-Homscheidt, M. Kosmale, S. Jung, J. Kleissl, Meteorol.
Z. 2018, 27, 161.

[29] B. Nouri, S. Wilbert, P. Kuhn, N. Hanrieder, M. Schroedter-
Homscheidt, A. Kazantzidis, L. Zarzalejo, P. Blanc, S. Kumar,
N. Goswami, R. Shankar, R. Affolter, R. Pitz-Paal, Remote Sens.
2019, 11, 9.

[30] I. Reda, A. Andreas, Sol. Energy 2004, 76, 577.
[31] P. Ineichen, R. Perez, Sol. Energy 2002, 73, 151.
[32] Y. Fabel, B. Nouri, S. Wilbert, N. Blum, R. Triebel, M. Hasenbalg,

P. Kuhn, L. F. Zarzalejo, R. Pitz-Paal, Atmos. Meas. Tech. 2022, 15, 797.
[33] B. Nouri, P. Kuhn, S. Wilbert, N. Hanrieder, C. Prahl, L. Zarzalejo,

A. Kazantzidis, P. Blanc, R. Pitz-Paal, Sol. Energy 2019, 177, 213.
[34] B. Nouri, Ph.D. Thesis, RWTH Aachen University, 2020.
[35] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, C. Eickhoff, in Kdd

’21: Proc. of the 27th ACM SIGKDD Conf. on Knowledge Discovery &
Data Mining, Association for Computing Machinery, New York,
NY 2021, pp. 2114–2124.

[36] I. Oguiza, tsai - A State-of-the-Art Deep Learning Library for Time Series
and Sequential Data, Github 2022, https://github.com/timeseriesAI/
tsai (accessed: June 2023)

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, I. Polosukhin, Advances in Neural
Information Processing Systems 30 (NIPS 2017), Neural Information
Processing Systems (NIPS), La Jolla, CA 2017, p. 30.

[38] G. Bertasius, H. Wang, L. Torresani, in Int. Conf. on Machine Learning,
Vol. 139, 2021, p. 139.

[39] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, N. Houlsby (Preprint), arXiv:2010.11929, v2, submitted:
Jun. 2020, https://ui.adsabs.harvard.edu/abs/2020arXiv201011929D.

[40] D. P. Kingma, J. Ba (Preprint), arXiv:1412.6980, v9, submitted: Jan.
2017, https://arxiv.org/abs/1412.6980.

[41] I. Loshchilov, F. Hutter (Preprint), arXiv:1711.05101, v3, submitted:
Jan. 2019, https://arxiv.org/abs/1711.05101.

[42] L. N. Smith, N. Topin (Preprint), arXiv:1708.07120, v3, submitted:
May 2018, https://arxiv.org/abs/1708.07120.

www.advancedsciencenews.com www.solar-rrl.com

Sol. RRL 2024, 8, 2300808 2300808 (16 of 17) © 2023 The Authors. Solar RRL published by Wiley-VCH GmbH

 2367198x, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/solr.202300808 by D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein., W

iley O
nline L

ibrary on [02/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.sciencedirect.com/science/article/pii/B9780081005040000068
https://www.sciencedirect.com/science/article/pii/B9780081005040000068
https://doi.org/10.2172/1778700
https://github.com/timeseriesAI/tsai
https://github.com/timeseriesAI/tsai
https://ui.adsabs.harvard.edu/abs/2020arXiv201011929D
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1708.07120
http://www.advancedsciencenews.com
http://www.solar-rrl.com


[43] J. Howard, S. Gugger, Information 2020, 11, 2.
[44] R. Meyer, J. Torres Butron, G. Marquardt, M. Schwandt, N. Geuder,

C. Hoyer-Klick, E. Lorenz, A. Hammer, H. G. Beyer, in SolarPACES
Symp., Vol. 2008, Las Vegas, US March 2008.

[45] J. L. G. L. Salle, M. David, P. Lauret, Sol. Energy 2021, 223, 398.

[46] P. Lauret, M. David, P. Pinson, Sol. Energy 2019, 194, 254.
[47] D. Yang, D. van der Meer, J. Munkhammar, Sol. Energy 2020, 206,

628.
[48] L. Vallance, B. Charbonnier, N. Paul, S. Dubost, P. Blanc, Sol. Energy

2017, 150, 408.

www.advancedsciencenews.com www.solar-rrl.com

Sol. RRL 2024, 8, 2300808 2300808 (17 of 17) © 2023 The Authors. Solar RRL published by Wiley-VCH GmbH

 2367198x, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/solr.202300808 by D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein., W

iley O
nline L

ibrary on [02/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.solar-rrl.com

	Combining Deep Learning and Physical Models: A Benchmark Study on All-Sky Imager-Based Solar Nowcasting Systems
	1. Introduction
	2. Data
	2.1. Data Overview
	2.2. Training Data Selection
	2.3. Data Preprocessing
	2.4. Benchmark Dataset

	3. Methodology
	3.1. Nowcasting Models
	3.1.1. SP Model
	3.1.2. Physical Model
	3.1.3. DL Model

	3.2. Hybrid Model
	3.3. Probabilistic Nowcasts
	3.3.1. Baseline Model Clear-Sky-Dependent Climatology (CSD-Clim)
	3.3.2. Quantile-Based Approach

	3.4. Validation Procedure
	3.4.1. Validation for Deterministic Nowcasts
	3.4.2. Validation for Probabilistic Nowcasts


	4. Validation Results
	4.1. Comparison of Deterministic Models
	4.2. Evaluation of the Probabilistic Model

	5. Conclusion
	Deterministic error metrics by DNI variability classes



