DEEP LEARNING BASED AUTOMATIC GROUNDING LINE DELINEATION IN DINSAR INTERFEROGRAMS

Sindhu Ramanath Tarekere¹, Lukas Krieger¹, Konrad Heidler², Dana Floricioiu¹

¹SAR Signal Processing, German Aerospace Center (DLR), Oberpfaffenhofen ²Data Science in Earth Observation, Technical University of Munich

Ramanath Tarekere, TerraSAR-X/TanDEM-X Science meeting, 19.10.2023

Ramanath Tarekere, TerraSAR-X/TanDEM-X Science meeting, 19.10.2023

Grounding line delineation in DInSAR interferograms

- The manual delineation of one DInSAR interferogram takes several minutes
- This is impractical given the volume of SAR acquisitions (from 1992 to present)
- Current GL datasets contain manually drawn lines → not up to date with available SAR acquisitions

Existing solution:

 Deep neural network based GL delineation algorithm by (Mohajerani et al., 2021)

Our solution:

- Uses manual delineations to train a convolutional neural network
- Explores the importance of several features towards grounding line delineation

Antarctic SAR coverage of grounding zones

Sentinel-1 A/B constellation (6 days repeat) 2016 - 2021

Sentinel-1 (12-days repeat) 2014 - ongoing

TerraSAR-X (11-days repeat) 2009 - 2022

- No Sentinel-1 coverage south of 75°S (pole hole)
- The loss of S1-B increases temporal baseline to 12 days -> loss of coherence
- TerraSAR-X left looking mode covers south of 81°S (Ross and Ronne-Filchner Ice Shelves)

Training dataset: ground truth labels

Manually delineated GLs from Antarctic Ice Sheet climate change initiative (AIS_cci) Grounding Line Location product

Satellite (Imaging mode)	Temporal extent [years]	Repeat cycle [days]	No. of DInSAR interferograms
Sentinel 1 A/B (IW TOPS)	2014 – 2021	6, 12	199
ERS 1/2 (SM)	1992 – 1996	1, 3	123
TerraSAR-X (SM)	2012 – 2018	11	107

ERRA SAR

Groh., A. (2021) Product user guide (PUG) for the Antarctic_Ice_Sheet_cci project of ESA's Climate Change Initiative, version 1.0, https://climate.esa.int/media/documents/ST-UL-ESA-AISCCI-PUG-0001.pdf

Training dataset: input features

Feature	Dataset	Resolution	Temporal coverage [years]
DInSAR interferograms	AIS_cci	S1: 0.00043° ERS 1/2: 0.00055° TSX: 0.00016°	1992 - 2021
DEM	TanDEM-X PolarDEM	90 m	April 2013 – Oct 2014 July 2016 – Sept 2017
Ice velocity	ENVEO IT	200 m	2014 - 2021

Dynamic

Temporally/Spatially restricted

Groh., A. (2021) Product user guide (PUG) for the Antarctic_Ice_Sheet_cci project of ESA's Climate Change Initiative, version 1.0, https://climate.esa.int/media/documents/ST-UL-ESA-AISCCI-PUG-0001.pdf

Huber., M (2020) TanDEM-X PolarDEM Product Description, prepared by German Remote Sensing Data Center (DFD) and Earth Observation Center

Padman., L et al. (2002) Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves, *Geophysical Research Letters*, 35(22)

Nagler., T et al., (2015) The Sentinel-1 mission: New opportunities for ice sheet observations, Remote Sensing, vol. 7, no.7, pp.9371-9389

Automatic delineation pipeline

Preprocessing

Terra SAR 🗡

Ramanath Tarekere, TerraSAR-X/TanDEM-X Science meeting, 19.10.2023

Neural network training procedure

Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In Proceedings of the IEEE international conference on computer vision (pp. 1395-1403)

Ramanath Tarekere, TerraSAR-X/TanDEM-X Science meeting, 19.10.2023

Postprocessing

Terra SAR 🗡

Results

Feature subset	Median deviation [m]	Median Absolute Deviation [m]
DInSAR + DEM + ice velocity	176.29	110.75
DInSAR + DEM	358.09	232.82
DInSAR + ice velocity	340.46	300.90
DInSAR	188.70	114.84

Ramanath Tarekere, TerraSAR-X/TanDEM-X Science meeting, 19.10.2023

Results

Ramanath Tarekere, TerraSAR-X/TanDEM-X Science meeting, 19.10.2023

Summary and conclusion

- We developed an end-to-end pipeline for automatic grounding line delineation in DInSAR interferograms
- The quality of the automatically delineated lines is quantified by the low median deviation of 176.29 m that is achieved by the best performing model
- The DEM and ice velocity do not significantly contribute towards the network performance
- The network fails to delineate interferograms where the fringes are decorrelated
- The pipeline automatically delineates one double difference in the order of seconds → possible to efficiently delineate grounding lines over large areas of the Antarctic Ice Sheet

Phase preserving resampling

Metrics

Avbelj, J., Muller, R., & Bamler, R. (2015). A Metric for Polygon Comparison and Building Extraction Evaluation. *IEEE Geoscience and Remote Sensing Letters*, 12(1), 170–174. <u>https://doi.org/10.1109/LGRS.2014.2330695</u>

Dataset split

No. of training samples = 3636×2 No. of validation samples = 91No. of test samples = 511

