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ABSTRACT 

Virtualized IT platforms abstracting from physical 

infrastructure offer easy scaling of storage and compute 

resources. This is a great progress for handling dynamic big 

data workloads but holds the danger of solving performance 

issues just with upscaling, without looking at causes. We 

propose to analyze the behavior of complex systems handling 

big data workloads using system modelling and discrete event 

simulation. It can be very revealing to see a simulated system 

in action by running simulations in different configurations, 

showing the impact of a modified system structure on its 

runtime behavior and resource consumption. With a tool-

based system workload simulation example in the Earth 

Observation data domain we show how this approach can 

lead to significant resource and cost savings. 

Index Terms— system modelling, grey-boxing, discrete 

event simulation, infrastructure optimization, scalable 

platform, performance prediction 

1. INTRODUCTION 

In the domain of Earth Observation as in many other high-

performance data analytics applications, huge amounts of 

data need to be stored, accessed and processed. The workload 

placed on networks, compute nodes and storage systems is 

thereby often difficult to predict. The dynamic of user 

requests, the different size of data units and the complexity of 

processing algorithms makes a static resource allocation very 

difficult. Virtualized IT platforms offered in on-premise 

computing centers as well as by public cloud providers allow 

to quickly react on bottlenecks by adding storage, compute 

and network resources almost on-the-fly. But are these (often 

expensive) resources really necessary in the sense that they 

perfectly fit to a specific need within a complex system 

configuration in order to reach overall system throughput, 

timeliness or cost target requirements? Wouldn’t another 

workflow configuration and set of resources do the same job 

even faster and with less cost, meaning better energy 

efficiency and smaller carbon footprint? 

In this paper we demonstrate how a system model can be 

used to run repeated workload simulations in order to identify 

system bottlenecks and to optimize IT resource assignments 

as well as system workflows. We show that simulation 

produces fast and reliable results, without need to spend 

efforts in real large-scale performance experiments. 

We will first introduce a specific approach for effective 

modelling of complex systems in their static structure as well 

as their dynamic data and control flow. Based on the system 

model we will show how to conduct and analyze iterative 

simulation runs in so-called “what-if-experiments”. Finally, 

we will demonstrate the optimization of a complex system 

used for the large-scale management and processing of a long 

Earth Observation data time series, step-wise enhancing the 

initial system configuration already before deployment. 

2. SYSTEM MODELLING 

The typical steps of achieving a reliable system model follow 

the bottom-up reverse analysis approach. We start at the 

physical layout identifying elements of infrastructure, IT 

hardware, network, system and application software. In the 

next step a logical system layout can be derived, grouping 

functional elements into larger units in multiple levels and 

connecting these typically along “uses/used-by” associations 

(Fig. 1). The logical composition formalizes the logical 

layout by introducing model abstraction levels and 

cardinalities of model elements for which similar properties 

and a similar behavior can be assumed. 

This reverse analysis approach does not rely on top-down 

system specification, such as its documented architecture and 

design, as this theoretic information usually does not reflect 

a system in its final implementation state with sufficient 

detail. Since a physical layout may not always be applicable, 

e.g. for system and application software, a logical layout can 

also be directly defined based on software being deployed in 

different unit levels, e.g. libraries/modules, packages, 

components, containers. 

2.1. Static Model Elements 

All elements in the logical composition, at any model level, 

are valid model elements. The leaf elements typically have 

specific properties describing their main influence on the 

overall system behavior: 

• A compute element consumes a load-dependent 

electrical power and runs with a certain clock 

frequency. 

• A memory or storage element has a capacity, an I/O 

bandwidth, an access latency and a power consumption.  

• A network element has a nominal throughput and a 

latency. 

• All these elements have a typical breakdown 

probability and mean-time-to-repair distribution. 



The model elements in higher levels aggregate the 

behavior of their sub-elements which can be expressed with 

similar properties. They usually also have additional 

properties e.g. reflecting their state and capacity constraints 

at their respective level. Properties with variable values have 

to be configurated with a probability distribution to reflect 

their variance in the real system. 
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Fig. 1. System modelling 

2.2. Grey-Boxing 

Building a model reflecting the system in all its details is 

totally unrealistic. Most IT-systems have a complexity which 

does not allow capturing all elements with their exact 

properties as required by a “white box” analysis. On the other 

hand, fixing a system model at a certain higher level 

considering all elements of this level as “black boxes” will 

usually result in either a rather trivial high-level model or a 

model with some elements having a trivial deterministic 

behavior and other elements with a not explainable, non-

deterministic behavior hiding the relevant structures with 

major impact on runtime and resource consumption. 

The grey-boxing approach, also well-known as targeted 

software testing concept [1], combines “white box” and 

“black box” modelling by opening sub-elements only to that 

extent which is necessary to represent the system in all those 

parts which are expected to have significant impact. The 

result is a model with a heterogenous level of detail, using 

elements with low impact at high level and detailing elements 

to lower level as necessary to explicitly reflect the behavior 

of really relevant parts.  

The grey-boxing approach requires not only a detailed 

knowledge of the system in all its levels but also experience 

on which parts typically have a relevant impact [2]. This may 

also depend on the workflows and scenarios which shall be 

simulated using this model later, as different workflows may 

require system functions at different extent, so that different 

parts of the system would need to be further detailed in the 

model [3]. A corresponding iterative refinement of the model 

based on first simulation results can help to reach a “grey 

box” model with sufficient level of detail for all scenarios it 

is intended to support. A model coarsening should also be 

performed if the first simulation results show that parts of the 

model have no impact at all. The “grey box” models of the 

same system may be different when targeted to different 

system usage scenarios. The lesser scenarios are to be 

covered, the simpler the adequate model will be. 

In difference to the leaf model elements introduced in the 

previous section, higher level “grey boxes” are typically 

characterized with the following behavioral properties: 

• Number and size of input data units processed (or stored 

or transferred) per time interval 

• Number and size of output data units produced per time 

interval 

• Compute, memory and power resources consumed 

• Breakdown probability and mean-time-to-repair 

distribution 

2.3. Dynamic Model 

A simulation is supposed to execute a dynamic activity on a 

pre-defined static system model. As with the static system 

model discussed so far, the dynamic activity needs to be 

modeled by analyzing e.g. the steps of workflows, applying 

the “grey box” approach, down to the level required to 

represent partial activities (steps) with major impact on 

latencies, runtimes and resource consumption. 

The dynamic model elements can typically split into two 

groups, those with a high impact and those with a low impact 

but required to connect the dynamic model elements with 

“triggers/waits-for” associations in order to be able to run 

complete end-to-end workflow simulations. 

Dynamic model elements with high impact are e.g. 

• Upload/download/store data, impact by the volume of 

data units transmitted 

• Process data, impact by the complexity of the 

processing and the volume of data processed 

Dynamic model elements with low impact but needed for 

connecting dynamic elements are e.g. 

• Send/receive message 

• Allocate storage/compute resource 

• Deploy/launch software 

• Release/remove data 

• Release storage/compute resource 

The static and dynamic model elements need to be aligned 

in their level of detail so that the dynamic elements fit onto 

the system elements which are supposed to handle them. For 

example, a processor allowing the parallel processing of n 

parts of an input data product can be modeled with sub-

elements deployable on n processing nodes each handling one 

of n sub-elements of one data product. 



3. SIMULATION SETUP 

The model definition and simulation setup shall be 

demonstrated with an example system based on DLR 

experience in EO payload data ground segments [4]. It 

consists of a Long-term Archive (LTA) hosting a very large 

data record of level 1B (L1B) atmospheric spectrometer data 

which shall be reprocessed to multiple level-2 (L2) 

atmospheric composition data products. The LTA is 

connected via WAN to a cloud platform, on which this 

reprocessing shall be performed. 

The provision of the L1B data onto the platform is 

controlled by an operator through the submission of bulk 

reload requests covering e.g. one sensing year. The Ingestion 

system processes these bulk requests by downloading 

products from the LTA using parallel transfers, verifying data 

consistency, extracting metadata and placing the L1B 

products on an online storage. The Processing system polls 

the L1B input products and automatically launches the L2 

processing in subsequent batches of e.g. 2 weeks sensing time 

length. 

Each of these batches needs to be executed in three 

consecutive passes. Pass 1 processes each input product to 

intermediate output products required as input to the 

following passes. Pass 2 processes only one product per input 

sensing day in order to perform some background correction. 

Pass 3 processes all input products again using the 

intermediate processing results with background correction 

information generating all expected final output products. 

It is important to note that the three passes need to be 

processed sequentially but that within each pass, all products 

can be processed in any order and in parallel. 

The demonstration system has been modelled using the 

discrete event simulation tool JaamSim [5]. This very 

powerful open source tool was designed for modelling and 

simulating real-world production lines, but it proves to be 

also very well suited for modelling IT infrastructures and 

software applications, and simulating digital control and data 

flows. 

In the JaamSim tool, the demonstration system is 

modelled using entities, e.g. L1B-Product, Pass1Request 

(Fig. 2), circulating through a process flow (dynamic model) 

visualized with blue arrows, composed of different 

processing, queuing, conveying and branching stations (static 

model). Stations are configured with properties such as the 

time required to process an entity. Various probability 

distributions can be used to model uncertainty e.g. for 

processing time, the occurrence of unplanned outages and the 

time needed to recover. The dynamic process flow is 

customized using thresholds allowing to model water marks 

and capacity limits. 

In this paper, we can focus only on a small part of the 

implemented demonstration model. This part consists of the 

data-driven lookup of data batches on an OnlineStorage 

resource. As soon as a full input data batch is available, a 

L1B-Batch entity is created and passed to the 

BatchWaitQueue (left in Fig. 2). It is picked from there by a 

server BatchProcControl which is limited by a resource 

ensuring that only one batch request is processed at a time. 

The server creates processing requests for the three different 

passes 1/2/3, parameterized with individual processing time. 

These get only released onto the central L2ProcessingQueue, 

if the previous pass was totally completed. 
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Fig. 2. System simulation with JaamSim (extract) 

The L2ProcessingCluster processes all pass 1/2/3 requests 

waiting in the L2ProcessingQueue. This cluster has a 

configurable number of nodes for parallel processing, as well 

as other modifiable parameters modelling uncertainties 

regarding the processing duration variance and the cluster 

maintenance downtime. The L2OutputControl server detects 

the final pass 3 output L2-Products and passes them on the 

OnlineStorageL2, and triggers the closing of the batch 

processing request. 

4. DEMONSTRATION 

4.1. Simulation Parameterizing 

After the initial definition of a “grey box” static and dynamic 

system model, a specific workflow can be mapped onto the 

model using the following steps: 

• Define a start condition, e.g. availability of initial input 

data, availability of an initial processing request 

• Parameterize all model elements, especially the 

dynamic elements, e.g. data sizes, processing durations, 

probabilities, downtimes for maintenance activities and 

un-planned outages, as partially shown in Fig. 2 for the 

L2ProcessingCluster 

• Complete the connection of model elements as required 

by the workflow  

In the demonstration example, multiple input parameters 

have been defined to easily change the settings for simulation 

runs executed using this model. A part of these parameters is 

visible above the model in Fig. 2. During simulation runs 

being executed, the JaamSim tool collects very detailed 

statistical information on each dynamic entity instance 



flowing through the system as well as on each process flow 

station handling entities. During and after simulation, each 

object can be inspected to analyze e.g. its load and the average 

queueing or processing time. Moreover, any of these 

measurements can be logged for later analysis and visualized 

directly in text fields and diagrams within the model as shown 

with the load curve in Fig. 2. 

4.2. Analyzing Simulation Runs 

Multiple simulation runs with different input parameter 

values, so called “what-if-experiments”, can be performed to 

observe the system while executing and measuring the 

behavior of any part within the model as well as the overall 

simulation duration. The speed of a simulation run can be 

accelerated by multiple dimensions so that results become 

visible and analyzable after reasonable time even if the 

simulated scenario would require weeks or months in real-

time. 

The demonstration system simulation run shown in Fig. 2 

analyzes the load of the L2ProcessingCluster, aiming at 

maximizing it for best resource usage. For a series of 

simulation experiments listed in Table 1, we assume that the 

processing cluster can provide a maximum of 120 nodes and 

that a fix cost rate per node is applied. 

Table 1. Experiments and cluster load results 

Experi-

ment 

Input Products 

per Batch [n] 

Processing 

Nodes [n] 

Resulting Average 

Cluster Load [%] 

#1 210 100 60% (see Fig. 2) 

#2 210 105 67% 

#3 1050 105 90% 

#4 1050 70 95% 

 

Working with a batch sensing time period of 14 days, 

corresponding to 210 input products, and a capacity of 100 

processing nodes for parallel processing in the cluster shows, 

after some ramp-up time, an average cluster load of 60%, 

which is far from being optimal (experiment #1 in Table 1). 

Increasing the number of processing nodes only by 5 already 

significantly increases the cluster load to 67% (experiment 

#2). This can be explained by the fact that the number of input 

products processed in pass 1 and pass 3 is a multiple of the 

number of processing nodes (210 = 2 x 105). 

A third “what-if-experiment” (experiment #3) using a 

batch sensing time period of 70 days increases the average 

cluster load to 90%, because still the number of input 

products is a multiple of the number of processing nodes, and 

pass 2 uses now 70 of the 105 nodes, which is better than 

using only 14 of 105 nodes in the previous experiment. 

We are still able to increase the cluster load to 95% when 

running experiment #4 with 70 instead of 105 nodes, because 

then also pass 2 almost uses the full cluster resources. We will 

not be able to achieve a higher cluster load, because the model 

uses a variable individual processing duration using a normal 

probability distribution so that not all processing runs 

terminate at the same time. Moreover, the model defines 

regular cluster maintenance downtimes with variable 

duration following a triangular probability distribution, again 

slightly reducing the usage rate of the cluster being 

understood as a continuous service. 

This is a good example of using simulation to find a 

system configuration which suites best to the specific target 

within the limits of possible system configurations. In this 

case we could significantly reduce the overall system cost by 

use of 70 nodes instead of 120 nodes, without major impact 

on the total reprocessing duration. 

5. CONCLUSION 

The approach of predicting workflow duration and resource 

consumption using simulations has the main advantage that 

statements can be made before any expensive setup and test 

of systems or cloud resources, and that we can experiment 

with multiple system setups in order to find a setup which 

best fit to the planned specific workflow or expected mix of 

system usage scenarios. The main disadvantage of this 

approach is that the precision of predictions strongly depends 

on the quality of the system model. Models should portray the 

system in heterogenous levels detailing the system 

components which have most expected impact on 

performance (grey-boxing). They also should be 

parameterized with probabilistic distributions to reflect 

randomized behavior as observed in real complex systems. 

Model definition and parameterizing requires deep 

knowledge and experience on the system components and 

their typical behavior. Based on such models, simulations can 

be executed multiple times and using different 

parameterizations, and the system model can easily be tuned 

proposing adaptations within the limits of acceptable system 

changes, in order to optimize the overall system throughput 

and cost/energy efficiency. 
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