
ANALYZING BIG DATA WORKLOADS USING DISCRETE SIMULATION

Stephan Kiemle, Julian Meyer-Arnek, Nicolas Weiland

German Aerospace Center DLR

ABSTRACT

Virtualized IT platforms abstracting from physical

infrastructure offer easy scaling of storage and compute

resources. This is a great progress for handling dynamic big

data workloads but holds the danger of solving performance

issues just with upscaling, without looking at causes. We

propose to analyze the behavior of complex systems handling

big data workloads using system modelling and discrete event

simulation. It can be very revealing to see a simulated system

in action by running simulations in different configurations,

showing the impact of a modified system structure on its

runtime behavior and resource consumption. With a tool-

based system workload simulation example in the Earth

Observation data domain we show how this approach can

lead to significant resource and cost savings.

Index Terms— system modelling, grey-boxing, discrete

event simulation, infrastructure optimization, scalable

platform, performance prediction

1. INTRODUCTION

In the domain of Earth Observation as in many other high-

performance data analytics applications, huge amounts of

data need to be stored, accessed and processed. The workload

placed on networks, compute nodes and storage systems is

thereby often difficult to predict. The dynamic of user

requests, the different size of data units and the complexity of

processing algorithms makes a static resource allocation very

difficult. Virtualized IT platforms offered in on-premise

computing centers as well as by public cloud providers allow

to quickly react on bottlenecks by adding storage, compute

and network resources almost on-the-fly. But are these (often

expensive) resources really necessary in the sense that they

perfectly fit to a specific need within a complex system

configuration in order to reach overall system throughput,

timeliness or cost target requirements? Wouldn’t another

workflow configuration and set of resources do the same job

even faster and with less cost, meaning better energy

efficiency and smaller carbon footprint?

In this paper we demonstrate how a system model can be

used to run repeated workload simulations in order to identify

system bottlenecks and to optimize IT resource assignments

as well as system workflows. We show that simulation

produces fast and reliable results, without need to spend

efforts in real large-scale performance experiments.

We will first introduce a specific approach for effective

modelling of complex systems in their static structure as well

as their dynamic data and control flow. Based on the system

model we will show how to conduct and analyze iterative

simulation runs in so-called “what-if-experiments”. Finally,

we will demonstrate the optimization of a complex system

used for the large-scale management and processing of a long

Earth Observation data time series, step-wise enhancing the

initial system configuration already before deployment.

2. SYSTEM MODELLING

The typical steps of achieving a reliable system model follow

the bottom-up reverse analysis approach. We start at the

physical layout identifying elements of infrastructure, IT

hardware, network, system and application software. In the

next step a logical system layout can be derived, grouping

functional elements into larger units in multiple levels and

connecting these typically along “uses/used-by” associations

(Fig. 1). The logical composition formalizes the logical

layout by introducing model abstraction levels and

cardinalities of model elements for which similar properties

and a similar behavior can be assumed.

This reverse analysis approach does not rely on top-down

system specification, such as its documented architecture and

design, as this theoretic information usually does not reflect

a system in its final implementation state with sufficient

detail. Since a physical layout may not always be applicable,

e.g. for system and application software, a logical layout can

also be directly defined based on software being deployed in

different unit levels, e.g. libraries/modules, packages,

components, containers.

2.1. Static Model Elements

All elements in the logical composition, at any model level,

are valid model elements. The leaf elements typically have

specific properties describing their main influence on the

overall system behavior:

• A compute element consumes a load-dependent

electrical power and runs with a certain clock

frequency.

• A memory or storage element has a capacity, an I/O

bandwidth, an access latency and a power consumption.

• A network element has a nominal throughput and a

latency.

• All these elements have a typical breakdown

probability and mean-time-to-repair distribution.

The model elements in higher levels aggregate the

behavior of their sub-elements which can be expressed with

similar properties. They usually also have additional

properties e.g. reflecting their state and capacity constraints

at their respective level. Properties with variable values have

to be configurated with a probability distribution to reflect

their variance in the real system.

Module - Level 0

Component - Level 1

System - Level 2

logical layout logical composition Model
Levelreflecting modules, components,

systems
reflecting composition hierarchy of
modules, components, systems

N x

Micro-Service -Level 0

Service - Level 1
N

m
id

d
le

w
a

re
a

p
p

lic
at

io
n

CPUCPU MEM

39 x

compute_node

HW Element - Level 1

Node - Level 2

Chipset - Level 0

compute_node

CPU MEM

39

2

in
fr

a
st

ru
ct

u
re

disk
disk

Fig. 1. System modelling

2.2. Grey-Boxing

Building a model reflecting the system in all its details is

totally unrealistic. Most IT-systems have a complexity which

does not allow capturing all elements with their exact

properties as required by a “white box” analysis. On the other

hand, fixing a system model at a certain higher level

considering all elements of this level as “black boxes” will

usually result in either a rather trivial high-level model or a

model with some elements having a trivial deterministic

behavior and other elements with a not explainable, non-

deterministic behavior hiding the relevant structures with

major impact on runtime and resource consumption.

The grey-boxing approach, also well-known as targeted

software testing concept [1], combines “white box” and

“black box” modelling by opening sub-elements only to that

extent which is necessary to represent the system in all those

parts which are expected to have significant impact. The

result is a model with a heterogenous level of detail, using

elements with low impact at high level and detailing elements

to lower level as necessary to explicitly reflect the behavior

of really relevant parts.

The grey-boxing approach requires not only a detailed

knowledge of the system in all its levels but also experience

on which parts typically have a relevant impact [2]. This may

also depend on the workflows and scenarios which shall be

simulated using this model later, as different workflows may

require system functions at different extent, so that different

parts of the system would need to be further detailed in the

model [3]. A corresponding iterative refinement of the model

based on first simulation results can help to reach a “grey

box” model with sufficient level of detail for all scenarios it

is intended to support. A model coarsening should also be

performed if the first simulation results show that parts of the

model have no impact at all. The “grey box” models of the

same system may be different when targeted to different

system usage scenarios. The lesser scenarios are to be

covered, the simpler the adequate model will be.

In difference to the leaf model elements introduced in the

previous section, higher level “grey boxes” are typically

characterized with the following behavioral properties:

• Number and size of input data units processed (or stored

or transferred) per time interval

• Number and size of output data units produced per time

interval

• Compute, memory and power resources consumed

• Breakdown probability and mean-time-to-repair

distribution

2.3. Dynamic Model

A simulation is supposed to execute a dynamic activity on a

pre-defined static system model. As with the static system

model discussed so far, the dynamic activity needs to be

modeled by analyzing e.g. the steps of workflows, applying

the “grey box” approach, down to the level required to

represent partial activities (steps) with major impact on

latencies, runtimes and resource consumption.

The dynamic model elements can typically split into two

groups, those with a high impact and those with a low impact

but required to connect the dynamic model elements with

“triggers/waits-for” associations in order to be able to run

complete end-to-end workflow simulations.

Dynamic model elements with high impact are e.g.

• Upload/download/store data, impact by the volume of

data units transmitted

• Process data, impact by the complexity of the

processing and the volume of data processed

Dynamic model elements with low impact but needed for

connecting dynamic elements are e.g.

• Send/receive message

• Allocate storage/compute resource

• Deploy/launch software

• Release/remove data

• Release storage/compute resource

The static and dynamic model elements need to be aligned

in their level of detail so that the dynamic elements fit onto

the system elements which are supposed to handle them. For

example, a processor allowing the parallel processing of n

parts of an input data product can be modeled with sub-

elements deployable on n processing nodes each handling one

of n sub-elements of one data product.

3. SIMULATION SETUP

The model definition and simulation setup shall be

demonstrated with an example system based on DLR

experience in EO payload data ground segments [4]. It

consists of a Long-term Archive (LTA) hosting a very large

data record of level 1B (L1B) atmospheric spectrometer data

which shall be reprocessed to multiple level-2 (L2)

atmospheric composition data products. The LTA is

connected via WAN to a cloud platform, on which this

reprocessing shall be performed.

The provision of the L1B data onto the platform is

controlled by an operator through the submission of bulk

reload requests covering e.g. one sensing year. The Ingestion

system processes these bulk requests by downloading

products from the LTA using parallel transfers, verifying data

consistency, extracting metadata and placing the L1B

products on an online storage. The Processing system polls

the L1B input products and automatically launches the L2

processing in subsequent batches of e.g. 2 weeks sensing time

length.

Each of these batches needs to be executed in three

consecutive passes. Pass 1 processes each input product to

intermediate output products required as input to the

following passes. Pass 2 processes only one product per input

sensing day in order to perform some background correction.

Pass 3 processes all input products again using the

intermediate processing results with background correction

information generating all expected final output products.

It is important to note that the three passes need to be

processed sequentially but that within each pass, all products

can be processed in any order and in parallel.

The demonstration system has been modelled using the

discrete event simulation tool JaamSim [5]. This very

powerful open source tool was designed for modelling and

simulating real-world production lines, but it proves to be

also very well suited for modelling IT infrastructures and

software applications, and simulating digital control and data

flows.

In the JaamSim tool, the demonstration system is

modelled using entities, e.g. L1B-Product, Pass1Request

(Fig. 2), circulating through a process flow (dynamic model)

visualized with blue arrows, composed of different

processing, queuing, conveying and branching stations (static

model). Stations are configured with properties such as the

time required to process an entity. Various probability

distributions can be used to model uncertainty e.g. for

processing time, the occurrence of unplanned outages and the

time needed to recover. The dynamic process flow is

customized using thresholds allowing to model water marks

and capacity limits.

In this paper, we can focus only on a small part of the

implemented demonstration model. This part consists of the

data-driven lookup of data batches on an OnlineStorage

resource. As soon as a full input data batch is available, a

L1B-Batch entity is created and passed to the

BatchWaitQueue (left in Fig. 2). It is picked from there by a

server BatchProcControl which is limited by a resource

ensuring that only one batch request is processed at a time.

The server creates processing requests for the three different

passes 1/2/3, parameterized with individual processing time.

These get only released onto the central L2ProcessingQueue,

if the previous pass was totally completed.

Pass1RequestQueue

Pass2RequestQueue

Pass3RequestQueue

Pass1Request

Pass2Request

Pass3Request

L2ProcessingQueue

L2ProcessingCluster

Pass1and2Closing

Number of L2 processing nodes: 100
ProcessingTimeDistribution
MaintenanceIntervalPropability
MaintenanceDurationDistribution

L2 pass1 processing duration: 1025 [s]
L2 pass2 processing duration: 1700 [s]
L2 pass3 processing duration: 1600 [s]

L1B-Product

L2-Product

BatchWaitQueue

BatchProcControl

L1B-Batch

L2OutputControl

Fig. 2. System simulation with JaamSim (extract)

The L2ProcessingCluster processes all pass 1/2/3 requests

waiting in the L2ProcessingQueue. This cluster has a

configurable number of nodes for parallel processing, as well

as other modifiable parameters modelling uncertainties

regarding the processing duration variance and the cluster

maintenance downtime. The L2OutputControl server detects

the final pass 3 output L2-Products and passes them on the

OnlineStorageL2, and triggers the closing of the batch

processing request.

4. DEMONSTRATION

4.1. Simulation Parameterizing

After the initial definition of a “grey box” static and dynamic

system model, a specific workflow can be mapped onto the

model using the following steps:

• Define a start condition, e.g. availability of initial input

data, availability of an initial processing request

• Parameterize all model elements, especially the

dynamic elements, e.g. data sizes, processing durations,

probabilities, downtimes for maintenance activities and

un-planned outages, as partially shown in Fig. 2 for the

L2ProcessingCluster

• Complete the connection of model elements as required

by the workflow

In the demonstration example, multiple input parameters

have been defined to easily change the settings for simulation

runs executed using this model. A part of these parameters is

visible above the model in Fig. 2. During simulation runs

being executed, the JaamSim tool collects very detailed

statistical information on each dynamic entity instance

flowing through the system as well as on each process flow

station handling entities. During and after simulation, each

object can be inspected to analyze e.g. its load and the average

queueing or processing time. Moreover, any of these

measurements can be logged for later analysis and visualized

directly in text fields and diagrams within the model as shown

with the load curve in Fig. 2.

4.2. Analyzing Simulation Runs

Multiple simulation runs with different input parameter

values, so called “what-if-experiments”, can be performed to

observe the system while executing and measuring the

behavior of any part within the model as well as the overall

simulation duration. The speed of a simulation run can be

accelerated by multiple dimensions so that results become

visible and analyzable after reasonable time even if the

simulated scenario would require weeks or months in real-

time.

The demonstration system simulation run shown in Fig. 2

analyzes the load of the L2ProcessingCluster, aiming at

maximizing it for best resource usage. For a series of

simulation experiments listed in Table 1, we assume that the

processing cluster can provide a maximum of 120 nodes and

that a fix cost rate per node is applied.

Table 1. Experiments and cluster load results

Experi-

ment

Input Products

per Batch [n]

Processing

Nodes [n]

Resulting Average

Cluster Load [%]

#1 210 100 60% (see Fig. 2)

#2 210 105 67%

#3 1050 105 90%

#4 1050 70 95%

Working with a batch sensing time period of 14 days,

corresponding to 210 input products, and a capacity of 100

processing nodes for parallel processing in the cluster shows,

after some ramp-up time, an average cluster load of 60%,

which is far from being optimal (experiment #1 in Table 1).

Increasing the number of processing nodes only by 5 already

significantly increases the cluster load to 67% (experiment

#2). This can be explained by the fact that the number of input

products processed in pass 1 and pass 3 is a multiple of the

number of processing nodes (210 = 2 x 105).

A third “what-if-experiment” (experiment #3) using a

batch sensing time period of 70 days increases the average

cluster load to 90%, because still the number of input

products is a multiple of the number of processing nodes, and

pass 2 uses now 70 of the 105 nodes, which is better than

using only 14 of 105 nodes in the previous experiment.

We are still able to increase the cluster load to 95% when

running experiment #4 with 70 instead of 105 nodes, because

then also pass 2 almost uses the full cluster resources. We will

not be able to achieve a higher cluster load, because the model

uses a variable individual processing duration using a normal

probability distribution so that not all processing runs

terminate at the same time. Moreover, the model defines

regular cluster maintenance downtimes with variable

duration following a triangular probability distribution, again

slightly reducing the usage rate of the cluster being

understood as a continuous service.

This is a good example of using simulation to find a

system configuration which suites best to the specific target

within the limits of possible system configurations. In this

case we could significantly reduce the overall system cost by

use of 70 nodes instead of 120 nodes, without major impact

on the total reprocessing duration.

5. CONCLUSION

The approach of predicting workflow duration and resource

consumption using simulations has the main advantage that

statements can be made before any expensive setup and test

of systems or cloud resources, and that we can experiment

with multiple system setups in order to find a setup which

best fit to the planned specific workflow or expected mix of

system usage scenarios. The main disadvantage of this

approach is that the precision of predictions strongly depends

on the quality of the system model. Models should portray the

system in heterogenous levels detailing the system

components which have most expected impact on

performance (grey-boxing). They also should be

parameterized with probabilistic distributions to reflect

randomized behavior as observed in real complex systems.

Model definition and parameterizing requires deep

knowledge and experience on the system components and

their typical behavior. Based on such models, simulations can

be executed multiple times and using different

parameterizations, and the system model can easily be tuned

proposing adaptations within the limits of acceptable system

changes, in order to optimize the overall system throughput

and cost/energy efficiency.

REFERENCES

[1] Z. J. Li, H. F. Tan, H. H. Liu, J. Zhu and N. M. Mitsumori,

"Business-process-driven gray-box SOA testing," in IBM Systems

Journal, vol. 47, no. 3, pp. 457-472, doi: 10.1147/sj.473.0457, 2008

[2] H. Al-Sayeh, S. Hagedorn, K.-U. Sattler, “A gray-box modeling

methodology for runtime prediction of Apache Spark jobs”,

Distributed and parallel databases, ISSN 1573-7578, Vol. 38, 4, P.

819-839, https://doi.org/10.1007/s10619-020-07286-y, 2020

[3] H. Al-Sayeh, M. A. Jibril, B. Memishi, K.-U. Sattler, “Blink:

lightweight sample runs for cost optimization of big data

applications”, New Trends in Database and Information Systems, P.

144-154, https://doi.org/10.1007/978-3-031-15743-1_14, 2022

[4] S. Kiemle, K. Molch, S. Schropp, N. Weiland, E. Mikusch, “Big

Data Management in Earth Observation”, IEEE Geoscience and

Remote Sensing Magazine (GRSM), 4 (3), pp. 51-58. Geoscience

and Remote Sensing Society, ISSN 2168-6831, doi:

10.1109/MGRS.2016.2541306, 2016

[5] JaamSim Discrete Event Simulation Software,

https://www.jaamsim.com

https://doi.org/10.1007/s10619-020-07286-y
https://doi.org/10.1007/978-3-031-15743-1_14
https://www.jaamsim.com/

	Analyzing Big Data Workloads Using Discrete Simulation
	Abstract

	1. Introduction
	2. System Modelling
	2.1. Static Model Elements
	Fig. 1. System modelling

	2.2. Grey-Boxing
	2.3. Dynamic Model

	3. Simulation Setup
	Fig. 2. System simulation with JaamSim (extract)

	4. Demonstration
	4.1. Simulation Parameterizing
	4.2. Analyzing Simulation Runs
	Table 1. Experiments and cluster load results

	5. Conclusion
	REFERENCES

