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Abstract

The building sector is an important target for reduc-
ing urban energy consumption. Detailed data on the
building stock is needed for modelling urban build-
ing energy demands but its availability is often in-
sufficient. In Germany, the largest available pub-
lic database about the building stock is the census
national database, containing critical attributes for
building characterization on a national scale, such as
building age, construction type, and number of resi-
dents. However, the detailed information about the
individual buildings is restricted by national data pri-
vacy laws and the information is found in an aggre-
gated format.

This study shows statistical and machine learning ap-
proaches to take the census data and disaggregate its
information to each individual building in order to
use that information for urban building energy mod-
elling. This study presents a classification model for
the following parameters of the 2011 census: building
age, building form and heating type, and Number of
residents. A study case was conducted in Oldenburg,
Germany.

Highlights

e Generation of high-quality detailed building
stock data while keeping the data privacy poli-
cies intact.

e C(lassification models for different relevant pa-
rameters for modelling urban building energy de-
mands.

e Integration of different tools such as machine
learning and geoanalysis to obtained building
stock data.

e Combination of 3D building models and census
data into a single database.

Introduction

The building sector uses over 40% of energy in devel-
oped countries, with heating and hot water systems
in German residential buildings contributing to 84%
of final energy use and almost one-third of greenhouse
gas emissions. Detailed building parameters are nec-
essary to construct energy models, as factors like envi-

ronmental conditions, occupant behavior, and build-
ing regulations, impact the energy demand. Residen-
tial buildings are often the focus of energy modeling
studies due to the fact that non-residential buildings
are more complex and often lack of statistical infor-
mation (Rapf et al. (2015); Economidou et al. (2020);
IEA (2020); Statista Search Department (2022a,b);
Loga et al. (2012)).

Residential building data is acquired by various meth-
ods such as census data collection, formal building
and dwelling registers, surveys, or remote sensing
(Mata et al. (2014); van den Brom et al. (2019)). In
Germany, the largest available public database about
the building stock is the national census database
(Statistische Amter des Bundes und der Linder
(2011)). However, the detailed information about
each individual building is restricted by the national
data privacy laws. The census database contains crit-
ical attributes for building characterization on a na-
tional scale, such as building age, construction type,
and number of people per building. Still, the informa-
tion is found in an aggregated format to comply with
the data security laws. Other spatial data sources like
OpenStreetMaps or CityGML have increased in pop-
ularity due to the growing number of open city data
initiatives. Simultaneously, it is of interest to national
and local administrations to have an updated state of
their building stock, which provides enhanced oppor-
tunities for energy building modeling by integrating
different open-source databases. In Germany, local
administrations provide open data of the 3D models
of their building stock.

The main objective of this study is to show statis-
tical, GIS and machine learning based models that
can take the census data of Germany and allocate its
aggregated information to the individual 3D building
CityGML models. By doing so, we are able to com-
plement the building stock by not having only the
geometrical properties of the buildings but also rele-
vant characteristics like building age, typology, mor-
phology and number of residents. These parameters
are relevant for urban energy modelling and would
otherwise be difficult to obtain due to data privacy
laws.

In previous works, methods for estimating the energy



characteristics of individual buildings were developed
with the aid of machine learning and with the use
of GIS, census, and statistical data. This is our ba-
sis for the development of more advanced approaches
for the energy analysis of buildings. Authors such as
Garbasevschi et al. (2021) and Wurm et al. (2021)
have already encountered the problem of data aggre-
gation in the census database. Wurm et al. (2021)
used a convolutional neural network to build a model
which uses aerial images and integrates the census
information of construction type and building age.
Garbasevschi et al. (2021), focused on developing a
Random Forest (RF) model to predict the building
age of the census data for all individual buildings de-
pending on their geometrical properties. The newest
developments that we present in this publication have
focused on refined RF models trying to integrate more
characteristics of the census data beyond the building
age and construction type attributes such as the num-
ber of people per building and the building’s heating
systems.

Study Area and Data

This study focuses on the city of Oldenburg, Ger-
many, as illustrated in Figure 1. The city was chosen
due to the availability of necessary datasets at the
outset of the project, some of which were provided
by local project partners. The following subsections
provide an overview of the collected data.
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Figure 1: Study area. Showcase of Oldenburg, Ger-
many.

Census Database

A census is the procedure of systematically acquir-
ing, recording and calculating population information
about the members of a given population. This term
is used mostly in connection with national popula-
tion and housing censuses (United Nations (2008)).
In Germany, the entity in charge of the national
statistical census is the Federal and State Statisti-
cal Office (Statistische Amter des Bundes und der
Lénder). This office conducted a population, building
and housing census in 2011. The 2011 census is an
important cornerstone for the overall system of popu-

lation and building statistics, on which other parts of
the system are based. Due to data privacy concerns,
the 2011 census needed to ensure data protection and
information security of individuals and their proper-
ties. Because of this reason, the 2011 census public
data is published in an aggregated grid format ensur-
ing confidentiality, integrity and authenticity of the
data.

The 2011 census public data is presented in the IN-
SPIRE (2014) compliant 100m grid format of the
German Federal Agency of Cartography and Geodesy
(Bundesamt fiir Kartographie und Geodaésie. (2019)).
The highest level of spatial resolution is a grid of
100m x 100m and every single grid cell contains the
information of the 2011 census data respective to that
specific area.

The 2011 census database consists of three main
datasets: Population, families and households, and
buildings and apartments. The population census
dataset contains information about the amount of
people living in the corresponding 100 m x 100 m grid
cell, the amount is given as a integer number strictly
greater than 0, grid cells with value —1 mean unin-
habited or to be kept secret.

The families and households dataset contains infor-
mation about the family structure and the living situ-
ation of the households. The values are aggregated to
each corresponding 100 m x 100 m grid cell. The val-
ues are divided into three main parameters: type of
family household, type of living arrangement and size
of the household. Each of this parameters contains
different classes upon which the corresponding grid
cell is given a value. Lastly, the buildings and apart-
ments dataset contains information about different
parameters of the buildings and apartments in Ger-
many. The values are aggregated to each correspond-
ing 100m x 100 m grid cell. The values are divided
into seven different parameters: building age, build-
ing form, building’s ownership, building use, building
size, heating system and number of apartments in the
building.

Figure 2 shows a graphical representation of the
INSPIRE-grid format and how the 2011 census data
is aggregated in each grid cell. It shows the 10 dif-
ferent classes of the census building age parameter.
Each grid cell contains one value for each one of the
building age classes. Figure 2 also shows the foot-
prints of some buildings allocated in the shown area,
this means that the census values apply for all of the
buildings within a each specific grid cell. The same
happens for all of the census parameters of the three
main datasets. All of this translates into a multidi-
mensional problem in order to disaggregate and allo-
cate the census values to each specific building.
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Figure 2: Study area. Showcase of the INSPIRE-
compliant 100 m grid format for a 2.5km? area in
Oldenburg, Germany. Shown is the building age pa-
rameter from census dataset. Footprints of the build-
ings within that area and the street infrastructure are
also shown.

Building 3D Models

A building information model is a comprehensive dig-
ital representation of a built facility. It typically in-
cludes the geometry of the building components at
a defined Level of Detail (LoD) (Borrmann et al.
(2015)). LoD is a concept that allows the represen-
tation of an object in different complexities (see Fig-
ure 3). LoDO covers footprints. LoD1 contains blocks
(i.e. extruded footprints). LoD2 describes volumes
with generalized roof shapes. LoD3 specifies volumet-
ric models with greater architectural details including
windows (as well as other openings), roof overhangs,
and more facade details. Finally, LoD4 extends LoD3
with additional indoor features like rooms or furniture
(Biljecki et al. (2016)).

Ao

Figure 3: The five different LoDs for building models
in CityGML (Biljecki et al, 2016). Licensed under
CC BY-NC-ND 4.0.

The source information about the building models of
the city of Oldenburg is available on the data portal
of Lower Saxony (Landesamt fiir Geoinformation und
Landesvermessung Niedersachsen (2021)). The build-
ing models are given in format CityGML-LoD2, this
includes detailed information about the building and
its geometry such as: geographical coordinates, foot-
print, perimeter, area, ground surfaces, height, walls,
roof height and roof shapes. A total of 56 749 build-
ing models were exported for the city of Oldenburg.
About 75% (42875) of them are residential buildings.
The other 25% are distributed among industrial, com-
mercial, agricultural and educational buildings; Nev-
ertheless, the database is incomplete and errors in
such classifications are expected.

Methodology

This study aims to disaggregate the information of
the 2011 German census database and allocate its
parameters to each specific 3D building model. Not
all of the parameters given in the census database are
essential for energy calculations, while others, such as
building age and building form, are crucial but only
available in the census database, making it essential
to find new methodologies to disaggregate the infor-
mation and give the individual buildings their respec-
tive characteristics. Another parameter which this
study takes great focus on, is the number of residents
in the building which can help understand energy con-
sumption behavior. Table 1 lists the parameters con-
sidered in this study and their respective classes. A
disaggregation model for each one of these parame-
ters is described in the following sections, based on
statistical, GIS and machine learning models.

Table 1: Parameters of the 2011 census database that
are investigated in this study, showing the respective
descriptions and labels that will be used for the clas-
sification models.

Parameter Description Pred. Label

Before 1919
1919-1948
1949-1978
1979-1986
1987-1990
1991-1995
19962000
2001-2004
20052008
2009 and later

Building age
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Detached
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form Terraced house
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7-12 apt.

> 13 apt.
Other building types

MFH

District heating
Single-storey heating
Heating Block heating
type Central heating

Furnaces
No heating

SO W N

Number of people >0
Uninhabited or secret -1

Number of
residents

Building Age

The year of construction influences the energy per-
formance of the building. With the introduction of
thermal regulations over the past decades, newly con-
structed buildings are more energy-efficient than old




ones (Aksoezen et al. (2015)). Building age is divided
into ten classes in Table 1, representing different time
periods of construction. A building cannot belong to
two different classes, resulting in a multi-classification
problem. Although in reality the determination of
building ages is more complex as the buildings can
be refurbished partially or completely; however, this
is not part of the scope and the buildings will be clas-
sified into a single census class.

To classify buildings into their respective age class, we
adopt Garbasevschi et al. (2021)’s approach, which
utilized a RF classification model. The model was
trained using building geometric features (such as
height volume, perimeter, etc.) and from street and
block metric features (such as centrality, distance to
road, intersections, etc.), for the training data, avail-
able building age data from the city of Wuppertal
was used. Our approach is similar but differs in some
steps and includes the following.

First, we import all of the building 3D LoD2 mod-
els into a single database, the information included
in those models are geometric features (consisting of
all geolocalized points of the building), function of
the building (residential, administrative, industrial,
etc.) and roof type (14 possible types). Second, we
isolate the building age parameter from the census
database. Third, we geolocalized all buildings within
each 100m x 100 m grid cell, by calculating the build-
ing’s centroid thereby, avoiding that one building be
located into more than one grid cell. Fourth, the cen-
sus data contains a parameter called ¢ which tells
how many buildings were surveyed in that grid cell,
and how many fall into each class. With this pa-
rameter ¢, we can calculate a relative probability of
being, and because we already know how many build-
ings are in each grid cell, we can make sure that the
relative class proportion be maintained after the clas-
sification. Fifth, like Garbasevschi et al. (2021), we
make use of a RF model and building age training
data of Wuppertal and also those buildings which fall
into a grid cell with only one class. Lastly, the RF
was built with the python package scikit-learn, the
model was trained, corrected for oversampling (most
of the buildings in Germany were built after the war,
making the class 1949-1978 the majority class and
resulting in class imbalance) and applied to the re-
maining buildings of the city of Oldenburg. The RF
model learned from geometric features of the build-
ings, function of the building, roof type, and prob-
ability of being according to the census dataset. A
detailed list is found in the results.

Building Form

The building form or construction type impacts the
thermal behavior of buildings, e.g., a freestanding
(semi-)detached house is more exposed to energy loss
due to the higher portion of exterior walls in relation
to building volume than terraced houses or multi-

family houses (Kaden and Kolbe (2013); Ma and
Cheng (2016); Wurm et al. (2021)). The 2011 cen-
sus database provides information about the building
form and distinguishes between 10 different classes as
seen in Table 1.

To simplify the classification process, building form
classes are grouped into three major categories:
single-family houses (SFH), multi-family houses
(MFH), and others. The proposed methodology for
classifying Oldenburg’s buildings into their respective
forms includes: First, importing 3D LoD2 models into
a database, including information regarding geomet-
ric features, building’s function and roof type. Sec-
ond, we isolate the building form parameter from the
census database. Third, we geolocalized all build-
ings within each grid cell. Fourth, grouping building
forms into the three major classes; the original cen-
sus classes 1-3 are SFH, the original census classes
4-9 are MFH and the original class 10 is kept as
others. Fifth, the census parameter ¢ or probability
of being was calculated. Sixth, because no training
data for Oldenburg or any nearby city was found, im-
plementing a random distribution classification based
on probability and condition statements for geometry
and building types.

o Ifthe area of the building is > 250 m? then Build-
ing is classified as MFH.

e If the number of floors > 3 then the building
classified as MFH.

e If the function of the building is not residential
then building is classified as other.

e If the area of the building is < 250 m? and num-
ber of storeys > 4 then the building is classified
as MFH. (250 m? is a reference area that distin-
guishes between SFH and MFH, taken from Loga
et al. (2012).)

By randomly assigning building forms while consid-
ering the probability distribution of each grid cell,
the model can classify all Oldenburg buildings into
the three main classes using the four condition state-
ments.

Heating Type

The 2011 German census database includes informa-
tion on the predominant form of heating used in the
building, which presents an opportunity to under-
stand energy supply, demand, and consumption in
a given area. However, the heating type parameter
in the census does not translate into a classification
problem because it only indicates whether a building
is connected to a central or district heating system,
contains Single-storey heating technology, or has at
least one apartment without a heating system. Cen-
tral heating typically refers to a heating system that
is located within a building and serves that building
alone, while district heating is a system that serves
multiple buildings in a local area. It is possible for a



building to be connected to both a central and dis-
trict heating system or to have Single-storey heating
independent of its connection to a central or district
heating system.

To disaggregate the census information for Olden-
burg’s buildings, a GIS-based model is implemented
to visualize the information and correlate which grids
have one or more heating types. The model consid-
ers the census probability of being for each heating
type and decision rules, such as: First, no building
can fall into the no heating class and another class.
Second, all buildings with Single-storey heating or
single/multi-room furnaces will be codependent from
either central or district heating and finally, buildings
with block heating can also be connected to a central
and/or district heating system.

Number of Residents

The quantity of people living in a building signifi-
cantly influences the overall energy demand for both
electricity and heating. For heating, factors such as
building size, insulation, climate, and heating system
type affect the energy demand. For electricity, the
number and types of appliances used, lighting, and
heating and cooling systems affect energy demand.
Therefore, predicting the number of residents in a
building is crucial for designing and managing energy-
efficient buildings. This study uses the census housing
and population datasets. Table 1 shows the classes for
the number of residents per grid cell, indicating the
number of people residing per grid cell.

Training datasets were generated for each building
type class, specifically Single-Family House (SFH),
Multi-Family House (MFH), and Other. Homoge-
neous grid cells of the census data with the same
building type were selected in order to equally dis-
tribute the amount of residents to each one of the
buildings within that grid cell according to the rel-
ative volume proportion of the building (footprint
area and number of storeys). Non-linear relationships
were observed among the dataset attributes, prompt-
ing the selection of an appropriate machine learning
model. XGBoost, which is gradient-boosted decision
tree machine learning algorithm known for its effec-
tiveness with tabular data, was chosen as the final
model.

The model’s objective was to allocate residents per
grid cell to the buildings within heterogeneous grid
cells, considering the proportional building area and
number of storeys. The model takes takes into con-
sideration the amount of buildings within each grid
cell and their geometric characteristics (3D CityGML
LoD2 models), the number of stories of each building
within each grid cell (assuming that each floor is ap-
proximately 3.0 m and the amount of residents at the
grid cell level.

Results

Building age

The building age classification model was trained on
a 70% subset of Oldenburg’s building stock database,
tested on the remaining 30% and cross-validated with
data from Wuppertal and grid cells with a single class
value. The random oversampling method was used
to address the over-classification problem during the
learning phase (Shelke et al. (2017)). With this ap-
proach we achieve an accuracy of 91% for Wupper-
tal buildings alone. However, after adding Oldenburg
data and expanding the learning dataset, the accu-
racy dropped to 84% even after optimization with
the GridSearchCV function. This value is still higher
than the accuracy of other models, because it includes
and learns from the census data, making it a high-
accuracy classification of the building age of build-
ings when no more information is available. Figure 4
shows the main results of the classification model. In
the first place, it shows the importance of the first 12
features using the Mean Decrease in Impurity (MDI)
information gain. The main features for classifica-
tion are building location, height, and the number of
buildings in the same grid cell. The confusion ma-
trix for the final classification of the building age for
the buildings in Oldenburg shows a higher number
of predicted values on the matrix’s diagonal and an
overall accuracy of 84%. An aggregated histogram
per building age class in Oldenburg comparing pre-
dicted values with the aggregated count of the census
data is also shown.
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Figure 4: Results of the RF classification model for
Oldenburg. Left: Feature importance of the model.
Right: Confusion matriz of each possible class for the
building age showing true and predicted labels.

The final results provide a comparison of the aggre-
gated total values. Based on the 2011 census build-
ings and apartments dataset, the municipality of Old-
enburg has 42875 residential buildings, distributed
according to their year of construction as shown in
the green histogram in Figure 5. The red histogram
displays the total sum for each building age class for
the same 42875 demonstrating a high correlation in
the total distribution.

Building form

By implementing four condition statements and ran-
domly assigning building forms while also taking into
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Figure 5: Histograms of the aggregated 2011 building
age census data compared to the building age predic-
tion of the RF model showing a 84% accuracy.

account the probability distribution of each grid cell,
the model can classify all buildings in Oldenburg into
one of three major classes. The histograms in Fig-
ure 6 summarize the main results. According to ag-
gregated 2011 census data, 81% of residential build-
ings in Oldenburg are SFH, approximately 16% are
MFH, and the remaining 2% are other residential
buildings such as garages and small gardens. The
presented model classifies relatively good buildings
between SFH and MFH. However, it misclassifies 8
times more buildings into the class of ‘other’. This is
because the 3D CityGML models includes all of the
buildings within the study area (including the non-
residential like administrative buildings and others)
and the census database focuses only in residential
buildings. Even after filtering the buildings, there
is still significant misclassification, likely because the
3D building models only contain geometry informa-
tion and may lack other relevant parameters beyond
just the building’s geometry.
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Figure 6: Histograms of the aggregated 2011 building
form census data compared to the building form pre-
diction.

Heating type

By applying a GIS-based model, we have correlated
3D building models in Oldenburg with one or more
heating system types. The majority of buildings in
Oldenburg are connected to a central heating type,
meaning that all the residential units in a building

are heated by a central heating point located in-
side the building (usually in the basement). This
is evidenced by almost all of the geographical grid
cells (86.7%) in Oldenburg belonging to this class as
shown in Figure 7. The remaining 13.3% are dis-
tributed among other heating classes. It should be
noted that this represents the total number of grid
cells with this class and not the grid cells with only
this class. While census data trends these classes from
each other (because of data structure similarity with
the other census parameters), our GIS-based model
allocates buildings knowing that this overlapping of
parameters is physically possible. Our model predicts
that a total of 92% of buildings are connected to a
central heating system (see Table 2).

Table 2: Aggregated percentages per class of the 2011
building form census data compared to the heating
type allocation prediction.

Heating Type | Census % | Predicted %
1 1.7 0.8
2 9.6 6.6
3 0.6 0.2
4 86.7 92.0
) 1.0 0.2
6 0.3 0.1

= Central heating
= District heating
= Block heating

Figure 7: GIS visualization of the 100mx 100m grid
cells of the 2011 census heating type parameter for
Oldenburg. Left map shows the area of Oldenburg
where central heating is allocated. Right map shows
where the other classes are allocated.

Single-storey heating
= Single/multi-room furnaces
= No heating

Heating Type

Number of residents

A comprehensive model was constructed by integrat-
ing three separate models, each dedicated to pre-
dicting the number of residents for a specific build-
ing form class (refer to Table 1). To mitigate over-
fitting, a hyper-parameter optimization process was
executed. The model’s accuracy can be evaluated at
the grid cell level, providing a measure of the pre-
cision in predicting the number of residents for each
building within the respective grid cell. The accuracy
of grid cells spans from 10% to 98%, with an average
of 39.8%. Approximately 25% of all buildings were
classified with an accuracy of 80% or higher. The



L1-1-0 BN 10-29 B 60-79

- 1-9 I:I 30 50 Il > 80

g = e ot Rt

¥ LGLN digital image Footprlnts 3D bU|Id|ng models I ?.;“-;\“\\;:Q.\

A ™ 1 = O s I = s % SETTAY =
i % S [ E[D“\lagﬂn ER “ L3R Y . 42

”*%\‘%Eﬁg“’“ﬂ I NG Bﬁfw‘} SIRCHICHER i e

|ﬂ uuuuu 3 Um:nan o) q_-gg”t’ ﬂ g " ﬂnn o lﬂl_:xhhll .ll,,‘!rthf ..'

7 E:: o®0 g ugxi %Muu ﬂ?@ a= 5%0 .- GO 1 \ qu- %e-.m:. &)

A AN TN | & .fﬁ 2l

B T %o UDD%}GG S| BT maige I}},\ Gy LSS

o ST\ WSS 1 | o % WS T

2y I3 5?,7 PG A "'=,’=,'=='Dw = o Ky I é, A ° =

% §i§=o5“"“ B;"\ b g Y fee et 3

ﬂb? 1 i%ag S weeode UQ 2o :~. o= o ‘.‘ |

=g SRR B g oIl R
e W ateemes SEREAVLY e e 1) maeewey SRR s et VU ey
) 8 EE® 1,0 oy S e ) 1 OD° 1o 290, S e

PRRCHLE Beo §EASLATE [ o 4eS T §EAN.4 7 At
FOGE A B U nra b | e e 2, LR s AL
“" lﬂ“.n:“h!-.._lt-:;:uhna &J.;g’wiul..' “’H \ 1hee 2039 5 50 -:—&u;n-a Q:.ﬂi"'f.’ ,J”"5U'..'

y=, 0 o osogy U Cd B mo gy oy 008 B g gy ' o
Iy a@.".__.ﬂ { 2 0ge ,;'?_. YA s u..f.nvgaq,g; ..;,:_s.li
HANGINEL 8 | o e IINE I © e
K -\ o !=E w8 t°f'-\ \\},Ean 1°% Ve !-i
“\ Y ¢ B\ DRI "'

3 i Jrom==\ T\ 2 ¢
~1% :‘” J % 4
SN s, vk

o i la & ol e -

] e Heating type |2 i 5
EFH BE MFH B8 Other [ m3Es0 709 m 1203456
200 400601 80T 10mm

Figure 8: Representation of the results from the different classification models and their visualization into the

respective classes.

Top left: General view of the selected area for Oldenburg using LGLN digital imagery from
the OpenGeoData Niedersachsen (dl-de/by-2-0). Top center: Footprints of the 3D building models.

Top right:

preliminary classification of the number of residents per building (model under development). Bottom left:
Classification of the buildings into the major classes of the building form. Bottom center: Classification of the

buildings into the ten building age classes.

Bottom right: Classification of the buildings into the heating type

classes taking into account that a single building can have multiple heating systems.

performance of the model is closely tied to the ac-
curacy of the building type classification. A better
building type classification will lead to a better pre-
diction of the number of residents. It is important
to note that census data contains a lot of private or
secured data labeled as -1, these were not include
in the models. These grid cells are considered sen-
sitive due to potential discrimination and confiden-
tiality concerns. Examples of sensitive areas include
prisons and rehabilitation centers. The exclusion of
these grid cells ensures the protection of individuals’
privacy and prevents any discriminatory impact.

Table 3: Statistical distribution of the residents of
Oldenburg for building form.

Building Form Share of Residents %
SFH 55.4
MFH 40.8
Other 3.8
Conclusion

The 2011 census database consists of three main
datasets: Population, families and households, and
buildings and apartments, and the data is presented in

the INSPIRE-compliant 100 m grid format with the
highest resolution of 100m x 100m grid cells. This
study investigated 5 different parameters out of these
datasets and created a statistical, machine learning
and GIS-based model in order to disaggregate the in-
formation and classify all buildings within the city of
Oldenburg into the respective classes.

This study showed a RF model for the building age
reaching 84% accuracy. To classify the building form
into the three major classes we developed a statistical
approach that classifies with 81% overall accuracy be-
tween SFH and MFH but when taking into account
the other building types, the model misclassifies 8
times more than expected because of missing infor-
mation in the building 3D models. For the heating
type we used a GIS-based approach and classified all
buildings with the possible combinations of heating
systems, a weighted accuracy of 89% between the real
and predicted aggregated values. For the number of
residents a gradient-boosted decision tree model was
developed showing an overall accuracy of 39%, where
the models are closely related to the building form
classification. A general visualization of the classifica-



tion results for all of the models is found in Figure 8,
where for a specific area of Oldenburg all buildings
are classified into the respective parameters.

In conclusion, census data provides useful informa-
tion that can be used to parameterize building energy
models. This study shows the possibilities of using
statistical, machine learning and GIS-based models
in order to classify buildings and generate a detailed
national building stock while still complying with the
data privacy laws. The results obtained can be en-
hanced by developing a larger machine learning model
that incorporates and learns from more parameters.
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