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Forced motion simulations of an overexpanded subscale rocket nozzle were performed to

investigate the transient mechanisms that lead to self exciting fluid structure interaction as

observed in preceded studies. The pressure response to the deformation could be separated

into two regions upstream and downstream the flow separation position. Within these regions

the transient part of the pressure was analyzed using fast Fourier transform based on the

method of generalized aerodynamic forces. The amplitude spectrum and phase shift distribution

of the pressure response could be explained by superposition of three independently acting

mechanisms, the inclination-effect, the existence of a moving axial pressure wave and intrinsic

oscillations caused by the turbulence created by the strong shock system. Simplified simulation

setups using a bent flat plate and a detailed unsteady simulation of the flow in the undeformed

nozzle were analyzed to validate these assumptions.

Nomenclature

𝑎 = speed of sound

𝑒 = discretization error

𝑓 = frequency

ℎ = mesh cell length scale

𝑙 = length

𝑀 = Mach number
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𝑝 = pressure

𝑅 = local nozzle radius normalized to throat radius 𝑟𝑡

𝑟 = local nozzle radius

𝑆 = running length along the nozzle wall normalized to throat radius 𝑟𝑡

𝑇 = temperature

𝑡 = structure thickness

𝑣 = velocity

𝑋,𝑌, 𝑍 = cartesian coordinates normalized to throat radius 𝑟𝑡

𝛾 = isentropic exponent

Y = expansion ratio

𝜚 = density

Subscripts

a = ambient condition

BL = boundary layer border

e = exit plane

eigen = eigenvalue

FF = farfield

FM = excitation of forced motion

max = maximum value

min = minimum value

norm = normalized value

plateau = plateau value in recirculation area

pw = pressure wave

S0 = transition from stiff to flexible structure

sep = flow separation position

t = nozzle throat

tot = total state

w = nozzle wall

∞ = free stream state
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I. Introduction

Flow separation as well as other asymmetrical effects in rocket engine nozzles can cause severe side loads that

lead to deformation of the lightweight structure and, especially in presence of aeroelastic coupling effects, to

damages and operation conditions critical for the engine and the surrounding structure. Multiple engine failures are

documented where these phenomena were the root cause for launcher mission aborts or redesign campaigns [1–3]. The

separation of the internal flow from the nozzle wall and its main characteristics were therefore investigated in many

research programs. Early programs focused on experiments using scaled, simplified models [4, 5] or measurements on

prototypes of the engine [6]. Data obtained during this mainly experimental phase was widely used for the design and

qualification of engines as summarized by Holland [7]. A fundamentally different approach was proposed by Pekkari

[8] who developed a simplified analytical model to calculate the influence of the nozzle’s deformation and was able to

analyze its aeroelastic stability over a wide parameter range. His model was later extended by other authors [9–12],

but all versions were based on extensive simplifications. In experimental studies and numerical simulations the main

characteristics of the separated supersonic flow in the undeformed nozzle were described and explained in detail during

the following years [9, 10, 13–18]. Various authors have used the increasing simulation and measurement capabilities

to investigate the influence of contour deformation onto the flow [19–21] and vice versa [3, 22]. Transient effects of

fluid-structure interaction (FSI) were intentionally triggered in experiments [23–26], which, due to the complex flow

effects, do not allow for a detailed quantitative comparison with simulation data. With increasing solver capabilities and

numerical resources simulations covering the reciprocal coupling effects in supersonic nozzles became feasible, but

were either described as proof of concept [27, 28] or based on simplified models for the structural domain [29–31].

Detailed analyses, using turbulent scale resolving methods such as detached eddy simulations, have been published e.g.

for shock induced pressure oscillations [32] or launcher tail flow [33] but none of these cover effects caused by transient

deformation of the surrounding structure.

The presented work is part of an ongoing effort to assess and evaluate the capabilities of the computational fluid

dynamics (CFD) solver DLR-TAU to accurately simulate supersonic nozzle flows [34], the influence of deformation

effects [35] and fluid-structure interaction [36]. In addition to the extension of the available methods for multiphysics

simulations, the focus is on the quantitative evaluation of numerical errors and the systematic investigation and

explanation of physical phenomena. As shown previously, experimental validation data for the transient flow phenomena

in a flexible rocket nozzle are challenging to obtain and currently either not available for comparison or significantly

differ in the characteristics of flow and structure. The phenomenological interpretation of the effects found by numerical

simulations, presented in this work, is therefore of additional significance to identify mere numerical effects and assess

their contribution to the system’s characteristics and aeroelastic stability.
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II. Methodology

A. CFD solver

All simulations of the flow within the computational domain have been performed using the DLR-TAU code [37–39].

It is a finite volume solver that solves the unsteady Reynolds-averaged Navier Stokes equations (RANS)

𝜕

𝜕𝑡

∫
𝑉

𝑤𝑑𝑉 +
∮
Ω

𝐹𝑛𝑑Ω = 0 (1)

in each finite cell volume 𝑑𝑉 of the simulation domain 𝑉 . In Eq. (1) 𝑤 denotes the vector of conservative variables

and 𝐹 that of the fluxes over the cells surface Ω with the surface normal vector 𝑛
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(2)

𝐹 =

©«
𝜚𝑣

𝜚𝑣 ⊗ 𝑣 + 𝑝𝐼

𝜚𝐸𝑣

ª®®®®®®®¬
−

©«
0

𝜎

𝜎𝑣 + _∇𝑇

ª®®®®®®®¬
(3)

where 𝜚 is the density, 𝑣 the velocity, 𝐸 the energy and 𝑇 the temperature of the fluid. The stress tensor 𝜎 is

calculated from the local velocity gradients and the fluid’s viscosity `.

𝜎 = ` (∇ ⊗ 𝑣 + 𝑣 ⊗ ∇) − 2
3
` (∇ · 𝑣) 𝐼 (4)

Because of the experimental setup [40] and the results of preceding simulations [36] the perfect gas fluid model was

used for which the following equations of state apply.

𝑝 = 𝜚𝑅𝑇 (5)

𝐸 = 𝑐𝑝𝑇 + 1
2
(𝑣 · 𝑣) (6)

The viscosity of the fluid was modeled by the Sutherland equation (Eq. (7)). For the heat conduction a constant

Prandtl number Pr was used as shown in Eq. (8).
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` = `ref
𝑇ref + 𝐶
𝑇 + 𝐶

(
𝑇

𝑇ref

) 3
2

(7)

_ =
`𝑐𝑝

Pr
(8)

𝑐𝑝 = 𝑅
𝛾

𝛾 − 1
(9)

To enable simulations of turbulent flows without resolving all time- and length-scales, the Favre averaging of

the primitive variable Φ is introduced, that decomposes its instantaneous local value into an averaged part Φ̃ and a

fluctuating part Φ′′.

Φ = Φ̃ +Φ′′ (10)

with Φ̃ =
𝜌Φ

𝜌
(11)

Φ (𝑥, 𝑡) = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑖=1

Φ𝑖 (𝑥, 𝑡) (12)

Introducing the described averaging into the system of conservation equations, the flux density vector is extended by

the turbulent part 𝐹𝑡 .

𝐹𝑡 =

©«
0

𝜎𝑡

�̃�𝜎𝑡 − 𝑐𝑝 `𝑡
Pr𝑡 ∇𝑇

ª®®®®®®®¬
(13)

with 𝜌𝜎𝑡 = 𝜌𝑣
′′ ⊗ 𝑣′′ (14)

𝜌�̃� =
1
2
𝜌 (𝑣′′ · 𝑣′′) (15)

`𝑡 = 𝜌
�̃�

𝜔
(16)

A constant turbulent Prandtl number Pr𝑡 was used in all simulations. For the turbulent Reynolds stresses 𝜎𝑡 the

transport equation Eq. (17) based on the findings by Rotta [41], derived by Launder et.al. [42] and extended for the

diffusion terms by Daly and Harlow [43] is being used ∗.
∗For better readability the transport equations are written in index notation using the Einstein summation convention and the Kronnecker-delta

𝛿𝑖 𝑗 .
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The production term Eq. (17b) can be calculated directly from the velocity gradients. With the assumption of local

isotropic turbulent length scales the dissipation term Eq. (17c) can be calculated using the dissipation rate 𝜔 as given in

Eq. (18) [41]. As proposed by Chou [44] the pressure strain correlation in Eq. (17d) and Eq. (17g) is modeled using the

Poisson equation Eq. (19). The turbulent velocity fluctuations in Eq. (17e) are modeled using the generalized gradient

diffusion hypothesis Eq. (20) by Daly and Harlow [43].
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The characteristic turbulent scale 𝜔 is modeled using the baseline 𝜔-equation by Menter [45].

𝜕𝜌𝜔
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+ CD𝜔 (21)
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The constants 𝛾𝜔 , 𝛽𝜔 , 𝜎𝜔 and the cross diffusion term CD𝜔 are implemented as published by Menter in [45]

(A2-A10). In the presence of strong shocks the original formulation of the turbulence model tends to drastically

overestimate the production of turbulent stresses. Correction factors, calculated from the Mach number 𝑀 and turbulent

Mach number 𝑀𝑡 upstream the shock, are therefore used for the turbulent quantities as described in detail by Karl et. al.

in [46]. The calculation of these factors require a shock sensor, which is implemented in DLR-TAU evaluating the local

pressure gradient.

𝐾𝑃 = 1 − max
[
0; 0.63

(
2 − exp

(
1.2𝑀

)
− exp

(
0.02𝑀

))]
(22)

𝐾Π = 𝐾𝑃; 𝐾𝜔 = 𝐾
1
6
𝑃

(23)

with 𝑀 = 1 − (𝑀 − 𝑀𝑡 ) (24)

For the flux vector splitting in space an upwind scheme and gradient reconstruction, to achieve second order accuracy,

were used. The second order accurate dual-time-stepping scheme by Jameson [47] was applied for time integration.

B. CSM solver and interpolation

To obtain the shape of the deformed nozzle structure, the modal analysis solver of the commercial software MSC

Nastran was used.

The software uses the total Lagrange formulation of the kinematic relations of the solid body in its reference state

𝑥0. Together with the derived displacement tensor 𝐷 and the derived deformation gradient, the Green-Lagrange strain

tensor 𝜖 and the stress tensor 𝜎 are being formulated based on Hooke’s law and linear elastic material properties, where

_ and ` are the Lamé coefficients calculated from the Young’s modulus 𝐸 and the Poisson’s ratio a.

𝐹 =
𝜕𝑥

𝜕𝑥0
= ∇0𝐷 + 𝐼 (25)

𝜖 =
1
2

(
𝐹𝑇𝐹 − 𝐼

)
(26)

𝜎 = tr(𝜖)_𝐼 + 2`𝜖 (27)

with _ =
a𝐸

(1 + a) (1 − 2a) (28)

` =
𝐸

2(1 + a) (29)

For an arbitrary but valid variation of the displacement tensor 𝛿𝐷 the conservation law for the control volume 𝑉

with the border Ω is
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∫
𝑉

𝜚
𝜕2𝐷

𝜕𝑡2
𝛿𝐷𝑑𝑉 +

∫
𝑉

𝜎

𝛿𝜖
𝑑𝑉 =

∫
𝑉

𝑏𝛿𝐷𝑑𝑉 +
∫
Ω

𝑠𝛿𝐷𝑑Ω (30)

where 𝑏 denotes the internal volume specific forces of the system and 𝑠 the Neumann boundary condition applied as

stresses to its border Ω.

By the method of finite elements and according shape functions for each control volume the conservation law can be

reduced to the following discrete formulation of an initial boundary value problem containing only the system’s mass

matrix 𝑀 , the displacement tensor 𝐷, the material damping 𝑑 and the internal (int) and external (ext) forces 𝑓 .

𝑀
𝜕2𝐷

𝜕𝑡2
+ 𝑑 𝜕𝐷

𝜕𝑡
+ 𝑓int (𝐷) = 𝑓ext (31)

By neglecting structural damping and external forces the structure’s eigen shapes and corresponding frequencies can

directly be derived from Eq. (31) by calculating its eigenvectors and eigenvalues. For the temporal discretization of

Eq. (31) the integration scheme proposed by Newmark [48] was used to reduce the dimensions of the system which was

then solved by application of the generalized-𝛼 method proposed by Chung and Hulbert [49].

The resulting local distribution of the displacement data was interpolated to the CFD mesh using radial basis

functions. A detailed description of the used interpolation method, including its numerical validation, has been published

by Spiering et. al. [50]. To ensure a conservative wall thickness of the thin nozzle structure, the displacement vector of

the outer wall boundary was reconstructed based on the interpolation results on the inner wall and the local deformed

coordinate gradients for each node on the outer wall boundary of the CFD mesh.

III. Test case
Figure 1 shows a radial cross section of the rotational symmetric simulation domains. The geometry used for

this investigation is a truncated ideal contour (TIC) nozzle with a throat radius of 𝑟𝑡 = 10 mm, an expansion ratio of

Y = 18.47 and a maximum Mach number of 𝑀 = 5.3 using cold nitrogen (𝑇𝑡𝑜𝑡 = 300 K) as working fluid. It is designed

to be full flowing for a nozzle pressure ratio of NPR = 𝑝tot/𝑝a = 50.

Table 1 Fluid properties

isentropic exponent 𝛾 1.4
specific gas constant 𝑅 296.8 J kg−1 K−1

reference viscosity `ref 1.663 × 10−5 Pa s
reference temperature 𝑇ref 273 K
Sutherland constant 𝐶 107 K
Prandtl number Pr 0.72
turbulent Prandtl number Pr𝑡 0.9
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Fig. 1 Sketch of the numerical simulation domains and boundary conditions

The CFD domain used for all nozzle simulations described in the following sections is shown above the dashed

symmetry line in Fig. 1. It has been cropped for better visibility, because the original size of the surrounding farfield

is extended to a radius of 𝑟FF = 50 𝑟𝑡 and a downstream length of 𝑙FF = 100 𝑟𝑡 . At the nozzle inlet the total state of

the fluid is prescribed by the boundary condition (here 𝑇tot = 300 K and 𝑝tot = 3.0 MPa). The velocity is set to be

perpendicular to the cell faces and its magnitude is calculated assuming an ideal isentropic expansion to the adjacent

cells’ static conditions (reservoir-pressure inflow). All walls have been modeled using adiabatic viscous wall boundary

conditions, thus applying a no-slip condition that sets the local fluid velocity to that of the, possibly moving, wall (zero

in all cases of no transient deformation) and the wall-normal heat flux to zero. All simulations of the flow within the

nozzle were performed on a hybrid mesh of the full 360◦ three-dimensional geometry to avoid symmetric effects forced

by internal boundary conditions. The mesh used for all simulations contains approximately 9.5 million nodes.

In the part below the dashed symmetry line Fig. 1 shows a sketch of the structural domain. The structure of the

nozzle is represented by a rotational symmetric thin geometry (solid line) that is clamped, i.e. fixed in all six degrees

of freedom, at 𝑋S0. Downstream the clamping position the model is free to move and loaded by the forces caused by

the surrounding fluid. For all simulations the flexible part of the structure was represented by a mesh consisting of

thin quadrilateral shell elements as described by MacNeal [51]. The mesh consists of 17 820 shell elements and was

originally designed to simulate fluid structure interaction in the nozzle. Upstream the interface point at an expansion ratio

of YS0 = 5, i.e. 𝑅S0 =
√

5 at 𝑋S0 = 3.08, the walls are considered ideal stiff because in realistic engine configurations this

region is usually manufactured out of solid metal to house the required cooling system. To scale its structural behavior

and ensure the material parameters lie within a realistic range to manufacture, a quasi-isotropic glass-fiber reinforced

plastic laminate with a fiber volume ratio of 43 % is used as material for the nozzle’s structure. It has an elastic modulus

of 𝐸 = 2 × 1010 Pa, a Poisson’s ratio of a = 0.18 and a density of 𝜚 = 2100 kg/m3 [52]. For more information on the

scalability considerations of the structural model see [36].
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IV. Discretization error

A. CFD domain

The influence of the spatial resolution of the fluid domain onto the relevant flow quantities has been evaluated using

the method proposed by Roache [53]. A coarse and fine mesh have been created by scaling all cells edge lengths with a

factor of ℎrel = 1.5 and ℎrel = 1/1.5 (table 2).

Table 2 Mesh properties

mesh index ℎrel number of nodes
coarse 1 1.5 3.1 × 106

reference 2 1.0 9.5 × 106

fine 3 1/1.5 31.0 × 106

From the results calculated on all three meshes the separation position 𝑥sep and the average pressure downstream the

separation line 𝑝plateau have been extracted to calculate the error as shown in Eq. (32).

𝑒12 =

�����𝑞2 − 𝑞1

1 − ℎ𝑝rel

����� (32)

Herein 𝑞 is the chosen integral flow characterizing quantity (𝑥sep or 𝑝plateau), ℎrel = 1.5 the constant refinement

factor and the indices 1, 2 and 3 mark the coarse, medium and fine mesh. Along discontinuities the CFD solver reduces

the order of spatial gradient calculation to one, to ensure numerical stability, 𝑝 = 1.75 has therefore been used for

the order of convergence as proposed for the DLR-TAU code and evaluated by Rakowitz [54]. For better evaluation

relative errors have been calculated by means of characteristic scales. Because the absolute extrapolated value of the

separation position depends on the choice of the coordinate system’s origin and is therefore not suited for normalization,

the nozzle’s divergent length has been used as characteristic length scale for calculation of the relative errors. The

relative error of the plateau pressure has been calculated with regard to the extrapolated estimate of the exact solution.

Figure 2 shows the discretization error calculated for the separation position. For the chosen mesh (ℎrel = 1) and all

pressure ratios it has a maximum value of 10.97 mm, or 9.33 % of the divergent nozzle length. It should be noted that,

for NPR = 40 and the coarse mesh, the separation line lies close to the nozzle exit and the recirculation of the outer fluid

suppresses further downstream movement. This results in an underestimation of the error.

The discretization error calculated for the plateau pressure is shown in Fig. 3. For the chosen mesh (ℎrel = 1) and all

pressure ratios it has a maximum value of 8571 Pa, or 9.1 % and decreases significantly with decreasing NPR. For large

pressure ratios and coarse meshes the plateau region becomes smaller, as described earlier, resulting in steeper pressure

gradients and thus larger values of the errors.

All following simulations use a pressure ratio of NPR = 30 for which the error estimation yields 7.7 % using the
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Fig. 3 Error in plateau pressure 𝑝plateau over mesh refinement scale ℎrel

separation position and 0.2 % using the plateau pressure.

B. CSM domain

For assessment of the spatial discretization error of the structural domain, a fine mesh has been created by scaling

all mesh cells’ length scales with a factor of ℎrel = 1/4. Eq. (32) was used to calculate the discretization error with the

eigen frequency of the first four eigenmodes as characteristic quantity 𝑞 and an order of convergence of 𝑝 = 1 due to the

linear shape function of the used elements. The error has a maximum value of 2.89 × 10−2 Hz, or 1.58 × 10−3 % at the

fourth eigenmode. The maximum difference in the local displacement vector norm calculated on the used relative to the

fine mesh is 0.133 %.

V. Forced motion nozzle simulations
As a first step to analyze the transient flow and its effects onto the dynamic stability of the coupled system, forced

oscillation simulations of the nozzle have been carried out. This methodology has been developed and used widely in

application to panel and wing flutter stability analysis (see. e.g. the work by Dowell or Muhlstein [55, 56] or more

recent applications to panels in transsonic flow by Lübker et. al. [57] and especially the detailed numerical work by
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Alder [58]). Preceding two-way coupled simulations of the fluid-structure interaction in the nozzle have shown that, in

case of unstable system parameters, the nozzle structure tends to oscillate in the shape of the eigenmode with the lowest

eigenfrequency. Higher structural frequency oscillations are either not excited or damped throughout the simulation

time. The main coupling process that determines energy transfer from the fluid to the structure, and vice versa, is

therefore closely related to the so called single-mode flutter.

A. Mean flow field

Figure 4 shows the results of the CFD simulation in a radial cross section through the nozzle simulation domain.

Because the nozzle was designed to be full flowing at an inlet pressure of 𝑝tot = 5.0 MPa the fluid expands to supersonic

velocities and, due to the overexpansion, separates from the nozzle wall at 𝑋sep = 8.1. Close to the flexible nozzle wall,

the flow field can therefore be divided into two generally different regions. Upstream the separation position (marked

with 1 in Fig. 4) the flow outside the boundary layer is supersonic and further expanded in downstream direction. An

inclined shock forms at the separation line, which can be identified by the high density gradient shown in the lower half

of the contour plot of Fig. 4). Downstream this separation shock, the fluid surrounding it is sucked into the nozzle

forming a recirculation region (marked with 2 in Fig. 4 and recognizable by the stream traces in its lower half). A

strong vertical shock (the Mach disk) forms in the nozzle’s center.

The aforementioned effects cause the wall pressure to decrease continuously in the attached region ( 1 in Fig. 4) to

a value of 𝑝sep = 0.24 𝑝𝑎 at the separation position. A steep gradient is then induced by the separation shock. Further

downstream the pressure reaches a value of 𝑝 ≈ 0.9 𝑝𝑎 in the recirculation region ( 2 in Fig. 4). These flow patterns

match the descriptions of separated nozzle flows [9, 10, 59] and have been validated by comparison to experimental data

[34, 35, 40].

B. Shape and frequency of the eigenmodes

For the forced motion analysis the nozzle’s eigenmodes with the lowest eigenfrequency were used. Figure 5 shows

the shape of the first three eigenmodes (isometric view and solid lines) together with the shape of the undeformed

nozzle (dashed lines). In the upper part it shows an isometric view of the respective mode, colored by the local radial

displacement normalized to its global maximum value (Δ𝑅norm = Δ𝑅/Δ𝑅max). Because the modal analysis of the

structure returns the mode shapes as eigenvectors of the mechanical systems and their frequencies as its eigenvalues, the

absolute value of the returned displacement vectors have no physical representation. The displacements in Fig. 5 were

therefore scaled to have a maximum of 30 % of the nozzle’s exit radius 𝑅e for good visibility.

The three modes with the lowest eigenfrequencies 𝑓eigen are the bending (Fig. 5a), oval (Fig. 5b) and triangular (Fig.

5c) shaped ones. Because a bent nozzle shape has not been observed in the previously performed coupled simulations

it was excluded from the presented investigation. Figure 6 shows the eigenfrequency of the mentioned eigenmodes
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Fig. 5 Shape of the eigenmodes (solid lines) and the undeformed nozzle (dashed lines)

as a function of the wall thickness 𝑡𝑤 of the structure. As expected, each mode’s eigenfrequency rises with the wall

thickness. Because of the different gradient of this increase, the mode with the lowest eigenfrequency changes from the

triangular to the oval one in the vicinity of 𝑡𝑤 = 0.95 mm. None of the eigenmodes can therefore be rated the one with

the smallest eigenfrequency in the relevant wall thickness range, because this value is close to the stability border of the

coupled system. The oval and triangular shaped modes were thus both investigated in the forced motion analysis. For

the simulations the frequency has been varied in a range from 𝑓min = 1 Hz, to cover the regime with low influence of

inertia effects, to 𝑓max = 1 kHz which is sufficiently larger than the eigenfrequencies and those of the main displacement

patterns observed in the coupled simulation. The frequency of 𝑓FSI = 526 Hz was of particular interest, because it was

the dominant one in the coupled system.
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C. Dynamic excitation and post-processing

During the simulations the earlier described eigenmodes have been applied to the nozzle structure in a sinusoidal

distribution over time with a maximum radial displacement of Δ𝑅max = 1 % 𝑅e to ensure the flow response to the

excitation can be measured and is also well within the linear region. The time step has been set to a maximum of

Δ𝑡max = (100 𝑓FM)−1 to resolve the dynamic flow features and lowered when necessary for numerical stability. To

ensure initial effects are propagated through the flow field, the first five periods have been ignored in the data analysis.

Following this initialization, at least five, for the excitation frequencies larger than 100 Hz ten, excitation periods have

been simulated and processed to also capture effects with frequencies significantly lower than the excitation itself.

D. Pressure response

The forced oscillation of the nozzle’s shape leads to a dynamic pressure response at its wall. Figure 7 shows the

spectrum of the wall pressure amplitude 𝑝𝑤 at three axial positions in the attached region (black, 𝑋 = 6) close to the

separation line (red, 𝑋 = 8) and in the recirculation region (blue, 𝑋 = 9). The shown data have been obtained from the

results of a forced motion simulation of the oval mode shape excited with 𝑓FM = 100 Hz by a fast Fourier transform. In

the attached region (𝑋 = 6 and 𝑋 = 8) the pressure response amplitude spectrum shows distinct peaks at the excitation

frequency (normalized frequency of 𝑓norm = 𝑓 / 𝑓FM = 1, marked with a dashed vertical line) and each of its whole

number multiple. For the excitation frequency the amplitude is about two orders of magnitude larger than those of the

higher harmonic contributions. This spectrum is what one would expect to observe for a flow that is forced to follow the

oscillating wall shape.

Within the recirculation region (𝑋 = 9) the pressure amplitude shows no notable peak but a broad distribution. At

low frequencies ( 𝑓 < 200 Hz) the amplitude has a nearly constant value of 𝑝𝑤 ≈ 350 Pa. The amplitude then decreases

with increasing frequency prior to the second plateau beginning at approximately 𝑓 = 1 kHz with values 𝑝𝑤 < 1 Pa.

In this region the flow’s behavior seems to be independent from the external excitation but caused by an intrinsic
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The concept of generalized aerodynamic forces is being used to assess the influence of the dynamic pressure response

to the overall system stability which is the main focus of this work. By application of a Laplace transform, the pressure

response signal can be divided into its real and imaginary part. Theoretical investigations show that the imaginary part

ℑ(𝑝𝑤) = 𝑝𝑤 sinΔΦ𝑝 is a measure of the dynamic stability contribution (for detailed information and derivation see

chapter 3.5 of [60] or [58]). Aside from the aforementioned pressure amplitude 𝑝𝑤 the phase shift between the external

excitation mechanism (here: displacement of the nozzle wall) and the pressure response ΔΦ𝑝 is of notable concern.
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Fig. 8 Pressure phase shift ΔΦ𝑝 over axial position for oval mode excited with 𝑓FM = 100 Hz at circumferential
position of maximum radial displacement

Figure 8 shows this phase shift for the excitation frequency ( 𝑓norm = 1) at the circumferential position of the

maximum radial displacement. Because the pressure response in the recirculation region ( 2 ) is unrelated to the

excitation, the phase shift distribution there is of little informative value. In the attached region ( 1 ), the phase shift

shown in detail in the upper part of Fig. 8 is close to 𝜋 which is what one would expect for the pressure distribution

within a supersonic nozzle. A change in the local nozzle wall radius causes a counter-acting change in the local wall

pressure due to the changed wall inclination (see [61] for a more detailed description). In the following this mechanism
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will therefore be referred to as the inclination-effect. The axial gradient of the phase in this region is non-zero but almost

constant and is imposing the inclination-effect. This indicates the existence of a superposing axial wave that is being

generated at the clamping point of the structure (𝑋S0) and moves downstream. All of the phenomena described so far

can be observed in the data obtained from the forced motion simulations applying the oval (ova) and triangular (tri)

shaped eigenmodes for the whole frequency range.

To examine the influence of the pressure phase shift in more detail, the function shown in Eq. (33) was fitted to the

data in the attached region.

ΔΦ𝑝 =
𝜕ΔΦ𝑝

𝜕𝑋
(𝑋 − 𝑋S0) + ΔΦ𝑝0 (33)

Figure 9 shows the function’s coefficients obtained by this fit over the excitation frequency (symbols) and a linear

regression line for each mode shape and coefficient (solid and dashed lines).
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The intercept of the pressure phase, ΔΦ𝑝0 shown in Fig. 9b, tends to 𝜋 for low excitation frequencies as expected by

explanation of the inclination-effect earlier. With rising excitation frequency the value decreases nearly linearly. This

linear frequency dependent effect indicates the existence of an inertia effect.

The axial gradient of the phase shift, 𝜕ΔΦ𝑝/𝜕𝑋 shown in Fig. 9a, tends to zero for low excitation frequencies, has a

positive frequency gradient and also follows the linear regression line quite well. This behavior matches the assumption

of the existence of a downstream moving pressure wave. When the flexible nozzle extension deforms, the wall-normal

part of the deformation causes a change of the wall’s curvature in the vicinity of the clamping position S0, which leads
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to a local deflection of the flow and thus, due to the supersonic velocity, either an additional expansion or compression,

depending on the curvature change’s sign. For the applied harmonic oscillation of the oval and triangular eigenmode

this mechanism leads to an oscillating pressure disturbance located in the boundary layer that acts as a source for the

axially moving pressure wave. Assuming an ideal gas, the velocity at which the wave, moves downstream (𝑣pw) can be

calculated from the convective (𝑣∞) and the sonic velocity (𝑎) as shown in Eq. (34).

𝑣pw =
2𝜋

𝜕ΔΦ𝑝

𝜕𝑋

𝑓 (34)

= 𝑣∞ + 𝑎 (35)

= 𝑣∞ +
√︁
𝛾𝑅𝑇 (36)

Because of the strong expansion of the flow inside the nozzle, the temperature 𝑇 as well as the farfield velocity 𝑣∞

(here: the velocity at the boundary layer border) depend on the axial position. The wave propagation velocity 𝑣pw is

therefore also position dependent. Figure 10a shows the fluid’s velocity extracted from the steady state initial solution

at a constant wall distance of 𝑑𝑤 = 1 mm. Together with the local fluid temperature along the same line, the wave

propagation velocity in the boundary layer vicinity can be calculated (𝑣pw shown in Fig. 10c). In the region of interest,

between the pressure disturbance source located at 𝑋S0 and the end of the attached region at 𝑋sep, the wave propagation

velocity shows a slight increase which can explain the rising gradient of the phase shift shown in Fig. 8.
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Fig. 10 Velocity profiles and boundary layer thickness for mean flow field in the nozzle
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This estimate of the local wave propagation velocity is based on the assumption that the fluid’s state at a wall

distance of 𝑑𝑤 = 1 mm is defining its boundary layer properties. To support this assumption the velocity profile at 𝑋S0

normal to the nozzle wall is shown in Fig. 10b. At a wall distance of 𝑑𝑤 = 1 mm the fluid has indeed reached a velocity

plateau, but the chosen distance also seems close enough to the highly accelerated part of the boundary layer. Figure

10d shows the boundary layer thickness over the running length along the nozzle’s inner wall normalized to the throat

radius (𝑆𝑤). It has been obtained from the flow field by application of the widely-used criterion of 𝑣BL = 0.99 𝑣∞ with

𝑣∞ = 𝑣 (𝑑𝑤 = 1 mm). According to this data the boundary layer thickness lies close to but within the selected wall

distance of 𝑑𝑤 = 1 mm within the complete attached region.

Based on the findings described so far the following assumptions for explanation of the observed effects are made.

The pressure response to the deformation excitation in the attached region is dominated by the inclination-effect

(assumption A1). A superposing axially moving wave is generated at the position of the flexible nozzle manifold and

moves downstream near the wall (assumption A2). The pressure response in the recirculation region is independent of

the excitation and intrinsic to the flow structure within the highly overexpanded nozzle (assumption A3).

Assumption A1 has been explained earlier and also fits the behavior of flat plates and wings being displaced by

aerodynamic loads in supersonic flow regimes. To verify A2 and A3 simplified simulation setups have been created to

allow for a more detailed investigation. These will be described in the following sections.

VI. Bent flat plate
To support assumption A2 made in section V.D simulations of the flow over a bent flat plate have been carried

out. The aim of these simulations was to check whether the axially propagating pressure wave can also be observed

in simplified simulations of higher resolution using a similar numerical setup. Quantitative data for the properties of

the wave can be obtained and compared with those of the nozzle simulations, due to the simplification, especially the

constant free stream conditions.

A. Simulation setup

Figure 11 shows a sketch of the two-dimensional computational domain used for all simulations described in this

section. The sketch is to scale in axial direction but has been cut in wall normal direction for better visibility. From the

left the flow enters with the free stream condition equivalent to that at 𝑑𝑤 = 1 mm and 𝑋S0 within the nozzle simulations.

The applied farfield boundary condition is also given in table 3. Upstream the viscous walls an inviscid wall was

placed to avoid numerical instabilities due to the contact of the farfield and viscous wall boundary condition. To achieve

a boundary layer thickness similar to that observed in the nozzle simulations the length of the viscous wall boundary

upstream the plate’s joint was adapted accordingly. During the simulations a deflection angle \ = \̂ sin (2𝜋𝑡 𝑓FM) has

been applied to the downstream part of the plate using the same interpolation and deformation methods as in the nozzle
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Fig. 11 Sketch of the numerical simulation domains and boundary conditions for the flat plate simulations

simulations. A preliminary study using different deflection amplitudes (\̂ = 0.5◦, 1◦, 5◦) has shown that the chosen

value of one degree causes measurable effects in the system’s pressure response which are well below the level of

non-linearity. All simulations have been carried out using a physical time step size of Δ𝑡 = 1 × 10−6 s.

Table 3 Farfield boundary condition

velocity 𝑣∞ 630 m s−1

pressure 𝑝∞ 1.0006 × 105 Pa
temperature 𝑇∞ 113 K
Mach number 𝑀∞ 2.907

B. Pressure response

The pressure response amplitude spectrum for a simulation of the flat plate setup with an excitation frequency of

𝑓FM = 100 Hz at three positions is shown in Fig. 12. The three positions along the moving plate shown in the figure

correspond to nodes close to the joint (black, 𝑥 = 1 mm) and two positions further downstream that are within the same

range as the nozzle attached region’s length (red, 𝑥 = 10 mm and blue 𝑥 = 50 mm). Similar to the pressure amplitude

spectrum obtained from the nozzle simulation and shown in Fig. 7, the amplitude of the excitation frequency (marked

with a dashed line) shows the highest value whereas the peaks for the whole number multiples are distinct but have

much lower values that significantly decrease with increasing frequency. The reduced simulation setup seems to well

reproduce the pressure response observed in the nozzle simulation.

For an inviscid fluid and a sufficiently low frequency the expected pressure wave’s amplitude can be calculated

analytically from the flow deflection by using the relations for a Prandtl-Meyer expansion fan and an oblique shock

wave. With these assumptions, the flow conditions given in table 3, and a deflection of ±1◦, an expected amplitude of

the pressure wave of 7.57 × 103 Pa can be calculated. The best agreement with the made assumptions is expected for

low excitation frequencies, i.e. quasi-stationary conditions, and positions sufficiently far downstream of the plate’s joint

and lambda shaped shock system. For an excitation frequency of 𝑓FM = 100 Hz and an axial position of 𝑥 = 50 mm the

difference of the amplitude obtained by the Fourier transform and the analytical reference value is as low as 1.1 %.
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Fig. 12 Pressure amplitude 𝑝 spectrum for flat plate excited with 𝑓FM = 100 Hz

To further support assumption A2 of a downstream moving axial wave the phase shift ΔΦ𝑝 over the axial position 𝑥

along the plate is shown in Fig. 13 for different excitation frequencies 𝑓FM. For the lower frequencies the phase shift

follows a linear distribution, as one would expect for a downstream moving pressure wave with constant velocity 𝑣pw.

The phase shift’s gradient of the results with 𝑓FM = 2 kHz decreases with increasing running length. This effect is

caused by the limited pressure disturbance propagation velocity. For the highest frequencies investigated the wall’s

velocity becomes significantly large when compared to the speed of sound in the fluid. The pressure fluctuation leads to

a compression of the fluid because it can not be emitted to the farfield fast enough. All large scale deformation effects

observed in the unstable coupled nozzle simulation have characteristic frequencies much smaller than this value. The

described effect is therefore of little significance for the further investigation.
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Fig. 13 Pressure phase shift ΔΦ𝑝 over axial position for flat plate

To obtain the wave propagation velocity from the phase shift distribution, function Eq. (33) has been fitted to the

data shown in a range of 𝑥fit = [0, 10 mm]. With Eq. (34) the wave propagation velocity can then be calculated, which

is shown in Fig. 14b for all excitation frequencies. For the flat plate with constant farfield boundary conditions the

pressure disturbance velocity can be calculated from the convective velocity and the speed of sound. For the vicinity of

the boundary layer (𝑧 = 1 mm) this velocity has been calculated from the flow field for a snapshot of the simulation with
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𝑓FM = 100 Hz at maximum displacement of the plate and is shown in Fig. 14a. The lambda shaped shock root at the

plates joint causes a delayed drop of this velocity. Downstream the shock the propagation velocity is further decreased

due to viscous effects and the aforementioned compression of the fluid by the moving plate. The wave propagation

velocity obtained from the pressure response phase shift complies well with the expected downstream propagation speed.
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Fig. 14 Wave propagation velocity 𝑣𝑝𝑤 as obtained from a) the boundary layer vicinity b) the linear fit to
pressure phase shift

The pressure response of the bent flat plate simulation setup shows good agreement with the explanation by the

existence of a downstream moving axial pressure wave originated at the plates joint. Because the characteristics of the

pressure response are similar to those observed in the nozzle simulation data and the setup and boundary conditions

have been chosen to be as close to the original ones as possible, this also supports assumption A2 made in Sec. V.D.

VII. Intrinsic oscillations
Using the same mesh and boundary conditions as in the forced motion setup, an unsteady CFD simulation without any

deformation, or other external excitation, was performed to investigate self excited oscillations and support assumption

A3 made in Sec. V.D. A physical time step size of Δ𝑡 = 1 × 10−5 s has been chosen. Further decreasing the time step

showed no effect onto the results discussed in this section, but significantly increases the numerical effort needed to

supply enough data to resolve the low frequency range by a fast Fourier transform. Figure 15 shows the spectrum of the

pressure 𝑝𝑤 at three axial positions in the attached region (blue, 𝑋 = 6) and two in the recirculation region (red, 𝑋 = 9

and black, 𝑋 = 10). The shown data have been collected from nodes with an angular distance of 5◦ around the whole

perimeter, because in the rotational symmetric geometry the flow patterns have no distinct orientation in circumferential

position.

The pressure amplitude spectrum shown in Fig. 15 shows very low values over all frequencies for the attached

region (blue) comparable to the plateau value between the peaks of the harmonics observed in the forced motion

simulations shown in Fig. 7. In the recirculation region (black, red) the amplitude is significantly higher and also

comparable to the aforementioned forced motion case. The spectrum shows a plateau up to a frequency of approximately
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Fig. 15 Pressure amplitude 𝑝 spectrum for undeformed nozzle in attached (blue) and recirculation region
(black, red)

200 (𝑋 = 9, black) to 500 Hz (𝑋 = 10, red) and an exponential decrease for higher frequencies. This distribution

complies well with experimental data for separated supersonic nozzles, the typical shape obtained from turbulent

structure theory and semi-empirical models [62–64]. The turbulence generated over the separation shock causes the

fluctuations that develop in the fluid downstream. In addition to the pressure amplitude obtained by a Fourier transform,

the frequency of the lowest eigenfrequency of the unstable structure 𝑓eigen,min is marked in Fig. 15 by a dashed vertical

line. The marked frequency is close to the transition from constant to lowering amplitude values, indicating that the

lowest eigenfrequencies of the structure are affected the most by the fluctuations in the recirculation region. Although

the described fluctuations are not harmonic and show no constant or clearly frequency dependent phase but are best

characterized as noise, they still might excite a local initial deformation that propagates and increases over time when

applied to flexible structures. The shown amplitude spectrum facilitates the excitation of the deformation modes with

the lowest eigenfrequencies of the structure.

It should be noted that the used numerical model is not capable to resolve the highest frequencies shown in the

pressure amplitude spectrum. Because of the spatial resolution and the applied turbulence model, fluctuations with

small length scales and high frequencies are either resolved incorrectly or modeled within the equations. However, the

resulting transient loads are nevertheless applied to the structures FEM model and contribute to the coupled systems

overall stability. The effect of this unphysical numerical contribution is small when compared to that of the inclination-

or the wave-superposition-effect due to the small amplitude.

For all frequencies and positions the amplitude spectrum of the undeformed nozzle complies well with that of the

forced motion simulations. This supports assumption A3 because no external excitation has caused these fluctuations in

the simulation discussed in this section.
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VIII. Conclusion
Forced motion simulations applying the eigenmodes of the subscale model of a rocket engine nozzle were carried

out to understand the self-exciting mechanisms of fluid-structure interaction in an overexpanded subscale cold gas

rocket engine nozzle. In the attached region, upstream the flow separation, the external excitation leads to a harmonic

oscillation of the wall pressure. For low excitation frequencies the phase shift of the pressure response indicates that this

region damps the transient deformation. The distribution of this phase shift is of particular interest because it is close to

a value of 𝜋 which indicates the transition from a damping to an exciting mechanism and shows a frequency-dependent

gradient in axial direction. It could be shown that, additional to the expected standing wave created by the inclination

change of the wall, a pressure wave is created at the flexible structure’s interface and moves downstream along the

nozzle wall. Additional simulations using a simplified bent flat plate simulation setup support this explanation and

verify that the wave propagation velocity complies with the information propagation velocity in the fluid. Downstream

the flow separation and the shock system the transient pressure response is mostly independent of the external excitation

mechanism. The observed intrinsic oscillation in this recirculation region can be best characterized as a broadband

noise caused by the turbulence created by the shock system. Although the transient part of the pressure response in this

region does not affect an external excitation directly, it is strongest in the range of the lowest structure eigenfrequencies

and can act as initial deformation mechanism for fluid structure interaction.

All of the described mechanisms have the strongest effect for low frequencies. Overall this facilitates the development

and dynamic excitation of a displacement in the shape of the nozzle’s eigenmode with the lowest eigenfrequency as

observed in a preceding numerical investigation.
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