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ABSTRACT 
Green space (GS) is a crucial resource in urban areas, but not spa
tially uniformly distributed. We compare the availability of GS on 
a national scale using green land cover (GLC) and public green 
space (PGS). Using spatial census data we analyse GS availability 
and accessibility for the German population. The average GS avail
ability differs by a factor of three between GLC and PGS. 19.2 % 
of Germans find less than the WHO defined target for PGS in their 
neighbourhood. PGS is less equally distributed among the popu
lation than GLC, and green space equity varies significantly 
between rural and urban areas. In areas with multi-family homes, 
a higher share of the population has access to sufficient PGS than 
in areas with predominantly single-family homes. We find a nega
tive relation between GLC availability and share of immigrant 
population, which does not extend to PGS.
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1. Introduction

Urban green spaces (UGS) are studied as part of a very active field of geographic environ
mental justice (EJ) research (Weigand et al. 2019; Zhuang et al. 2022). Many studies ana
lyse the positive effects of local urban green infrastructure on (micro-) climate (Middel 
et al. 2014), health (e.g. Maas et al. 2006; Villeneuve et al. 2012; Richardson et al. 2013; 
Honold et al. 2016), well-being and social inclusion (Lee and Maheswaran 2011; Pope 
et al. 2015). The latter effects gained particular prominence among urban populations 
around the world as the COVID-19 pandemic increased mental health issues in societies 
around the world including anxiety, confusion, stress and many more (World Health 
Organization 2020). It is therefore no surprise that green spaces are important factors for 
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improving quality of life (Sapena et al. 2021; Castelli et al. 2023) and further, green spaces 
rank among the most important drivers for influencing residential location decisions 
(Wurm et al. 2019c). That is, the United Nations recognize urban green spaces in goal 
11.7 of the Sustainable Development Goals that aims to ‘provide universal access to safe, 
inclusive and accessible, green and public spaces, in particular for women and children, 
older persons and persons with disabilities’ (UN General Assembly 2015, p. 22).

Disproportionate access to green spaces has been identified as a critical concern of EJ 
(e.g. Jennings et al. 2012; Rigolon 2016; Zuniga-Teran and Gerlak 2019; Sch€ule et al. 
2019). That is, generally speaking, some neighbourhoods have access to more or higher 
quality green spaces than others (e.g. J€unger 2021) making the spatial distribution of UGS 
an issue of social equity. However, not all green spaces in the urban layout provide simi
lar salutogenic benefits (e.g. Wheeler et al. 2015; Akpinar et al. 2016; Mears et al. 2020). 
One essential type of UGS with high relevance for public health and social cohesion in 
cities are publicly accessible green spaces (PGS) (G�omez-Baggethun et al. 2013; Ludwig 
et al. 2021). Expectedly, they serve as an indispensable resource for people without private 
gardens (Poortinga et al. 2021) but also provide valuable services to those with access to 
private green (Lin et al. 2014; Berdejo-Espinola et al. 2021).

Despite the relevance, a lack of suitable, accessible, high-resolution, large-scale data has 
been identified a central limiting factor for more comprehensive and detailed studies on 
urban green (Feltynowski et al. 2018). However, freely accessible geodata have the poten
tial to fill data gaps and expand the spatial coverage of EJ studies. They allow capturing 
differences in the availability of green spaces beyond urban agglomerations and thus allow 
broadening social equity studies to larger areas or increase their spatial detail. Many stud
ies in the domain of urban green have already used remote sensing imagery to derive 
land cover and land use information about UGS (Weigand et al. 2019). Therein, higher 
spatial resolution imagery contributes to a more reliable estimation of greenness especially 
in local applications (Jimenez et al. 2022). Green Land Cover (GLC) data and vegetation 
indices are accessible metrics for quantifying the greenness of an area (e.g. Dewulf et al. 
2016; Santos et al. 2016; Russette et al. 2021). However, such data often fails to differenti
ate between different types of green spaces by land use, e.g. between grass covered agricul
tural meadows and parks and urban gardens. In the vast body of literature there are stark 
differences in how urban green is mapped and analysed (Kabisch 2019) and studies analy
sing ‘green space’ frequently fail to define it sufficiently which can lead to incompatibil
ities or even diverging results between results (Taylor and Hochuli 2017; W€ustemann 
et al. 2017; Klompmaker et al. 2018).

To solve this, open geodata can be used to derive more detailed and semantically dif
ferentiated green space geoinformation. Recent studies have demonstrated the use of data 
fusion between satellite imagery and volunteered geographic information (VGI) expanding 
knowledge beyond land cover and derive high detail land use information (Ludwig et al. 
2021; Rosier et al. 2022). VGI provide rich semantic attributes of land use that go beyond 
physical description of land cover (Vargas-Munoz et al. 2021). This can extend the analy
ses of UGS by differentiating types of green, such as forests or parks from green agricul
tural areas.

Beyond that, analyses across multiple cities reveal different patterns of greenness 
between cities (Kabisch et al. 2016; W€ustemann et al. 2017; Zepp et al. 2020; Taubenb€ock 
et al. 2021). Yet, many studies focus on individually selected cities, excluding the rural 
regions around them. In fact, most studies researching the health effects, distribution, and 
equity of green space focus on localized case studies in urbanized regions (Weigand et al. 
2019). Still, for example in Germany, only 50 % to 68.1 % of the population live in 
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urbanized regions depending on the concept urbanization, the data, the spatial units of 
measurement, the variables, or the thresholds applied (Taubenb€ock et al. 2022). In light 
of the known variance in UGS availability, a large scale expansion of green space evalu
ation to suburbs and rural regions can bring a broader perspective for social equity 
research.

In this paper, we analyse the distribution of green space availability with high-reso
lution geographic data on national scale. To do so, we use a combination of different data 
sets: remote sensing imagery, VGI vector data and spatially explicit socioeconomic and 
demographic data. We quantify the availability of green space on neighbourhood level for 
the entire population of Germany via two green space metrics: (1) green land cover 
(GLC) availability and (2) public green space (PGS) availability. This is to scrutinize the 
differences in availability depending on the type of green. We quantify the distributive 
inequality (Enssle and Kabisch 2020) of the resource GLC/PGS using descriptive statistics 
and multivariate mixed effects regression models for the relationship between GLC/PGS 
and demographic composition. Our research aims to answer the following research 
questions:

RQ1: Which share of the German population have sufficient access to green space?

RQ2: How is GS availability distributed in the German population beyond major cities, between 
rural and urban regions, or neighbourhood housing types?

RQ3: How does neighbourhood population composition relate to green space availability? How 
does it differ between GLC and PGS?

2. Conceptualizing ‘public green space’

Cities are often touting themselves as ‘the greenest city’. But even on macro scales, the 
greenness of a city is strongly dependent on the objectivity of the data used to analyse 
and the definition of the spatial scope and thus can vary widely across metrics 
(Taubenb€ock et al. 2021). These variances increase even more on local scales (W€ustemann 
et al. 2017). Beyond that, not all green is equally relevant from a health perspective 
(Mears et al. 2020). Roadside greenery might have a positive impact on air quality (Pugh 
et al. 2012), but it does not serve as a place for physical activity or social gathering. 
Similarly, a private garden or allotments might serve as a place of refuge from the hectic 
city for some, but they are generally not available to the public. Hence, when going 
beyond the question of ‘How green is a city?’, and towards ‘How much publicly accessible 
green space, parks and gardens are in a city?’ it is important to be able to distinguish 
between different types of green. Thus, it is necessary to go beyond the physical represen
tation of green patches in the (urban) landscape, i.e. land cover, and add semantic infor
mation on the type of green, i.e. land use.

Green space typically refers to vegetated, open and unsealed land and thus differs from 
built urban landscapes of buildings and roads (Swanwick et al. 2003; Jorgensen and 
Gobster 2010; Hunter and Luck 2015). Located in the vicinity of urban settlements these 
green spaces are also referred to as urban green space (UGS, Jim and Chen 2006). In cit
ies this includes parks, gardens, forests, certain sports facilities, but also abandoned areas 
or industrial patches. Beyond the city borders, natural landscapes, forests, meadows, and 
the like can be considered to be natural greens. Depending on the type or accessibility, 
green spaces serve various environmental purposes and provide different services.

In this study, we define public green space (PGS) in accordance with Ludwig et al. 
(2021) as vegetated or natural areas that generally can be assumed to be freely accessible 
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by the public. This includes forests, wilderness areas, urban parks, playgrounds, and pub
lic gardens. In contrast, non-public green spaces differ in that they are privately owned 
and may be excluded from free public access and use. This is usually the case for private 
gardens, areas with limited or member-only access like sports facilities or allotments, 
industrial or commercial areas, agricultural crops, airfields, restricted military areas, or 
otherwise unusable greened or vegetated land. We focus on the availability, i.e. the 
amount of PGS in hectares, as this is a robust metric of intra-city inequalities compared 
to, for example, distance based metrics (Rigolon 2016).

Green space availability can be measured at varying spatial scales. For example, some 
studies use the average green space in administrative spatial units or zip-code areas with 
wide variation in size, urbanity, and population (e.g. Akpinar et al. 2016). This, however 
can lead to bias caused by the modifiable areal unit problem (MAUP, Openshaw 1983), 
which means the outcome of the analysis might be skewed by the arbitrary layout of the 
spatial units. We aim at reducing MAUP bias through working with standardized spatial 
units for the entire study area. In particular, we focus on the availability of green space in 
the living environment of the people, specifically the neighbourhood at their home 
address. In the literature on urban green we find several definitions for the neighbour
hood (for a comprehensive review see Kabisch 2019). Often these are delineated around 
the home address with varying distance, e.g. 300 m (Xu et al. 2018a, 2018b; Wolff and 
Haase 2019; Barber et al. 2021; Long et al. 2022), 400 m (Flacke et al. 2016), 500 m 
(W€ustemann et al. 2017), 100 m − 3000 m (Klompmaker et al. 2018). We choose the dis
tance Kabisch (2019) identified as the most prevalent in recent studies, a 500 m radius 
neighbourhood, since the surrounding neighbourhood strongly influences the individual 
perception of urban structure (Wurm et al. 2019a) and thus affects habits of pedestrian 
movement (Droin et al. 2023).

3. Data and methods

Figure 1 shows the workflow of this study. GLC and PGS availability were derived from 
different input data to enable a nationwide analysis of green space in Germany.

3.1. Data and preprocessing

To facilitate a comparison between local-scale GLC and PGS and the analysis of social 
equity in their availabilities for the entire population of Germany several datasets were 
used in this study: (1) GLC data was derived from a high-resolution satellite image classi
fication, (2) PGS data was derived using data fusion of satellite imagery and VGI vector 
data. These datasets allowed to quantify green space availability by means of two different 
metrics. (3) Spatial population data was used from a national census to allow for popula
tion weighted analyses.

3.1.1. Green land cover
The availability of green land cover on neighbourhood level was derived from Sentinel-2- 
based land cover classification. The national land cover product with a 10 m � m spatial 
resolution was created as described by Weigand et al. (2020) based on Sentinel-2 imagery. 
The Land Use and Coverage Area Frame Survey (LUCAS)1 conducted by Eurostat 2018 
served as ground reference. This dataset made use of all Sentinel-2 L1C scenes acquired 
over Germany between May and September 2018 with less than 60 % cloud cover. 
Further cloud masking was performed using the Sentinel-2 QA60 band, before a median 
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mosaic was derived from all scenes. Using a diverse set of spectral indices and image fea
tures, a random forest classification algorithm was trained to derive the final land cover 
classification. It contained a total of seven land cover classes (for more detail see Weigand 
et al. 2020) and achieved an overall accuracy of 90.93 %, thus outperforming comparable 
continental or global scale land cover classifications (e.g. Pflugmacher et al. 2019; Brown 
et al. 2022). In the scope of the present study, tree cover and grasslands were considered 
as green land cover (GLC), specifically the classes low perennial vegetation, high perennial 
vegetation and high seasonal vegetation. These refer to grassland, lawns and meadows as 
well as tree cover in parks and forests. This GLC dataset al.lowed for quantifying the 
availability of general green space. It did not distinguish, however, between different types 
by, e.g. ownership, accessibility, form, or use.

3.1.2. Public green space
To expand the analysis beyond the mere physical description of urban green via GLC, a 
spatio-quantitative data on PGS was derived to represent one specific type of green space. 
Like in previous studies (e.g. Kabisch and Haase 2014; Krekel et al. 2016; W€ustemann 
et al. 2017; Liao et al. 2021), data from the 2018 European Urban Atlas 2 (EUA) was used 
as a base to quantify PGS availability. PGS was defined as the EUA classes Green urban 
areas, Forests and Herbaceous vegetation associations. However, the EUA dataset did not 
cover the entire area of Germany but only 96 spatial functional urban areas encompassing 

Figure 1. Workflow of this study. The GLC dataset is derived from a land cover classification (�) developed by 
Weigand et al. (2020) and PGS is derived from a deep learning data fusion (see sec. 3.1.2). both datasets are used in 
conjunction with nationwide census data to support the analyses in this study.
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75 % of the population. To extend the analyses beyond the borders of these areas and 
hence, to cover the entirety of Germany, PGS availability was extrapolated using data 
fusion of multiple spatially exhaustive datasets and a machine learning approach. Similar 
to recent approaches combining satellite image data and vector based geographic data 
(Rosier et al. 2022; Georganos et al. 2022), satellite imagery and OpenStreetMap (OSM) 
data were combined to model the target measure: the amount of available PGS in the 
neighbourhood. The decision to use a model for estimating neighbourhood greenness was 
influenced by two factors. First, this allowed to conflate differences in the definition of 
land use between EUA and OSM and thus increase comparability with previous studies 
that used EUA. Second, opposed to a pure geometric approach which uses the OSM poly
gons, this approach allowed for incorporating a diverse set of OSM features to quantify 
public green availability and is thus less prone to errors from falsely tagged or missing 
polygons of public green spaces in the OSM database. As it has been shown that different 
classes of urban green feature varying degrees of correctness and completeness (Dorn 
et al. 2015), estimating PGS availability through a model incorporating satellite imagery 
and OSM features provided a stable yet scalable solution to apply in the nationwide scope 
of this study compared to relying on individual polygon features.

The 2018 Sentinel-2 mosaic previously used for the creation of the land cover classifi
cation (cf. sec. 3.1.1) was used for the image data in the data fusion. We extracted three 
Sentinel-2 bands, i.e. the red, green, and blue channels as well as a derived NDVI image. 
Additionally, the previously derived land cover classification was included as a fifth image 
layer. All layers had a spatial resolution of 10 m � 10 m.

OpenStreetMap contains geographical features as a collection of vector data in form of 
points, lines, and polygons. In this study, these were converted to tabular data through 
spatial aggregation on neighbourhood level. Features relevant for quantifying the absence 
or presence of public green spaces were identified by means of their attribute data in 
form of annotated key¼ value pairs, also referred to as tags. Using these tags, all OSM 
features relevant for this study were grouped into semantically consistent collections 
of different tags. This was done to consolidate similar information from related tags. 
Overall, a total of 71 groups were formed combining similar aspects indicating absence or 
presence of public green space, access of areas to the public, or other relevant land use 
features. The full table of OSM groups can be found in the supplemental materials of this 
study. As one example, the group ‘public leisure’ includes all features tagged with 
‘leisure¼ common’, ‘leisure¼ dog_park’, ‘leisure¼ fitness_station’, ‘leisure¼ nature_reserve’, 
‘leisure¼ park’, ‘leisure¼ picnic_table’, ‘leisure¼ playground’, and ‘leisure¼ slipway’.

For each neighbourhood, features of all geometry types – points, lines and polygons – 
were aggregated for each group. Points were aggregated by count, lines by cumulative 
length, and polygons by cumulative area. In total, 94 metrics were derived from the 71 
groups as some groups were represented by multiple geometry types.

Subsequently, a deep learning-based data fusion network combining raster format 
image data and tabular OSM aggregates was established3. The aim of this approach was 
to utilize the information from both data sources simultaneously, leveraging the combined 
predictive power of both datasets. Therein, image data served as input for a convolutional 
neural network (CNN) developed for land cover classification (Qiu et al. 2020; Wurm 
et al. 2019b). OSM data was fed into an artificial neural network (ANN). Determined by 
the number of OSM aggregates, the ANN has 94 input nodes. These are followed by hid
den layers with 20, 10 and 5 nodes. All nodes are followed by batch normalization and 
ReLU-activation (Fukushima 1969; Goodfellow et al. 2016, p. 187). Batch normalization 
(Ioffe and Szegedy 2015) is used to avoid extreme values within the network and is 
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therefore an effective means optimization of the network (Goodfellow et al. 2016, p. 309 
ff.). A dropout layer was placed before the final layer. The network architecture can be 
found in the supplemental materials. Both networks were pre-trained individually on the 
PGS target first to improve convergence of the network. Subsequently, they combined 
and trained as a fusion network. The fusion network extends the ANN and CNN by con
catenating their last dense layer into a shared fusion layer followed by three dense layers 
until they reach the final regression layer. During the learning process, we used 
Huber loss to optimize the model’s regression performance. The target to predict was 
the available area of PGS in a neighbourhood. During training, we used a batch size of 
512 observations, a dropout rate of 0.1, an initial learning rate of 0.0001, with a 
learning rate reduction on plateaus after 20 epochs and early stopping after 40 epochs. 
Further, the parameters underwent a warm-up period of three epochs with a learning rate 
of 1� 10-15.

The model was trained using 115,220 roughly 1 km2 sized tiles (101 � 101 Sentinel-2 
pixels) across Germany, the total number of neighbourhoods fully covered by EUA refer
ence data. To ensure independence between the model training and evaluation data, all 
neighbourhoods were split into training, validation, and test datasets holding 70 %, 15 %, 
and 15 % of the data, respectively. The spatially independent test dataset was used to 
evaluate the PGS model yielding a high coefficient of agreement (R2 ¼ 0:952) and very 
low mean absolute error (MAE¼ 3.2 %).

Ultimately, this model was able to predict the PGS availability in any rectangular 
neighbourhood enclosing a 500 m wide buffer around a central point, beyond any arbi
trary spatial border of the functional urban areas covered by the EUA. Trained and tested 
on the 115,200 tiles across EUA regions in Germany, this model was used in this study to 
determine the available neighbourhood PGS for the neighbourhood of every location reg
istered in the nationwide geolocalized gridded census data. In total this amounts to 3.1 
million neighbourhoods.

3.1.3. Population data and housing type
For locating the population in Germany, the latest available census information from the 
2011 census was used. The German Federal Statistical Office (destatis) provides demo
graphic population data in spatial grids following the INSPIRE standard4. In the census 
grid data, individuals are located to a specific grid cell by means of address location. 
Every cell is spatially referenced by its centre point for combination with GLC and PGS 
availability. This official dataset provides a standardized source of population distribution 
across Germany. All location data from the census 2011 grids underlie perturbation meas
ures to ensure privacy.

In this study, three different datasets were derived from the 2011 census. First, the total 
population count which was provided in a 100 m � 100 m (1 ha) INSPIRE conform grid 
dataset. This dataset enabled the population weighted analysis of the distribution of GLC/ 
PGS and thus to quantify the share of the population affected by different availabilities 
of GS.

Second, also on the spatial basis of 1 ha grid cells, the 2011 German census data 
includes spatial assessment of housing types throughout Germany, namely the number of 
houses by type. In the present study, this information was used to analyse how particular 
housing types are associated with different green space availability patterns. At the spatial 
level of 1 ha, the census aggregates the number of buildings in 7 classes. They were aggre
gated into four types as detailed in Table 1. For the purpose of analysing green space 
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availability, only census grid cells that contain at least five buildings and only have build
ings of the same aggregated class were selected.

The third dataset derived from the 2011 Census was aggregate demographic informa
tion about neighbourhood population composition. These data are provided at the spatial 
resolution of 1 km � 1 km (1 km2) grid cells. For analysing the relationship between GS 
and demographic composition at 1 km � 1 km resolution, GLC and PGS availability was 
acquired as the average from the values ascribed to all underlying 100 m � 100 m census 
grid cells. Three demographic composition metrics were used including information about 
certain broadly defined society groups regularly found in the literature about green space, 
e.g. the share of children under 18 years (Rehling et al. 2021), elderly, aged 65 and above 
(Artmann et al. 2019; Kabisch and Haase 2014), and foreigners (J€unger 2021), i.e. persons 
with no German citizenship.

3.1.4. Rural-urban gradient
Different green space availability were expected between rural and urban regions. 
Therefore, all neighbourhoods were analysed with respect to the population of the muni
cipality. Classes were created along the thresholds of 5,000, 10,000, 50,000, and 100,000 
inhabitants. Each census grid cell was assigned to a municipality based on the intersection 
between the centre coordinate and the administrative boundaries of Germany.

To understand the relationship between the urban context of a neighbourhood and 
green space availability even better, data on the rural-urban gradient were used from 
Taubenb€ock et al. (2022). This classification between ‘the rural’ and ‘the urban’ is based 
on a variety of administrative and grid-based classifications of the degree of urbanization. 
From all variants a probability-based metric is derived to generate a final classification of 
the urban-rural gradient. Thus, every populated neighbourhood in Germany is assigned 
to one of five classes from ‘the rural’ to ‘the urban’ based on quantiles of urbanity. This 
dataset was relevant for the present study because it allowed a finer-grained discrimin
ation between different grades of urbanity on a sub-municipality level. This increased the 
interpretability as it allowed for the gradual differentiation between the urban centres and 
the outskirts of cities and towns.

3.2. Methods

3.2.1. Descriptive statistics
First, local-scale availability of GLC and PGS at national level was analysed using descrip
tive statistics. As a baseline for analysing social equity of green space availability, it was 
compared which share of the population in Germany has access to sufficient amounts of 

Table 1. Aggregation scheme for census building type classification.

Aggregated type N Cells Census building type

Detached house 716949 Detached single-family home
Detached two-family home

Semi-detached house 42066 Semi-detached single-family home
Semi-detached two-family home

Terraced house 34425 Terraced single-family home
Terraced two-family home

Multi-family home 22214 Multi-family home 3 - 6 flats
Multi-family home 7 - 12 flats
Multi-family home 13 flats or more

For each aggregated class, the number of neighbourhoods (N cells) with buildings of exclusively one aggregated 
building type and at least 5 buildings are summarized.
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public green. Based on goals set by the World Health Organization (2017), residents 
should find at least 1.8 ha to 3.6 ha of PGS within the 500 m neighbourhood used in this 
study. Here, it was assumed that social equity of public green access in Germany would 
exist if the entire population lived in neighbourhoods with more than 3.6 ha of PGS 
available.

In addition to PGS, the GLC availability in all neighbourhoods in Germany was quan
tified. As GLC is a superset of green spaces, i.e. it includes many more green space types 
besides PGS, different thresholds were established. Neighbourhoods were split into tertiles 
by GLC (low, medium, high) based on the population-weighted distribution in Germany. 
This resulted in thresholds for GLC at 25.4 and 44.2 ha.

To reduce complexity and aid readability, a two-dimensional classification scheme 
using the GLC and PGS thresholds was adopted. This was done in order to better under
stand the composition of green spaces at the neighbourhood level through the co-occur
rence of GLC and PGS values. The classification scheme was used to calculate the 
cumulative shares of population for each class of GS availability. This allowed for the 
identification of disparities among the population and the quantification of the share of 
population with below-target PGS availability. Therein, the spatial nature of the census 
grid was used to apply different grouping strategies: entire Germany, by municipality size, 
fine-grained rural-urban gradient, and dominant housing type.

3.2.2. Distributive equality of green space
The Gini coefficient is a measure of inequality of distribution or concentration. It can 
be used to quantify the distributive equality of a resource within a population and is 
applied to assess social equity of spatial green space distribution (e.g. Kabisch and Haase 
2014; Xu et al. 2018b). In this study the Gini coefficient was used to assess the distributive 
equality of both GLC and PGS among the German population. The Gini coefficient G is 
defined as

G ¼
Pn

i¼1
Pn

j¼1 xi − xj
�
�

�
�

2n
Pn

j¼1xj
(1) 

where xi is the available green space for an individual i of the population of n people. 
The Gini coefficient ranges from 0, indicating fully equal distribution of the resource, to 
1, indicating the most unequal distribution possible, i.e. the accumulation of the available 
resource for only one individual, or in this study one census grid cell. Accompanying the 
Gini coefficient, the Lorenz curve allows visualizing inequality along the two cumulative 
dimensions of beneficiaries and resource.

Similar to descriptive statistics, different grouping strategies were used, i.e. entire 
Germany, by municipality size, by the rural-urban gradient, and dominant housing type 
to analyse the distribution of the green space resources in each population.

3.2.3. Trends of green space availability by population subgroups
Next, it was analysed how different neighbourhood demographics coincide with the avail
ability of green space. This was to identify whether any of the selected population groups 
experience systemic disadvantages regarding green space – and how these might differ 
between GLC and PGS. To do this, the information on demographic composition at the 
level of 1 km � 1 km census grid cells (cf. sec. 3.1.3) were employed.

Using regression analysis, the relationship between the neighbourhood green space 
metric as target al.ong a continuous axis (in ha), population density and demographic 
composition were explored. Therein, unique influences of different historic, geographic 
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and sociodemographic settings were expected to play a strong role for the association 
between green space and demographic composition. To identify the underlying general 
trends, linear mixed effect regression models (LMM) were employed. In these, the rela
tionship between the amount of available green space (GLC/PGS) per neighbourhood and 
the multivariate demographic composition of the neighbourhood were modelled. Random 
effects in the LMM at different levels, the municipality level, the city size-level, and the 
rural-urban gradient were included to account for local influences on the underlying rela
tionships. The regression terms of the green space variables, i.e. the regression slopes, 
were estimated as fixed effects which describe general trends of the relationship between 
GS and demographic composition in Germany. All LMMs were controlled for the popula
tion (in log) as population density was considered an important proxy for built-up dens
ity, thus having an inherent influence on the possible amount of available green space. 
The model was formalized as

yg, h, i ¼ b0 þ bpop log ðpopÞ þ b1X1 þ . . .þ bnXn þ ug þ uh þ ui þ e (2) 

where yg, h, i is the response variable, i.e. the amount of green space (either GLC or PGS) 
in ha in relation to the random effects ug , uh, and ui, at the municipality level, the city 
size-level, and the rural-urban gradient, respectively. b1...n are the fixed effects of the n 
independent variables X1...n and e is a vector of random errors.

The associations were tested separately for both GLC and PGS to identify possible dif
ferences and similarities between the two green space metrics. Alternating random effects 
variables as well as independent variables were used in different models in order to iden
tify whether compounding or different effects were induced by any combination of 
variables.

4. Results

4.1. Green space availability

Descriptive statistics quantify the available green space in Germany’s inhabited areas. 
Figure 2 shows the availability of GLC and PGS to the German population as cumulative 
shares. On average, people in Germany find 37.4 ha GLC in their neighbourhood (std. 
dev. 21.2 ha, median 34.0 ha). By comparison, the average amount of PGS is 12.3 ha (std. 
dev. 12.1 ha, median 8.2 ha), or only one third of GLC (cf. Figure 2.A)).

Therein, 80.8 % of people have access to 3.6 ha or more PGS in their neighbourhood, 
12.6 % have between 1.8 and 3.6 ha, another 6.6 % have 1.8 ha or less PGS available. That 

Figure 2. Availability of neighbourhood GLC and PGS in Germany by cumulative shares of the population. The separ
ate plots use different grouping variables: A) Entire Germany, B) by municipality size in by population in thousands 
(K), C) by the 5-class rural urban gradient by Taubenb€ock et al. (2022), and D) in neighbourhoods with specific build
ing types.
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is, 19.2 % of the population in Germany are underserved with regard to the goals set by 
the WHO.

Looking at the results by municipality size in Figure 2.B), it is clear that smaller 
municipalities generally feature higher amounts of GLC, as expressed by the larger share 
of darker shades. Conversely, the share of the population with access to more public 
green space increases with city size. While only two thirds of the population in small 
municipalities with less than 5,000 inhabitants have access to 3.6 ha of PGS or more, in 
cities with more than 100,000 inhabitants, this share increases to 91 %. This highlights 
that the importance of PGS as the primary resource for green space increases with muni
cipality size.

The finer local resolution of the rural-urban gradient by Taubenb€ock et al. (2022), fur
ther underlines these results (cf. Figure 2.C)). Rural areas feature a majority of neighbour
hoods with mid and high values of GLC, while 35.5 % of the population do not have 
enough PGS available in the neighbourhood. Conversely, 88.3 % of the population in 
urban centres have access to 3.6 ha and more.

GLC and PGS availability across neighbourhoods with different housing types in 
Figure 2.D) also reveals distinctive trends. More than half (61.5 %) of the population liv
ing in neighbourhoods with detached single-family, two-family homes or terraced houses 
find more than 25 ha of GLC in their neighbourhoods (medium and dark shades). In con
trast, 24.5 % of the population in areas with detached homes find below-target PGS avail
ability, 5.3 % more compared to entire Germany. Results for semi-detached house, 
terraced house and multi-family home areas show these areas increasingly feature less 
GLC and more PGS availability across the board.

The map in Figure 3 illustrates the spatial distribution of green space availability 
throughout Germany. It shows the average amount of PGS for the population for each 
state which reveals that states with strong forest covers feature the highest average PGS 
for the population of the states of Saarland in the West and Brandenburg in the North- 
East. The highest share of the population with more than 3.6 ha PGS in the neighbour
hood are the city states Berlin, Hamburg, and Bremen as well as the Saarland. Northern 
federal states, which characteristically feature more agricultural land and meadows show 
lower amounts of average PGS per neighbourhood and higher shares of the population 
with less than 3.6 ha of PGS in the neighbourhood.

4.2. Green space equity

Distributive equality of green space availability in Germany was assessed via the Gini 
coefficient. For all of Germany, the inequality of GLC availability is significantly lower 
(Gini ¼ 0.32), than the inequality of PGS availability (Gini ¼ 0.48, cf. Figure 4.A). This 
makes it clear that PGS is distributed much less fair throughout Germany.

By comparing the Gini indices for GLC and PGS by the size of the municipality (cf. 
Figure 4.B), it is clear that the city size has an impact on the distributive equality of GLC 
and PGS. In fact, there exist inverse relationships for Gini indices between GLC and PGS. 
In case of major cities of more than 100,000 inhabitants, Gini coefficients for GLC and 
PGS reach comparable levels (Gini GLC 0.34, Gini PGS 0.39), while they diverge drastic
ally for the population in municipalities with less than 5,000 inhabitants (Gini GLC 0.24, 
Gini PGS 0.56). In extension of the analysis by municipality size, Gini index results along 
the rural-urban gradient further highlight the inverse relationship between GLC and PGS 
inequality persists even with more local differentiation of urbanity (cf. Figure 4.C)).
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The influence of the housing type on green space inequality shows clear trends, too. 
The inequality of GLC increases from areas with detached houses towards areas with 
multi-family homes. This trend is consistent with the previous results as multi-family 
dwellings are more common in denser urban centres. Remarkably, the inequality of the 
resource GLC (Gini ¼ 0.38) exceeds the inequality of PGS (Gini ¼ 0.35) in multi-family 
areas. This means that among all these neighbourhoods, the total available amount of 
GLC is less equally distributed among the population in these areas than the available 
PGS amount.

Figure 3. Green space availability in Germany by federal states. States are shaded by the population-weighted aver
age of PGS available. Pie charts indicate the distribution of PGS and GLC, the colors follow the legend in Figure 2.

Figure 4. Equity of GLC (pink) and PGS (green) availability in Germany at national, regional and city level. A) depicts 
a lorenz curve showing the availability of the resources in Germany. Point plots visualize the distribution of Gini coeffi
cients measuring distributive equity of the resources in different spatial samples: B) by the municipality size denoted 
in classes of thousands (K) of inhabitants per municipality, C) by the neighbourhood classification along the rural- 
urban gradient, and D) by neighbourhoods with distinct housing types. For reference, the horizontal lines in B), C), 
and D) visualize the Gini coefficient per resource for the entire population of Germany.
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These results show that the inequality in neighbourhood GLC availability increases 
with city size, urbanity and more dense housing types. Conversely, along the same axes, 
the inequality in PGS availability decreases.

For the top 100 most populated cities in Germany the PGS availability and PGS Gini 
coefficients are compared (see Figure 5). Among these cities, above-target PGS coverages 
are recorded from almost 100 % of the population in Bergisch Gladbach to 55.3 % in 
Minden. Simultaneously, the PGS Gini coefficients for these cities do not reflect such a 
drastic trend. This highlights that while the Gini coefficient measures the distributive 
equality of green space amounts, it is not able to reflect which share of the population 
has access to sufficient green space amounts.

4.3. Green space availability and population composition

The relationship between green space availability and population composition across 
Germany to identify systemic differences for certain population groups was assessed using 
multiple LMM. In Table 2 the different models are summarized which utilize varying 
fixed effect variables and sets of random effect variables. Expectedly, all models show that 
GLC decreases most significantly with higher population, highlighting the importance of 
controlling for population density, which is a strong proxy for built-up density. In fact, 
an increase of the base 10 logarithm of the population by one, i.e. a 10-fold absolute 
increase, is associated with an average decrease of around 2.5 ha GLC (std. error 
0.025 ha).

In terms of demographics, the models’ fixed effects consistently identify a lower 
amount of GLC as the share of foreigners in a neighbourhood increases, specifically 
−0.195 ha to −0.226 ha GLC per 1% increase. Conversely, both higher proportions of chil
dren and higher proportions of elderly in the neighbourhood are associated with higher 
amounts of GLC, albeit at lower magnitudes. By varying the included independent varia
bles, we can see that the fixed effects are similar in all models. This shows that the differ
ent variables do indeed account for disjunct effects, which is further supported by 
generally low correlations between the fixed effects of neighbourhood demographics (cor
relation coefficients between −0.401 and 0.222 for GLC and −0.510 to 0.222 for PGS).

The impact of different random effect variables highlights the importance of the local 
geography and its influence on the GLC exposure of different population groups. This is 
visible through the difference of fixed effects of demographic composition variables 

Figure 5. Comparison of green space availability by cumulative population share (coloured bars) and PGS Gini coeffi
cient (black dots) for the 100 most populated cities in Germany. The colours follow the legend in Figure 2. The cities 
are ranked by the proportion of the population that has more than 3.6 hectares of the PGS in the neighbourhood 
which is the WHO target (green coloured bars). the main findings include: the range of population with above-target 
PGS values varies significantly among the largest cities, the PGS Gini coefficient only weakly correlates with the PGS 
above-target population shares (r¼ -0.52) with distinct outliers like darmstadt or heilbronn.
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between models with random effects by city size class or rural-urban gradient only (mod
els 8 and 9) and models that include municipality random effects (models 1 - 7). The 
demographics’ fixed effects vary less between models with different demographic compos
ition variables than when controlling for different random effects variables. Interestingly, 
models 8 and 9 report significantly lower coefficients of determination. Moreover, we see 
only marginal improvements of the models’ R2 by controlling for random effects of the 
city size class and the rural-urban gradient in addition to municipality fixed effects (mod
els 5 - 7).

Analogous to GLC, when estimating the relationship between PGS and neighbourhood 
demographics (see Table 3), it is found that PGS decreases most significantly with higher 
population density (log(pop.) FE). In contrast to GLC, the intercept for PGS is roughly 
half the magnitude. This is intuitive, as there are generally fewer hectares of PGS than 
GLC. Contrary to GLC, higher shares of children are associated with lower amounts of 
PGS (-0.074 - −0.0114), and neighbourhoods home to higher shares of foreigners feature 
more PGS availability (0.036 − 0.048). The latter is standing out as it marks the most sig
nificant and unexpected difference between the GLC and PGS models. The fixed effects 
across all variables are similar throughout all models.

Again, local conditions in individual cities and towns play an important role in the 
relationships between PGS and the independent variables. Similar to GLC, the model per
formance decreases when the random effects of the municipalities are excluded in models 
8 and 9. These models also have quite different fixed effects than the models with munici
pality level random effects. Overall, the models show low correlations between the popula
tion share variables and most FE and RE show high significance (p-value < 0.001 (���).

Creating individual models the classes of the rural-urban gradient, with random effects 
per municipality (cf. Tables 4 and 5) reveals notable variances in the magnitude of fixed 
effects between the rural-urban classes. In fact, for GLC the fixed effects of population 
density increases four-fold from rural to urban areas. This is not the case for PGS. The 

Table 2. LMM estimated fixed effects (FE) and random effects (RE) modelling the relation between green land cover 
(GLC, in ha.) and population (log.), the share of foreigners, children, and elderly across populated 1 km � 1 km grid 
cells in Germany.

GLC (1) GLC (2) GLC (3) GLC (4) GLC (5)

Intercept FE 64.854
���

65.266
���

65.014
���

64.708
���

63.050
���

log(pop.) FE −2.544
��� −2.766

��� −2.815
��� −2.754

��� −2.750
���

share foreign. FE −0.195
��� −0.226

��� −0.224
���

share children FE 0.018
���

0.033
���

0.033
���

share elderly FE 0.042
���

0.041
���

0.041
���

Municip. RE ✓ ✓ ✓ ✓ ✓

City size class RE ✓

Rural-urban grad. RE
Model R2 0.618 0.621 0.621 0.624 0.624
N cells 211,271 204,091 198,740 174,126 174,126

GLC (6) GLC (7) GLC (8) GLC (9)

Intercept FE 62.989
���

62.624
���

59.470
���

59.213
���

log(pop.) FE −2.687
��� −2.688

��� −2.663
��� −2.530

���

share foreign. FE −0.208
��� −0.208

��� −0.028
�� −0.003

share children FE 0.030
���

0.030
���

0.102
���

0.092
���

share elderly FE 0.040
���

0.040
���

0.069
���

0.066
���

Municip. RE ✓ ✓
City size class RE ✓ ✓

Rural-urban grad. RE ✓ ✓ ✓

Model R2 0.626 0.626 0.050 0.053
N cells 174,091 174,091 174,126 174,091

Significance levels 
���

p-value < 0.001,
��

p-value < 0.01.
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share of foreigners is positively related to GLC in rural areas (0.102 ���), but negatively 
(−0.327���) in urban areas. With some exceptions, the absolute effect sizes of the demo
graphic compositions tend to increase towards more urban areas for GLC. This trend is 

Table 3. LMM estimated fixed effects (FE) and random effects (RE) modelling the relation between public green 
space (PGS, in ha.) and population (log.), the share of foreigners, children, and elderly across populated 1 km �
1 km grid cells in Germany.

PGS (1) PGS (2) PGS (3) PGS (4) PGS (5)

Intercept FE 30.998
���

31.533
���

30.833
���

31.127
���

32.978
���

log(pop.) FE −3.066
��� −2.888

��� −3.072
��� −2.877

��� −2.885
���

share foreign. FE 0.048
���

0.042
���

0.039
���

share children FE −0.074
��� −0.082

��� −0.082
���

share elderly FE 0.021
���

0.018
���

0.017
���

Municip. RE ✓ ✓ ✓ ✓ ✓

City size class RE ✓

Rural-urban grad. RE
Model R 2 0.456 0.459 0.457 0.455 0.455
N cells 211,271 204,091 198,740 174,126 174,126

PGS (6) PGS (7) PGS (8) PGS (9)

Intercept FE 31.835
���

32.809
���

30.775
���

30.520
���

log(pop.) FE −2.896
��� −2.895

��� −2.519
��� −2.575

���

share foreign. FE 0.037
���

0.036
���

0.141
���

0.128
���

share children FE −0.082
��� −0.082

��� −0.113
��� −0.114

���

share elderly FE 0.018
���

0.017
���

0.035
���

0.034
���

Municip. RE ✓ ✓

City size class RE ✓ ✓

Rural-urban grad. RE ✓ ✓ ✓

Model R 2 0.455 0.455 0.067 0.069
N cells 174,091 174,091 174,126 174,091

Significance levels
���

p-value < 0.001,
��

p-value < 0.01.

Table 4. LMM estimated fixed effects (FE) and random effects (RE) modelling the relation between green land cover 
(GLC, in ha.) and population (log.), the share of foreigners, children, and elderly across populated 1 km � 1 km grid 
cells in Germany.

GLC (1) GLC (2) GLC (3) GLC (4) GLC (5)

Intercept FE 59.726
���

63.079
���

62.946
���

64.989
���

63.731
���

log(pop.) FE −1.176
��� −2.109

��� −2.646
��� −3.525

��� −4.783
���

share foreign. FE 0.102
��� −0.054

��� −0.137
��� −0.185

��� −0.327
���

share children FE −0.011 −0.022
�

0.011 0.029
�

0.206
���

share elderly FE 0.017
��

0.015
��

0.052
���

0.065
���

0.255
���

Rural-urban class Rural Mostly rural Crossover Mostly Urban Urban
Municip. RE ✓ ✓ ✓ ✓ ✓

Model R 2 0.730 0.661 0.625 0.586 0.497
N cells 28,768 64,168 41,665 22,836 16,654

Significance levels
���

p-value < 0.001,
��

p-value < 0.01,
�
p-value < 0.05.

Table 5. LMM estimated fixed effects (FE) and random effects (RE) modelling the relation between public green 
space (PGS, in ha.) and population (log.), the share of foreigners, children, and elderly across populated 1 km �
1 km grid cells in Germany.

PGS (1) PGS (2) PGS (3) PGS (4) PGS (5)

Intercept FE 29.683
���

33.789
���

30.997
���

32.449
���

30.577
���

log(pop.) FE −2.958
��� −3.336

��� −2.640
��� −2.538

��� −2.474
���

share foreign. FE 0.121
���

0.086
���

0.081
���

0.000 −0.016
share children FE −0.032

��� −0.076
��� −0.077

��� −0.099
��� −0.067

���

share elderly FE 0.007 0.008. 0.038
���

0.025
��

0.108
���

Rural-urban class Rural Mostly rural Crossover Mostly Urban Urban
Municip. RE ✓ ✓ ✓ ✓ ✓
Model R 2 0.622 0.483 0.433 0.463 0.361
N cells 28,768 64,168 41,665 22,836 16,654

Significance levels
���

p-value < 0.001,
��

p-value < 0.01,
�
p-value < 0.05,. p-value < 0.1.
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not as pronounced for PGS. Coincidentally, the models’ R2 decreases substantially with 
higher urbanity and the statistical significance, as measured by associated p-values, is par
tially lower compared to the global models. This indicates that the underlying systemic 
relations vary across different levels of urbanity.

5. Discussion

In this study, we utilized vast geographic data to quantify available green land cover 
(GLC) and public green space (PGS) on neighbourhood scale for an entire nation. We 
aimed at (1) analysing how GLC and PGS are distributed among the German population, 
(2) quantifying how many people have access to sufficient levels of PGS and how this 
contrasts with GLC and (3) identifying how different neighbourhood demographics relate 
to green space availability.

5.1. Green space availability in Germany

We derived green space availability for Germany’s entire population from satellite 
imagery, land cover information, open geographic data, and machine learning. To our 
knowledge, this is the first study to investigate the availability of public green spaces 
nationwide on a local level. We quantified the availability of green land cover and publicly 
accessible green spaces in the neighbourhoods of people in Germany. In line with the 
existing literature (e.g. de Voorde 2017), a weak correlation between PGS and GLC 
(r¼ 0.617) highlights the importance of analysing different green types. Previous studies 
were limited to single cities or EUA areas; we expanded the extent in this study by model
ling PGS using a data fusion model incorporating vast satellite imagery and VGI data. 
The methodology for data acquisition used in this study helped us to alleviate these limi
tations and enabled an analysis of public green spaces independent of arbitrary data 
boundaries posed by EUA extents.

The nationwide analysis showed that the majority of the German population has more 
PGS than the minimum defined by the WHO (RQ1). Especially in rural regions, however, 
the share of people meeting these targets decreases significantly. Also, across different cit
ies and federal states, we found high variations. This further adds to the findings of 
Taubenb€ock et al. (2021) emphasizing that the diversity of the local landscape plays a 
major role in the amount of green spaces in a city. The present study, however, adds two 
perspectives: First, it assesses different types of green, specifically publicly available green 
spaces. And second, it conducts a high-resolution, national scale analysis of the available 
green space including the entire population in Germany.

Our analysis revealed significant differences between neighbourhood green space avail
ability in urban and rural regions both by its available amount but also the distributive 
equality among the population. The results showed public green is an important resource 
especially in densely urbanized regions. However, also in cities, high amounts of GLC did 
not necessarily equate to high amounts of PGS. Neighbourhoods with predominantly 
detached houses and semi-detached houses might have higher GLC availability but above- 
target PGS availability is still lower than in more densely populated areas with multi-fam
ily homes.

Similarly, rural regions are more likely to have sub-target public green space availabil
ities. Similar disparities can be expected for other health relevant amenities, too (Pearce 
et al. 2006). Furthermore, public green spaces in the rural regions are more likely to be 
natural environments and have been shown to have greater impact on health (Wheeler 
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et al. 2015). Arguably, which green spaces can be found in the neighbourhood, depends 
strongly on individual perception. In rural areas, people might live far away from any 
park, but are able to take a walk in the fields and nearby forests. It is therefore necessary 
to analyse pathways as a function of urbanity and assess possibly differing health implica
tions of salutogenic resources across different regimes. After all, previous studies have 
indicated that the access and exposure to green spaces are only weakly correlated (Jarvis 
et al. 2020). Our study does not evaluate the objective and subjective importance of pub
licly accessible green spaces, but provides a data basis and a methodological approach to 
support such studies; future research should evaluate how the rural population uses and 
values PGS and how this differs from urban dwellers. This extends to any socioeconomic 
confounders, as it has been found that social status significantly impacts the use, rele
vance, and impact of green spaces on health (Kabisch 2019; Rehling et al. 2021). The data 
used in this study provide limited scope to account for such confounding influences.

5.2. Demographic equity of green space availability in Germany

The most important finding of this study is that there is a significant difference in dis
tributive equity depending on the type of green space taken into account (cf. RQ2). In all 
but one evaluation using the Gini coefficient, GLC availability was more equally distrib
uted across the population than PGS. This indicates that the resource public green is 
more concentrated and thus more disproportionately distributed among the German 
population than GLC. As discussed by de Voorde (2017), this highlights the relevance of 
incorporating the type and accessibility of green spaces into urban planning since GLC as 
reference metric for green cover might overestimate the availability of usable green spaces 
and underestimate disproportionate access for certain populations.

Further, diverging trends of Gini coefficients between the two green space types avail
abilities accentuate the stark differences between rural and urban areas. This highlights 
the diversity of green space availabilities and the necessity for localized assessment of 
green space resources. Regional differences are strongly dependent on the local geographic 
setting such as the degree of urbanization. This study also stresses that PGS inequality is 
especially high in rural regions. There, the disparity of public green availability is 
increased on the one hand by private gardens and agricultural areas, and on the other 
hand by homes close to larger forests.

However, comparing Gini coefficients among different populations must be interpreted 
with care; it refers to different total amounts of available resources. It only describes the 
distribution of the available amount. Our result of the top 100 most populated cities in 
Germany showed that the Gini coefficient does not provide conclusive data on which 
share of the population might be underserved with public green. Also, outside urban 
areas, the relevance of PGS as the main source of green space in the environment might 
diminish. While the park might be the most important source of public green in the city, 
in rural areas, other and more diverse forms of green, such as meadows or fields, are 
more relevant to the people. Our assumption in the data model is not able to reflect these 
subjective differences in preference.

Put differently, the higher availability of PGS in larger cities can also be seen as testa
ment of targeted urban planning. Where GLC is less prevalent by design due to increasing 
built-up density, the importance of PGS provision for the urban population excels. Where 
there is no space for everybody to have a private garden, the share of people having 
access to sufficient PGS is higher.
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The relationship between demographic composition and neighbourhood green space 
availability addresses inequities in relation to different demographic characteristics (see 
RQ3). While an increasing share of foreign population in the neighbourhood is associated 
with a decrease in GLC, this trend is inverse for PGS. This aligns with the majority of the 
foreign population living in cities and similar result found by Barbosa et al. (2007) for the 
United Kingdom. However, the difference in magnitude between the two effects shows 
that the reduction in GLC is not fully compensated for by an equal increase in PGS. 
Thus, neighbourhoods with a higher share of immigrants are generally more disadvan
taged in terms of benefits of GLC, e.g. ambient cooling (Park et al. 2017). It further high
lights that PGS is an especially important source for green space in these neighbourhoods.

In contrast, the relations between the availability of GLC and neighbourhoods with 
higher shares of children as well as higher shares of older people were much less clear. 
This can be interpreted as an indication that systemic inequality is more pronounced for 
neighbourhoods with higher proportions of foreign population. The small positive associ
ation between the share of children and GLC and its small negative association with PGS 
can be indicative of the suburbanization movement of young families who move to the 
suburbs with higher amounts of private green as opposed to public parks. Still, without 
more detailed socioeconomic data allowing to account for other confounding factors, no 
conclusive findings can be drawn.

The effects of different compositions of population share effects were stable while con
trolling for population, indicating independent effects. This holds true across experiments 
with different fixed effects groups. The model performance (measured by R2) was highest 
when controlling for city random effects. This indicates that local phenomena indeed 
have a strong influence on the relation between green space availability and population 
composition. Intercepts and effects of (log.) population stayed stable across different vari
able combinations, indicating strong independence from population shares and random 
effects variables.

5.3. Limitations and future research

This study uses green space availability in the neighbourhood as a key metric. This, how
ever, does not necessarily reflect how accessible these areas are for the people. We esti
mated the available PGS in a rectangular neighbourhood enclosing a 500 m buffer, driven 
by the input to the PGS model. While the exact distance was based on the literature, a 
wide range of neighbourhood definitions exist as discussed by Kabisch (2019). Beyond 
that, target indicator evaluation of SDG 11.7 calls for an assessment of all green spaces 
within 400 m walking distance.5 This is why PGS availability could additionally be com
bined with concepts like individual walkable neighbourhoods (Droin et al. 2023) to 
increase the level of detail and thus relate more to the realistic experience of pedestrians, 
possibly accounting for different walking speeds. Extending the analyses to further include 
the environment around the individuals’ places of work (e.g. Rauch et al. 2021) would 
allow creating a more differentiated picture of the distribution of GS accessibility. Also, 
for example, health implications related to green space have been shown to depend on 
the size of the neighbourhood (Reid et al. 2018; Su et al. 2019), limiting our study to 
effects underlying the modifiable areal units problem (MAUP). As this was out of the 
scope of this study, we focused on distances derived from literature. To identify possible 
pathways of PGS on health, multiple neighbourhood extents, possibly in combination 
with the walkability of the neighbourhood would have to be taken into account. This war
rants to expand future studies to explore the impact of different sized neighbourhoods.
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We based our green space type PGS on EUA data, which has shown high accuracy for 
urban green space (Liao et al. 2021). As Kabisch et al. (2016) discussed, these have some 
inherent data limitations in that they define classes rather broadly. Taking the example of 
Green urban areas, they comprise multiple diverse urban green classes. Also, the min
imum mapping unit of 0.25 ha per object may obscure smaller green space features in 
complex urban settings. To account for a more diverse set of urban green space types, the 
data fusion approach used in this study could be extended to more explicit and complex 
green space ontologies (e.g. Ismayilova and Timpf 2022). Although the data fusion based 
methodology was specifically chosen to reduce the impact related to errors, omissions or 
incorrectly tagged OSM features (cf. Dorn et al. 2015), we acknowledge that the results 
are heavily dependent on the quality of the used VGI data. In Germany and Europe VGI 
quality is comparably high, which is why the applicability of this method might be subject 
to local restrictions. Further research is required to scrutinize the applicability of model
ling PGS across different regions or continents. Similar to the impact of OSM data qual
ity, the classification scheme of the Sentinel-2 based land cover classification as proposed 
by Weigand et al. (2020) may introduce bias. Therefore, we want to acknowledge that 
recently different large scale land cover products were made available that could be uti
lized for similar analyses, for example Dynamic World (Brown et al. 2022) or ESA World 
Cover.6

We used the most recent census data in Germany dating back to 2011. More up-to- 
date data were unavailable due to delays caused by the COVID-19 pandemic7. 
Additionally, the spatial grid format induces some limitations to this study. Firstly, it does 
not allow for detailed description of individuals by means of multiple socioeconomic vari
ables, i.e. migration background and education and income and age. Therefore, it was 
infeasible to control for confounding socioeconomic variables in this study. This would be 
possible with more detailed socioeconomic survey data (e.g. Krekel et al. 2016; 
W€ustemann et al. 2017). Secondly, randomization effects introduce bias in sparsely popu
lated cells. Naturally, these cells are more likely to occur in less populated areas, which is 
likely to be the case in rural areas or in the outskirts of cities. This can impact this study 
as we tend to underestimate the share of people in regions with lower population density 
and possibly high GLC/PGS availability. When extending similar studies to broader inter
national or global contexts, national census data could hinder scalability. In these cases, 
global population datasets, e.g. WorldPop (Tatem 2017), could provide consistent large- 
scale demographic data as demonstrated by Long et al. (2022).

Even though administrative boundaries were used to distinguish different cities and 
their population, they do not necessarily reflect reality in terms of urban regions 
(Taubenb€ock et al. 2019). It would therefore be interesting to investigate the influence of 
morphological urban regions on the availability of green spaces.

6. Conclusions

In this study, we have demonstrated how publicly available geographic data can be uti
lized to enable analyses of social equity of GS availability on a nationwide level. Therein, 
we highlighted the differences between two representations of green space: green land 
cover (GLC) and public green space (PGS). Despite the large area under investigation, 
these data allowed for a high spatial resolution and consistency. With this, it was possible 
to analyse the green space availability on the level of neighbourhoods. In combination 
with census data we were able to quantify the distribution of green space availability 
among the population and its relation to societal composition. This shows that modern 
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geographic data can provide vital information to facilitate nationwide analyses of social 
equity or environmental justice. We thus closed previously identified gaps for semantically 
diverse and spatially detailed, exhaustive data.

Overall, more than 80 % of the German population have access to more PGS than 
defined by the WHO target. We found that both GLC and PGS availability vary signifi
cantly by the degree urbanity and correlate with the building structure in the neighbour
hood. These two resources are distributed very differently among the population, even 
showing opposing trends along the rural-urban gradient. Neighbourhoods with larger 
shares of foreign inhabitants experience lower amounts of GLC, a trend that cannot be 
found for PGS in Germany.

Future research is suggested to increase the semantic depth of the analysis to identify 
more diverse patterns of green space availability among the population. Combining nation
wide neighbourhood green space type data with panel data and more detailed socioeconomic 
information can help identify further social inequalities with regard to green spaces in 
Germany. Paired with health records, the fusion of geographic data can be used better iden
tify health implications and pathways of exposure or access to various green space types.

Acknowledgements

The authors acknowledge the data provided by the OpenStreetMap project and its contributors under the 
terms of the Open Data Commons Open Database License (ODbL). The authors thank two anonymous 
reviewers for their helpful comments and suggestions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes

1. https://ec.europa.eu/eurostat/web/lucas/overview (accessed 2023-03-24)
2. https://land.copernicus.eu/local/urban-atlas (accessed 2023-03-24)
3. The software for this study was implemented in Python 3.9.6 and TensorFlow 2.8.
4. https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html
5. https://unstats.un.org/sdgs/metadata/files/Metadata-11-07-01.pdf
6. https://esa-worldcover.org
7. https://www.zensus2022.de/DE/Aktuelles/verschiebung\_beschluss.html

Funding

This study was partly funded by the German Federal Environmental Foundation (DBU). The funding 
sponsors had no role in the study design, interpretation, manuscript writing, or publishing decision.

ORCID

Matthias Weigand http://orcid.org/0000-0002-5553-4152 
Michael Wurm http://orcid.org/0000-0001-5967-1894 
Ariane Droin http://orcid.org/0009-0001-0878-700X 
Thomas Stark http://orcid.org/0000-0002-6166-7541 
Jeroen Staab http://orcid.org/0000-0002-7342-4440 
Hannes Taubenb€ock http://orcid.org/0000-0003-4360-9126 

20 M. WEIGAND ET AL.

https://ec.europa.eu/eurostat/web/lucas/overview
https://land.copernicus.eu/local/urban-atlas
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html
https://unstats.un.org/sdgs/metadata/files/Metadata-11-07-01.pdf
https://esa-worldcover.org
https://www.zensus2022.de/DE/Aktuelles/verschiebung/_beschluss.html


Data availability statement

Data available from the authors on request. The code used for this study is published at https://github.
com/dlr-eoc/ukis-paperfairgreen.

References

Akpinar A, Barbosa-Leiker C, Brooks KR. 2016. Does green space matter? Exploring relationships between 
green space type and health indicators. Urban For Urban Green. 20:407–418. doi: 10.1016/j.ufug.2016. 
10.013.

Artmann M, Mueller C, Goetzlich L, Hof A. 2019. Supply and demand concerning urban green spaces for 
recreation by elderlies living in care facilities: the role of accessibility in an explorative case study in 
austria. Front Environ Sci. 7:12. doi: 10.3389/fenvs.2019.00136.

Barber A, Haase D, Wolff M. 2021. Permeability of the city – physical barriers of and in urban green 
spaces in the city of Halle, Germany. Ecol Indic. 125(107555):107555. doi: 10.1016/j.ecolind.2021. 
107555.

Barbosa O, Tratalos JA, Armsworth PR, Davies RG, Fuller RA, Johnson P, Gaston KJ. 2007. Who benefits 
from access to green space? a case study from Sheffield, UK. Landscape Urban Plann. 83(2-3):187–195. 
doi: 10.1016/j.landurbplan.2007.04.004.

Berdejo-Espinola V, Su�arez-Castro AF, Amano T, Fielding KS, Oh RRY, Fuller RA. 2021. Urban green 
space use during a time of stress: a case study during the COVID-19 pandemic in Brisbane, Australia. 
People Nat (Hoboken). 3(3):597–609. doi: 10.1002/pan3.10218.

Brown CF, Brumby SP, Guzder-Williams B, Birch T, Hyde SB, Mazzariello J, Czerwinski W, Pasquarella 
VJ, Haertel R, Ilyushchenko S, et al. 2022. Dynamic world, near real-time global 10âe†m land use land 
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