

2nd DESIS User Workshop

Athens, Greece Oct 31 - Nov 02 2023

13th Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing

Knowledge for Tomorrow

Operational Quality Control for Spaceborne Hyperspectral Sensors On the Spectral and Radiometric Quality of Hyperspectral Data Products and the Related Influences on Higher-Level Processing

<u>M. Bachmann</u>, E. Carmona, U. Heiden, S. Holzwarth, M. Habermeyer, D. Marshall, M. Pato, T. Storch, R. de Los Reyes and R. Müller

DLR-EOC Earth Observation Center

Mission Instrument	ISS/MUSES DESIS	EnMAP HSI (2 instruments)
Off-nadir tilting	-45° (backboard) to +5° (starboard), -40° to +40°	-30° to +30°,
(across-track, along-track)	(by MUSES and DESIS)	0° (by EnMAP)
Spectral range	400 nm to 1000 nm	420 nm to 2450 nm
Spectral (res., acc.)	2.55 nm, (*)	6.5 nm, 0.5 nm (VNIR),
		10.0 nm, 1.0 nm (SWIR)
Radiometry (res., acc.)	13 bits, (*)	14 bits, 5%
Spatial (res., swath)	30 m, 30 km (@ 400 km)	30 m, 30 km
SNR (signal-to-noise)	205 (no bin.)/406 (4 bin.) @ 550 nm	500 @ 495 nm, 150 @ 2200 nm
Instrument (mass)	93 kg	350 kg
Capacity (km, storage)	2360 km per day, 225 GBit	5000 km per day, 512 GBit

Mission Instrument	ISS/MUSES DESIS	EnMAP HSI (2 instruments)
Off-nadir tilting (across-track, along-track)	-45° (backboard) to +5° (starboard), -40° to +40° (by MUSES and DESIS)	-30° to +30°, 9° (by EnMAP)
Spectral range	400 nm to 1000 nm	420 nm to 2450 nm
Spectral (res., acc.)	2.55 nm, (*)	6.5 nm, 0.5 nm (VNIR),
		10.0 nm, 1.0 nm (SWIR)
Radiometry (res., acc.)	13 bits, (*)	14 bits, 5%
Spatial (res., swath)	30 m, 30 km (@ 400 km)	30 m, 30 km
SNR (signal-to-noise)	205 (no bin.)/406 (4 bin.) @ 550 nm	500 @ 495 nm, 150 @ 2200 nm
Instrument (mass)	93 kg	350 kg
Capacity (km, storage)	2360 km per day, 225 GBit	5000 km per day, 512 GBit

Mission Instrument	ISS/MUSES DESIS	EnMAP HSI (2 instruments)
Off-nadir tilting	-45° (backboard) to +5° (starboard), -40° to +40°	-30° to +30°,
(across-track, along-track)	(by MUSES and DESIS)	0° (by EnMAP)
Spectral range	400 nm to 1000 nm	420 nm to 2450 nm
Spectral (res., acc.)	2.55 nm, (*)	6.5 nm, 0.5 nm (VNIR),
		10.0 nm, 1.0 nm (SWIR)
Radiometry (res., acc.)	13 bits, (*)	14 bits, 5%
Spatial (res., swath)	30 m, 30 km (@ 400 km)	30 m, 30 km
SNR (signal-to-noise)	205 (no bin.)/406 (4 bin.) @ 550 nm	500 @ 495 nm, 150 @ 2200 nm
Instrument (mass)	93 kg	350 kg
Capacity (km, storage)	2360 km per day, 225 GBit	5000 km per day, 512 GBit

Mission Instrument	ISS/MUSES DESIS	EnMAP HSI (2 instruments)
Target lifetime	2018-2023+	2022-2027
Satellite (mass,	455 t, 109.0×97.9×27.5 m ³	1 t, 3.1×2.0×1.7 m ³
dimension, usage)	(multi-purpose)	(single-purpose)
Orbit (type, local time at equator,	not Sun-synchronous, various,	Sun-synchronous, 11:00,
inclination, height, repeat cycle)	51.6°, 320 km to 430 km,	98.0°, 653 km,
	no repeat cycle	398 revolutions in 27 days
Coverage	55° N to 52° S	74° N to 74° S
Revisit frequency	3 to 5 days (average)	\leq 4 days, \leq 27 days (±5° tilting)

Ground Segment Processors

Processors at the Ground Segments

- Fully automated
- Run 'on-request' over archived data
- Two instances: one at Teledyne (Amazon Cloud), one at DLR

Products:

- Level 0 (L0)
 - Raw data
- Level 1A (L1A)
 - L0 data with correction and calibration computed and appended.
- Level 1B (L1B)*
 - Top of Atmosphere (TOA) radiance (W.m-2.sr-1.μm-1)
 - Systematic and radiometric correction (rolling shutter, keystone, smile)
- Level 1C (L1C)*
 - Level 1B data ortho-rectified, re-sampled to a specified grid
 - Global DEM, sensor model refinement using global reference image (Landsat-8 PAN with 12m CE90)
- Level 2A (L2A)*
 - Ground surface reflectance (i.e. after atmospheric corrections)
 - Smile taken into account

Ground Segment Processors

Processors at the Ground Segments

- Fully automated
- Run 'on-request' over archived data

Two instances: one at Teledyne (Amazon Cloud), one at DLR

Products:

- Level 0 (L0)
 - Raw data
- Level 1A (L1A)
 - L0 data with correction and calibration computed and appended.

• Level 1B (L1B)*

- Top of Atmosphere (TOA) radiance (W.m 2.sr-1.μm-1)
- Systematic and radiometric correction (rolling shutter, keystone, smile)

DESIS

- Level 1C (L1C)*
 - Level 1B data ortho-rectified, re-sampled to a specified grid
 - Global DEM, sensor model refinement using global reference image (Landsat-8 PAN with 12m CE90)
- Level 2A (L2A)*
 - Ground surface reflectance (i.e. after atmospheric corrections)
 - Smile taken into account

DESIS

DESIS: In-Orbit Spectral Characterization

Using on-board calibration sources (LEDs)

Pre- and post-launch characteristics Incl. temperature stability & other

- HK / telemetry data
- Using atmospheric absorption features
 - Smile pre- and post-launch

DLR.de • Chart 8 WHISPERS 2023 M. Bachmann

Central Wavelengths (nm)

DESIS: Influences on Spectral Stability

DESIS

Temperature gradient in housing (see talk by E.Carmona)

Note: FPA stabilized to 0.1k

DESIS: Influences on Spectral Stability

- Vicariously performed on DESIS Earth datatakes, L1B processing, no smile correction applied
- Shift confirmed for Oxygen absorption region (762 nm) & other wavelengths (483, 524 & 819 nm)

Left: fit for 2 datatakes with same ΔT

Right: fit for 2 datatakes with different ΔT

Correction possible based on housekeeping data, implemented in L1B processing

DESIS L2A Product

Oxygen absorption at 760 nm

Corrected in L1B processor, remaining RMS ~0.1 nm (@ ~ 2.55 nm SSI)

Approach:

- Shifting the center wavelengths at TOA_RAD
 - by +/- 0.1 nm (nominal corrected case)
 - by +/- 0.5 nm (uncorrected case)
- Process to BOA_ref using ATCOR
 - Interactive, but using same settings as DESIS L2A (PACO)
 - No smoothing nor interpolation

Remote Sens. 2015, 7, 10689-10714; doi:10.3390/rs70810689

remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing

PEN ACCES

Article

Estimating the Influence of Spectral and Radiometric Calibration Uncertainties on EnMAP Data Products—Examples for Ground Reflectance Retrieval and Vegetation Indices

Martin Bachmann^{1,*}, Aliaksei Makarau¹, Karl Segl² and Rudolf Richter¹

Corrected in L1B processor, remaining RMS ~0.1 nm (@ ~ 2.55 nm SSI)

Sidenote:

WV retrieval influenced by 2% (±0.1nm) resp. 7% (±0.5nm) AOT retrieval not significantly influenced in this example.

Influence on vegetation products

Examples using

• <u>Heterogene</u> vital green forest / shrub area (yellow circle)

	Shift of +/- 0.1 nm	Shift of +/- 0.5 nm
Broadband (NDVI, SAVI, EVI)	<1%	~1%
RedEdge (Vogelmann)	<1%	~1.5%
Photochem. index (PRI)	~2%	up to 60%
Carotenoid index	<1%	~3%
Anthocyanin index	~1%	~5%

• <u>Homogene</u> dry grassland area (blue circle)

	Shift of +/- 0.1 nm	Shift of +/- 0.5 nm
Broadband (NDVI, SAVI, EVI)	<1%	~2%
RedEdge (Vogelmann)	<1%	~1.7%
Photochem. index (PRI)	~2%	~10%
Carotenoid index	<1%	~2%
Anthocyanin index	~1%	~3%

Influence on vegetation products

Examples using

• <u>Heterogene</u> vital green forest / shrub area (yellow circle)

Sł	nift of +/- 0.1 nr	n Shift of +/- 0.5 nm
Broadband (NDVI, SAVI, EVI)	<1%	~1%
RedEdge (Vogelmann)	<1%	~1.5%
Photochem. index (PRI)	~2%	up to 60%
Carotenoid index	<1%	~3%
Anthocyanin index	~1%	~5%

• <u>Homogene</u> dry grassland area (blue circle)

		-	
Shif	of +/- 0.1 nn	n Shift of +/- 0.5 nm	
Broadband (NDVI, SAVI, EVI)	<1%	~2%	
RedEdge (Vogelmann)	<1%	~1.7%	
Photochem. index (PRI)	~2%	~10%	
Carotenoid index	<1%	~2%	
Anthocyanin index	~1%	~3%	

... and now for 4x binning (~10 nm FWHM):

of +/- 0.5 nm
<< 1%
<< 1%
~4%
<< 1%
~ 1%

... and the typical relative difference

(at max. 0.5 nm shifts):

EnMAP – Focus on Vicarious Validation using Earth Datatakes

Lucinda Jetty, Australia (CIR)

Desert Playa, Peru (SWIR, PC-Transfo.)

DLR.de · Chart 21 WHISPERS 2023 M. Bachmann

EnMAP – Pre- to Post-Launch Changes

ENMAP – Spectral Stability Estimation using all Earth Datatakes

Figure 6-13 Spectral stability VNIR at 760 nm, expressed at 1 sigma; 2770 tiles

Approach:

fit of normalized TOA_rad to range of simulated spectrally shifted atm. absorption features of O2 @760 nm, CO2 @ 2060 nm

Result:

Overall good agreement with OBCA and interactive analysis

Figures:

Examples for EnMAP VNIR @ 760 nm expressed as stdev @ 1 sigma Top: Q4 2022, 2770 image tiles Bottom: Q2 2023, 6434 image tiles

1st mission quaterly report – https://www.enmap.org/mission/

EnMAP – Las Vegas Lights at Night

Actual TOA_rad EnMAP (solid) Vs. SpecLib by C. Elvidge Example: HPS – high pressure sodium lamp

EnMAP top-left: CIR day top-right: broad-band RGB night right: night-time image spectra (noise-surpressed)

German Aerospace Center (DLR), Earth Observation Center (EOC), Münchener Str. 20, 82234 Weßling, Germany * Author to whom correspondence should be addressed.

Remote Sens. 2023, 15(16), 4025; https://doi.org/10.3390/rs15164025

EnMAP – Changes in Instrument & Data Products

 SWIR band configuration changed on July 5, 2023, as requested by users & EnSAG

• Important:

when addressing by band number (and not by wavelengths), then SWIR bands #45 to #75 (full cube bands #136 to #167) are shifted by one band between periods before / after 05.07.2023

Conclusions

- DESIS is well-calibrated to RadCalNet (for most bands < 5% @ TOA) and cross-checked to S2 / 8
 - Aging is tracked within calibration updates, less accurate for shorter wavelengths (< 450 nm)
 - Fringing remains a problem to some degree (> 850 nm)
 - Spectral shifts are handled within processor
 - Be cautious when analyzing the first 10 bands, as these contain defects
- Data products (L1B, L1C, L2A) are validated (internally and externally)
 - Striping, spectral smile and rolling shutter corrections in place
 - Geolocation is typically in subpixel range (RMSE with respect to Landsat 8 OLI: x and y << 25m; N=177 scenes)
 - But: if no GCPs found, could be off by 15-30 pixels => check metadata entry!
- Remaining uncertainty of radiometric and spectral calibration
 is relatively small
 - Further improves when binning / spectral resampling is applied

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

	sensors	/
Article Data Eartl Kevin A Raquel	Products, Quality and Validation of the DLR h Sensing Imaging Spectrometer (DESIS) Nonso ¹ ⁽⁰⁾ , Martin Bachmann ² ⁽⁰⁾ , Kara Burch ³ , Emiliano Carmona ¹ , Daniele Cerra ¹ ⁽¹⁾ de los Reyes ¹ ⁽⁰⁾ , Daniele Dietrich ² ⁽⁰⁾ , Uta Heiden ² ⁽⁰⁾ , Andreas Hölderlin ⁴ , Jack Icker or de ¹ David Krutz ⁷ ⁽⁰⁾ , Heath Lester ⁵ , Rupert Miller ^{1,4} ⁽⁰⁾ , Mary Pagnutti ³ , and Mirco Tegler ²), s ⁵ ,
Peter R	Earth Resources Observation and Science (EROS) Cal/Val Center of Excellence	
	System Characterization Report DLR Earth Sensing Imaging Spectrometer (DESIS)	
	Remote Sensing of Environment 294 (2023) 113632 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse	Remote Sent Envertion
ELSEVIER The EnM Tobias Stor	AP imaging spectroscopy mission towards operations rch ^{a,*} , Hans-Peter Honold ^e , Sabine Chabrillat ^{g,h} , Martin Habermeyer ^a , Paul Tucker ^e , Paul ^g , Ans-Peter Honold ^e , Sabine Chabrillat ^{g,h} , Martin Bare e, Michael Korbland	Check for updates

MDPI

For updates, please check:

https://www.enmap.org/mission/

https://www.dlr.de/eoc/desktopdefault.aspx/tabid-13614/