LINEAR SPECTRAL UNMIXING FOR LARGE SPACEBORNE HYPERSPECTRAL DATASETS -CHALLENGES AND SOLUTIONS FOR THE AUTOMATED DLR FCOVER CHAIN

Martin Bachmann¹, David Marshall¹, Kevin Kühl¹, Frederic Schwarzenbacher² and Sarah Asam¹

¹ DLR-EOC Earth Observation Center

² Topodat[®], Koenig, Schwarzenbacher & Will GbR

Rationale

- Linear spectral unmixing can be highly accurate
 - If all End-Members (EM) are known
 - If spectral variability of EMs is included in mixture model (MESMA)

Vital Vegetation e.g., Opuntia ficus-indica, Chamaerops humilis

Dry / Dead Vegetation e.g., Stipa tenacissima, S. capensis

Bare Soil e.g., Regosole, Leptosole

Azerbaijan, Degradation of grasslands

USS PUR

DLR

Rationale

- Linear spectral unmixing is highly accurate
 - If all End-Members (EM) are known
 - If spectral variability of EMs is included in mixture model (MESMA)
- But in real-life:
 - Not all EM are known
 - If strictly tile-based: EM change between tiles
 - Some EM are already mixtures
 - Some combinations of EM result in ill-conditioned mixing model
 - View angle effects generally limit accuracy

Rationale

- Linear spectral unmixing can be highly accurate
 - If all End-Members (EM) are known
 - If spectral variability of EMs is included in mixture model (MESMA)
- But in real-life:
 - Not all EM are known
 - If strictly tile-based: EM change between tiles
 - Some EM are already mixtures
 - Some combinations of EM result in ill-conditioned mixing model
 - View angle effects generally limit accuracy
- Resulting in:
 - Reduced overall accuracy
 - Variable accuracy over scene
 - Bordering effects between tiles

Linear Spectral Mixture Model

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Ax = b

Where

 a_{mn} : reflectance of EM n in band m

b_m: measured reflectance in band m

x_m: abundance for EM n

A: m*n EM-matrix

x: abundance vector for n EMb: measured spectrum in m bands

Overdetermined problem,
solving by Least-Squares
approximation, e.g.
$$x = A^+b$$
 where $A^+ = (A^TA)^{-1}A^T$ plus constraints (sum-to-one, non-neg.)

Where Linear Spectral Mixture Model $\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \end{pmatrix} \begin{pmatrix} x_1 \end{pmatrix}$ $\int b_1$ a reflectance of FM n in band m NPV PV Soil EM-Variabilität – PV EM-Variabilität - Boden EM-Variabilität - NPV 7000 5000 [001*%] tanz [%+100] [%*100] 4000 Reflektanz 3000 1000 2 3000 C 2000 Reflekt 1000 1000 1.0 1.5 Wellenlänge [µm] 2.0 1.0 1.5 Wellenlänge [μm] Wellenlänge [μ m]

1-to-one, non-neg.)

Linear Spectral Mixture Model

1	(a ₁₁	a_{12}		a_{1n}	$\begin{pmatrix} x_1 \end{pmatrix}$		$\begin{pmatrix} b_1 \end{pmatrix}$	
	a ₂₁	a_{22}		a_{2n}	<i>x</i> ₂		b_2	
	:	:	۰.	:	:	=	:	
	<i>a</i> _{m1}	a_{m2}		a _{mn})	$\left(x_n \right)$		b_m	

Ax = b

Where

a_{mn}: reflectance of EM n in band m

b_m: measured reflectance in band m

x_m: abundance for EM n

A: m*n EM-matrix

x: abundance vector for n EMb: measured spectrum in m bands

```
Overdetermined problem,
solving by Least-Squares
approximation, e.g. x = A^+b where A^+ = (A^TA)^{-1}A^T plus constraints (sum-to-one, non-neg.)
```

✓ Multiple Endmember Spectral Mixture Analysis

Particular **EMs used** to model a pixel and **number of EMs** (i.e., **matrix A**) varies on a **per-pixel** basis Usually model with smallest RMS error selected

More materials and spectral variability of EM included

Background – Accuracy of Image EMs

Test case based on synthetic scenes

(pure field spectra from 3 campaigns in Spain, Namibia plus: MEDSPEC, JHU SpecLib, ECOSTRESS)

- SMACC (Sequential max. angle convex cone) on pre-segmented image
- Additional EMs included after 1st unmixing iteration
- ~70% of all EM could be automatically retrieved But: incorrect spectra also detected!
- Subsequent automated EM classification in 3 classes (PV NPV Soil)
 - In simulations: ~93% correctly classified EM
- Consequences:

30% of EM missing ~1 in 10 EM is incorrect

Usually an incorrect and incomplete mixture model

Challenges & Solutions (I)

- Now what can we do to improve the situation?
 - Take advantage of EM-derivation over multiple tiles: SSEE (Rogge et al.)
 - Exclude linear dependencies in mixture model
 - Select mixture models which are "reasonable"
 - Identify mixture models which are likely to be wrong
 - Address general limitations view angle effects
 - Use an appropriate shade component
 - Improve solving algorithms

• ...

- ... and explicitly include a per-pixel reliability score
- Presenting one approach: automated fCover unmixing

Addressing Numerical Problems

- Matrix inversion may result in numerical problems!
 - Linear dependencies between spectrally similar classes

- Higher number of EM higher probability of linear dependencies
- Result: ill-conditioned problem

Thus: check condition number κ of EM-Matrix A:

 $\kappa = ||A|| ||A^{-1}||$ where || denotes the euklidian L2-norn

Exclude EM combinations which result in ill-conditioned problem
 For the mentioned SpecLibs: >10% of all mixing models
 (esp. combination of Dry Veg. – Soil)

Model selection in standard MESMA: **RMS Error** (i.e., goodness of fit) Some improvements in μ MESMA:

- Integrate information from spatial dimension
 Soil type -and thus soil EM- unlikely to change between pixels. Thus: check, if unmixing error significantly increases when using dominant soil EM in spatial neighborhood
 - → Take advantage of spectroscopic data
 - Automated residual analysis
 - Check residual spectra for diagnostic absorption features
 - Identify & parameterize these features

Increased stability against incorrect EM

Identify Error-Prone Pixels

- Linear Spectral Unmixing already offers measure for "goodness of fit", i.e. the model RMSE
- Improved detection of pixels which are likely error-prone based on:
 - Residual analysis & weighted model RMSE
 - Agreement with empirical regression models between cover % and band indices
 - Critical local incidence angle
- L2 data quality flags (from pre-processing)

Data Preparation	Mask erroneous pixels, mask unwanted materials, filter image
Endmember Extraction	Detect and extract potentially pure pixel spectra
Endmember Identification	Cluster and identify these spectra, group into PV, NPV, SOIL, and remove redundant spectra
Spectral Unmixing	Calculate ground cover fractions ("abundances") for PV, NPV, SOIL
Output Generation	Generate additional unmixing-related products (classification by EM maps, reliability, statistics,)
C-Factor Generation	"Translate" abundance images into C-Factors

can DESIS separate between NPV & soil ?

... but wait:

600

700 Wavelengths [nm]

900

1000

800

0

400

500

... but wait:

DESIS single pixel spectra of PV (pre-proc), NPV & soil

processed

fCover for DESIS data – simulations

Validation using simulated fractal scenes

0.75

0.50

- 0.25

0.75

0.50

- 0.0

-0.5

-1.0

An automated operational processor for the determination of fractional vegetation cover from DESIS observations

D. Marshall^{1*}, M. Bachmann¹, M. Habermeyer¹, U. Heiden², S. Holzwarth¹, T. Schmid³

fCover for DESIS – Azerbaijan Results

MDPI

Note:

- Field measurements: 296 samples from August & Oct. 2018 (different years!)
- Living biomass, pot. vegetation & other parameters sampled, so MESMA classes are combined

sensors

Article

Detection of Grassland Degradation in Azerbaijan by Combining Fractional Cover Estimates Based on DESIS Data with Multi-Decadal Landsat NDVI Time Serie

Sarah Asam 1,*, Frederic Schwarzenbacher², David Marshall¹, and Martin Bachmann¹

fCover for DESIS – Azerbaijan Results

Sarah Asam ^{1,*}, Frederic Schwarzenbacher², David Marshall¹, and Martin Bachmann¹

Summary – challenges and solutions

- EM variability and inherent between-class EM similarity
 - MESMA & check for ill-conditioned mixture models
- EM derivation in large datasets
 - SSEE spawning multiple tiles
 - EM labeling using RF classifiers trained on field SpecLibs
 - ... but it's never 100% accurate !
- Identification of likely incorrect abundances
 - Include per-pixel reliability model and residual analysis
- Soil & NPV separation with DESIS
 - Indeed some potential, but better combine after unmixing to PV-cover
 - EnMAP, PRISMA and EMIT cover the SWIR with diagnostic NPV & soil features
- EM labeling, reduction of EM set <=> computation times
 - Work in progress...

Land Degradation – Sustainable Development Goal (SDG)

DLR SDG decided by the UN General Assembly in September 2015, came into effect January 2016

Land Degradation – SDG 15.3

SUSTAINABLE GOALS

15 LIFE ON LAND

	KNUWLEDGE	PLAIFURM										
HOME	SDGS	HLPF	STATES	SIDS	UN SYSTEM	STAKEHOL	DERS	TOPICS	PARTNERSHIPS	RESOURCES	ABOUT	
TARGET	S						IN	DICATORS				
15.1	By 2020, ensure the conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems and their services, in							Forest are	a as a proportion of	total land area		
	particular forests, wetlands, mountains and drylands, in line with obligations under international agreements						15.1.2	Proportion of important sites for terrestrial and freshwater biodiversity that are covered by protected areas, by ecosystem type				
15.2	By 2020, promote the implementation of sustainable management of all types of forests, halt deforestation, restore degraded forests and substantially increase afforestation and reforestation globally						15.2.1	Progress t	towards sustainable	forest manageme	ent	
15.3	By 2030, land affe a land de	combat des ected by des egradation-i	ertification, r ertification, d neutral world	estore degi rought and	raded land and so floods, and strive	il, including to achieve	15.3.1	Proportion	n of land that is degr	raded over total la	and area	
15.4	15.4 By 2030, ensure the conservation of mountain ecosyster biodiversity, in order to enhance their capacity to provid			in ecosystems, ind ty to provide ben	ns, including their e benefits that	15.4.1	Coverage biodiversi	by protected areas o ty	of important sites	for mountain		
	are essential for sustainable development					15.4.2	Mountain	Green Cover Index				

fCover – Products & applications

Products & Applications: Cabo de Gata (PhD Martin)

Bedeckungsgrad – PV

Bedeckungsgrad – NPV

Bedeckungsgrad – Boden

Bewertung der Güte

Products & Applications: Cabo de Gata (PhD Martin)

Anteil an offenliegendem Boden

... mit empirischer Korrektur

Products & Applications: Cabo de Gata (PhD Martin)

Validierung:

 Nutzung spektraler Bibliotheken zur Simulation von ~80.000 Mischmodellen Feldmessungen aus CdG, Calanas, Namibia, MEDSPEC (JRC), USGS & Johns Hopkins U.

	Mittlerer	Davon	R^2	Anteil in Prozent - Modelle mit		
	Fehler*	EM-Fehler**		Fehler unter 3%	Fehler über 10%	
PV	5,2	3,2 (62%)	0,88	63	16	
NPV	7,9	3,9 (49%)	0,73	52	23	
Boden	6,9	4,0 (58%)	0,80	56	25	

Products & Applications: Aserbaidschan (w. Sarah & David)

