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▪ But in real-life:

▪ Not all EM are known

▪ If strictly tile-based: EM change between tiles

▪ Some EM are already mixtures

▪ Some combinations of EM result in ill-conditioned 

mixing model

▪ View angle effects generally limit accuracy

▪ Resulting in:

▪ Reduced overall accuracy

▪ Variable accuracy over scene

▪ Bordering effects between tiles



Background – Linear Spectral Unmixing

▪ Linear Spectral Mixture Model Where 

amn: reflectance of EM n in band m

bm:  measured reflectance in band m
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Multiple Endmember Spectral Mixture Analysis

Particular EMs used to model a pixel and number of EMs (i.e., matrix A)
varies on a per-pixel basis

Usually model with smallest RMS error selected

More materials and spectral variability of EM included



Background – Accuracy of Image EMs

▪ Test case based on synthetic scenes
(pure field spectra from 3 campaigns in Spain, Namibia plus: MEDSPEC, JHU SpecLib, ECOSTRESS)

▪ SMACC (Sequential max. angle convex cone) on pre-segmented image

▪ Additional EMs included after 1st unmixing iteration

▪ ~70% of all EM could be automatically retrieved

But: incorrect spectra also detected!  

▪ Subsequent automated EM classification in 3 classes (PV – NPV – Soil)

▪ In simulations:

~93% correctly classified EM

▪ Consequences:

30% of EM missing

~1 in 10 EM is incorrect   

▪ Usually an incorrect and incomplete mixture model



Challenges & Solutions (I)

▪ Now – what can we do to improve the situation?

▪ Take advantage of EM-derivation over multiple tiles: SSEE (Rogge et al.)

▪ Exclude linear dependencies in mixture model

▪ Select mixture models which are “reasonable”

▪ Identify mixture models which are likely to be wrong

▪ Address general limitations - view angle effects

▪ Use an appropriate shade component

▪ Improve solving algorithms

▪ …

… and explicitly include a per-pixel reliability score

▪ Presenting one approach: automated fCover unmixing



Addressing Numerical Problems

▪ Matrix inversion may result in numerical problems!

▪ Linear dependencies between spectrally similar classes

▪ Higher number of EM – higher probability of linear dependencies

▪ Result: ill-conditioned problem

Thus: check condition number κ of EM-Matrix A:
κ = ||A|| ||A-1||     where || denotes the euklidian L2-norn

Exclude EM combinations which result in ill-conditioned problem

For the mentioned SpecLibs: >10% of all mixing models

(esp. combination of Dry Veg. – Soil)



Selecting Reasonable Mixture Models

Model selection in standard MESMA: RMS Error (i.e., goodness of fit)

Some improvements in µMESMA:

▪ Integrate information from spatial dimension

Soil type -and thus soil EM- unlikely to change between pixels.

Thus: check, if unmixing error significantly increases when 

using dominant soil EM in spatial neighborhood 

– Automated residual analysis

– Check residual spectra for 
diagnostic absorption features

– Identify & parameterize 
these features

Increased stability against incorrect EM 

Take advantage of spectroscopic data



Identify Error-Prone Pixels

▪ Linear Spectral Unmixing already offers measure for “goodness of fit”, i.e. the model RMSE

▪ Improved detection of pixels which are likely error-prone based on:

▪ Residual analysis & weighted model RMSE

▪ Agreement with empirical regression models between cover % and band indices

▪ Critical local incidence angle

▪ L2 data quality flags (from pre-processing)

R2 ~0.73, 

n= 61 tests, 61.000 models

Baseline for a Reliability Score
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Preparation
Mask erroneous pixels, mask unwanted materials, filter image

Detect and extract potentially pure pixel spectra

Cluster and identify these spectra, group into PV, NPV, SOIL, 

and remove redundant spectra

Calculate ground cover fractions („abundances“) for PV, NPV, SOIL

Generate additional unmixing-related products

(classification by EM maps, reliability, statistics, …)

„Translate“ abundance images into C-Factors
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SavGol)

Pre-Clustering 
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Spectral Identification

(RandomForest or
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EM Redundancy
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Generate outputs

(scale_after_unmix , 

local_incidence, …)

Soil degradation

models

Reconstruct_Soil, 
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Linear Spectral

Unmixing

(µMESMA)

Configuration:

- Solver: unconstrained, bound-constr., weighted

- Optimization criteria: RMSE, residual analysis, 

colinearity check, combined

- Components: 2, 3 & 4-EM, shade component, 

sim. soil shading

- Inclusion of spatial neighborhood information

- Correction of local incidence angle (model)

- Sensor-optimization: bad-band-lists, smoothing, ….

- Reliability score 
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… but wait:
can DESIS separate between NPV & soil ?

DESIS

single pixel

spectra

of

PV (pre-proc), 

NPV & 

soil



fCover for DESIS data – simulations

▪ Validation using simulated

fractal scenes
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Note:

• Field measurements: 296 samples from

August & Oct. 2018 (different years!)

• Living biomass, pot. vegetation & other

parameters sampled,

so MESMA classes are combined



fCover for DESIS – Azerbaijan Results

 MAE SD of absolute errors 

PV (run 1 – 2EM) 8.13 10.97 

PV scaled (run 1 – 2EM) 8.52 7.63 

PV (run 2 – 3EM) 11.74 11.80 

PV scaled (run 2 – 3EM) 13.88 14.32 

 1 

Note:

• Field measurements: 296 samples from

August & Oct. 2018 (different years!)

• Living biomass, pot. vegetation & other

parameters sampled,

so MESMA classes are combined



Summary – challenges and solutions

▪ EM variability and inherent between-class EM similarity

▪ MESMA & check for ill-conditioned mixture models

▪ EM derivation in large datasets

▪ SSEE spawning multiple tiles

▪ EM labeling using RF classifiers trained on field SpecLibs

▪ … but it‘s never 100% accurate !

▪ Identification of likely incorrect abundances

▪ Include per-pixel reliability model and residual analysis

▪ Soil & NPV separation with DESIS

▪ Indeed some potential, but better combine after unmixing to PV-cover 

▪ EnMAP, PRISMA and EMIT cover the SWIR with diagnostic NPV & soil features

▪ EM labeling, reduction of EM set <=> computation times

▪ Work in progress…
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Land Degradation – Sustainable Development Goal (SDG)

SDG 

decided by 

the UN 

General 

Assembly in 

September 

2015, came

into effect

January

2016



Land Degradation – SDG 15.3



▪ fCover – Products & applications



Products & Applications: Cabo de Gata (PhD Martin)

Bedeckungsgrad – PV Bedeckungsgrad – NPV Bedeckungsgrad – Boden 

Bewertung 

der Güte



Products & Applications: Cabo de Gata (PhD Martin)

Anteil an offenliegendem Boden

… ohne Korrektur … mit empirischer Korrektur   

Lokaler Einfallswinkel – Übergang zu bewegtem Relief 



Products & Applications: Cabo de Gata (PhD Martin)

▪ Validierung:

▪ Nutzung spektraler Bibliotheken zur Simulation 

von ~80.000 Mischmodellen 

Feldmessungen aus CdG, Calanas, Namibia, 

MEDSPEC (JRC), USGS & Johns Hopkins U.
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Products & Applications: Aserbaidschan (w. Sarah & 
David)

Aserbaidschan,
Degradation of grasslands

EnMAP fCover
Prozessor


