
A rate-compatible solution to the set reconciliation
problem

Francisco Lázaro, Balázs Matuz
Institute of Communications and Navigation of DLR (German Aerospace Center),

Wessling, Germany. Email: {Francisco.LazaroBlasco, Balazs.Matuz}@dlr.de

Abstract—We consider a set reconciliation setting in which
two parties hold similar sets that they would like to reconcile.
In particular, we focus on set reconciliation based on invertible
Bloom lookup tables (IBLTs), a probabilistic data structure
inspired by Bloom filters. IBLT-based set reconciliation schemes
have the advantage of exhibiting low computational complexity,
however, the schemes available in the literature are known to
be far from optimal in terms of communication complexity
(overhead). The inefficiency of IBLT-based set reconciliation can
be attributed to two facts. First, it requires an estimate of the
cardinality of the difference between the sets, which implies
an increase in overhead. Second, to cope with uncertainties in
the estimation of the cardinality of the set difference, IBLT
schemes in the literature oversize the data structures, thus further
increasing the overhead. In this work, we present a novel IBLT-
based set reconciliation protocol that does not require estimating
the cardinality of the set difference. The proposed scheme relies
on what we termed multi-edge-type (MET) IBLTs. The simulation
results illustrate that the novel scheme outperforms state-of-
the-art IBLT-based approaches to set reconciliation in terms of
communication cost, i.e., in terms of the number of bits to be
exchanged.

I. INTRODUCTION

A. Motivation and Problem Description

Set reconciliation problems arise frequently in distributed
systems with multiple copies of data across different nodes.
Examples are redundant distributed databases, such as Ama-
zon’s Dynamo [1] or Apache Cassandra [2], in which copies of
the same database are stored in multiple data centers (nodes).
Whenever a new entry is added to or deleted from the database,
the change is propagated to all the nodes in the system. This
may, however, fail in some situations, for instance when some
of the nodes are unavailable due to a hardware failure, or
when communication is impaired by network congestion. The
task of restoring the consistency among different copies of
the database can be cast as a set reconciliation problem. Set
reconciliation protocols find also applications in distributed
storage systems and remote file synchronization. For the latter
application, the simplest configuration consists of a setup with
two copies of a file at different network locations. When one
of the copies is updated, one would like to update the other
copy, while transmitting as little data as possible to the remote
network location. This problem can be converted to a set
reconciliation problem by relying on tools from graph theory
[3]. Set reconciliation protocols can also be applied in gossip-
spreading protocols [4]. Recently, similar techniques have been
proposed to address the problem of block propagation in a

cryptocurrency network [5], as well as to synchronize the
mempools1 of nodes in the Bitcoin network [6].

In its simplest form, the set reconciliation problem can be
described as follows. Two hosts A and B possess (possibly)
different sets, SA and SB , respectively. The goal is to de-
termine the set difference ∆ between the two sets, i.e., the
set of elements that are present in the union of SA and SB ,
but not in their intersection, ∆ = (SA ∪ SB) \ (SA ∩ SB).
To reconcile their sets, A and B exchange information and
perform certain computations. Thereby, both communication
complexity (overhead) and computational (time) complexity
shall be kept as small as possible. Intuitively, when the
cardinality of the set difference δ = |∆| is large, A and
B may simply exchange their sets. However, this solution
turns out to be highly sub-optimal when δ is small. In this
case, more sophisticated algorithms can be applied to reduce
communication complexity.

A common approach to set reconciliation (and other similar
problems) is the use of log files. The prerequisite here is
the existence of a so-called prior context between the parties
involved in the protocol. In our setting, this translates to
the assumption that sets SA and SB were synchronized (i.e.,
identical) at a previous point in time τ . After that, both hosts
keep track respectively of all the changes in their sets by using
local log files. After d units of time have elapsed, i.e., at time
τ + d, the two sets can be reconciled relying on the log files.
While being simple, the use of log files becomes inefficient
when the network connectivity is bad, the storage medium is
unreliable, or when changes to the sets SA and SB happen
very frequently. Finally, these schemes do not scale well in
multi-party settings (when one aims at synchronizing more
than 2 sets), given that they require the existence of prior
context between all pairs of nodes. Our focus instead will be
on context-free set reconciliation.

B. Related Works

Fundamental limits for one-way set reconciliation, i.e.,
when one single communication message is allowed, were
studied in [7]. Let the elements in SA and SB be ℓ bit vectors,
i.e., SA,SB ⊂ {0, 1}ℓ, and let an upper bound t to the
cardinality (or size) of the set difference δ = |∆| be known,
i.e., δ ≤ t. Then, exact set reconciliation requires transmitting
∼ tℓ bits. In contrast, when no upper bound is known, exact
set reconciliation requires transmitting the whole set. Given an
upper bound t to the set difference δ, set reconciliation can be

1A mempool is a database of pending Bitcoin transactions, which have not
yet been written into the Blockchain.

carried out relying on a binary code of length 2ℓ which can
correct t errors. This solution is shown to have an optimal
communication complexity when using a perfect code [7].
However, it requires working with a code of length 2ℓ which is
impractical for the values of ℓ required by most applications.

In [8] a scheme based on characteristic polynomial interpo-
lation (CPI) was proposed which achieves nearly optimal com-
munication complexity. In particular, when an upper bound t
to the size of the set difference δ is known, exact set reconcilia-
tion is possible with communication complexity ∼ tℓ and time
complexity O(t3). When an upper bound to δ is not known,
[8] proposes an approximate2 set reconciliation scheme. In this
case, the scheme requires an additional feedback message and
is thus no longer a one-way reconciliation protocol. Instead,
we have a reconciliation scheme that requires one round of
communication. This approximate scheme has communication
complexity ∼ δℓ and time complexity O(δ4).

In [9] a low-complexity approximate set reconciliation
scheme based on invertible Bloom lookup tables (IBLTs)
was proposed, which also requires one communication round.
In brief, an IBLT [10] is a probabilistic data structure that
supports the insertion and deletion of set elements, as well
as listing of all the elements contained in the IBLT, provided
that the number of elements in the IBLT is not too large (a
formalization of these concepts follows in Section II). From
a data structure point of view, an IBLT can be broken down
into cells, which have size ∼ ℓ+ log ℓ. When an upper bound
to the size of the set difference is known, the communication
complexity of IBLT-based set reconciliation is ∼ c t(ℓ+log ℓ),
where c ≈ 1.22, and the time complexity is O(t(ℓ + log ℓ))
[10].

IBLT-based set reconciliation requires inverting an IBLT, an
operation that is identical to erasure decoding [11]. As such,
different IBLT designs have been proposed in the literature
which are akin to different erasure code designs. The original
construction in [9] relies on regular invertible Bloom lookup
tables (IBLTs) in which each set element is mapped into the
same number of IBLT cells. By moving to irregular IBLTs
it is possible to improve the constant c. In particular, it
was first shown in [12] that c = 1.09 can be achieved by
relying on irregular IBLTs with two different degrees. In [13]
a density evolution analysis of arbitrary irregular IBLTs was
presented which allows computing c and thus optimizing the
irregular IBLT. Furthermore, relying on results for random
access protocols [14], it was argued that IBLTs with constants
c arbitrarily close to one can be found.

A shortcoming of IBLT-based set reconciliation [9] is the
fact that it requires knowledge of an upper bound t to the
size of the set difference δ. In most cases, rather than an
upper bound to δ, an (imperfect) estimate of δ is available,
denoted by δ̂. Obtaining this estimate usually requires an
additional communication round between the hosts, which
represents an additional overhead [9]. In practice, the estimated
set difference size δ̂ can substantially differ from the actual

2By approximate it is meant that the scheme may fail, so that the parties
wrongly believe that their sets are reconciled, but they are actually not. In
practice, the scheme can be designed to make this failure probability arbitrarily
low, at the cost of an increase in the communication cost.

one δ. Intuitively, an over-estimation (δ̂ > δ) results in an
oversizing of the IBLT and thus in an unnecessarily high
communication cost, whereas an under-estimation (δ̂ < δ)
results in a high probability of failure of the set reconciliation
algorithm. To reduce the probability of a failure, [9] considers
an oversizing of the IBLT. Additionally, a larger IBLT can be
sent upon a failure, attempting set reconciliation using only
this second IBLT. This approach is inefficient since it discards
the first exchanged IBLT. This inefficiency was identified in
[5], where it was proposed to use the two IBLTs to reconcile
the sets, reducing the communication cost.

Both CPI and IBLT-based set reconciliation assume that
elements in SA and SB have all equal length, i.e., that they
are length-ℓ bit vectors. However, in some applications, the
set elements might have variable lengths. For example, the
set elements might be encoded using strings of length ranging
between ℓmin and ℓmax bits. In this case, a possible workaround
is padding all elements to the maximum length ℓmax. This
yields an increase in the overhead (communication cost).
Alternatively, one may rely on other techniques for approxi-
mate set reconciliation protocols that can inherently deal with
variable-length data. Multiple such approaches exist based
on so-called approximate set membership data structures. In
[15] a low-complexity multi-round protocol based on the
exchange of Bloom filters was proposed. Protocols based on
the exchange of counting Bloom filters and Cuckoo filters were
proposed in [16] and [17], respectively. In [18] approximate set
reconciliation protocols based on the exchange of hash lists,
Bloom filters, and Merkle trees were proposed and compared.
For a comparison of the different set reconciliation protocols
in different practical settings, we refer the reader to [6].
C. Contribution

In this work, we introduce a novel approach to IBLT-based
set reconciliation. In contrast to previous works, our approach
does not require an upper bound to (or an estimate of) the size
of the set difference δ. Our work borrows ideas from fountain
codes [19]. In particular, we let the transmitter (say host A)
send the cells of the IBLT one by one. After receiving some
cells, the receiver (host B) can attempt to reconcile the sets. If
set reconciliation fails, the receiver simply waits for more cells
and re-attempts set reconciliation. When set reconciliation
is successful, the receiver sends an acknowledgment to the
transmitter so that it stops sending cells. This approach spares
the overhead necessary for set difference estimation which is
considerable, especially when the set difference is small [9].
To fully exploit the advantages of our approach, we introduce
a novel IBLT structure which we term multi-edge-type (MET)
IBLT. This novel data structure borrows ideas from rate-
compatible codes, in particular from MET low-density parity-
check (LDPC) codes [20]. The main advantage of the adoption
of a MET structure is that it allows increasing the number of
IBLT cells on demand while still being able to list all the
elements with high probability. This is akin to the feature
of rate-compatible codes of operating close to capacity at
multiple code rates.

The remaining part of the paper is structured as follows.
In Section II we introduce the basics of MET IBLTs. In
Section III we develop an analysis to assess the communication

efficiency of MET IBLTs. We sketch a flexible set reconcilia-
tion protocol using MET IBLTs in Section IV followed by a
design example in Section V and complementary simulation
results. Section VI provides a discussion of the contribution.

II. MULTI-EDGE-TYPE INVERTIBLE BLOOM LOOKUP
TABLES

A. Definitions

We first introduce a few definitions.

Definition 1 (Key-value pair). A key-value pair z is a data
structure composed of two fields, a key x of length ν bits and
a value y of length κ bits, where typically κ ≫ ν. The key x
is obtained as a function of y, x = g(y) where the mapping
is many to one.3

The term key-value pair has its origin in the field of database
systems. In particular, in a so-called key-value database every
database entry is a key-value pair. In this context, the key can
be thought of as a short (unique) identifier of an element in
the database, whereas the value is the actual data which can
be orders of magnitude larger than the key. In our case, every
key-value pair will represent a set element, and we will assume
that the key associated with a set element is obtained as a hash
function of the set element’s value.

Definition 2 (Cell). A cell c is a data structure containing
two different fields, data and count where:

• data =(data.x, data.y) is a bit string of length ν+κ. The bit
strings data.x and data.y contain, respectively, the binary
XOR of the keys and values that have been mapped to
the cell.

• count is an integer. It contains the number of key-
value pairs that have been mapped to this cell (see
Section II-B).

Definition 3 (IBLT). An invertible Bloom lookup table (IBLT)
is a data structure that is used to represent a set of key-
value pairs. Formally, it consists of an array of m cells
c =

[
c1 c2 . . . cm

]
. The choice of the hash functions

(Section II-B) determines how key-value pairs are mapped into
the IBLT cells.

IBLTs support multiple operations, such as the insertion and
deletion of key-value pairs, as well as the listing of all inserted
key-value pairs (with high probability). For simplicity, and
for being consistent with the literature, we will sometimes
abuse c to refer to the IBLT itself, rather than only to its m
cells. Furthermore, we will sometimes say that we ‘transmit
an IBLT’ when we actually mean that we transmit the array
of cells c.

Definition 4 (MET IBLT). A multi-edge-type (MET) IBLT is
a generalization of an IBLT that assigns different labels or
types to key-value pairs and cells.

The notion of types allows putting specific constraints on
the mapping of key-value pairs to cells. From a data structure

3This means that key collisions are in principle possible. However, by
choosing ν large enough, one can make the key collision probability small
enough for practical applications.

point of view, introducing a MET structure allows addition of
new groups of cells on demand. Furthermore, by judiciously
choosing the hash functions used to map key-value pairs
into cells we can improve the performance of the recovery
operation of our data structure (see Section III). In Section V
we will highlight the advantages of MET IBLTs used for set
reconciliation compared to unstructured IBLTs which can be
seen as a MET IBLT with one single key-value pair type and
one single cell type.

B. MET IBLT Description

We assign to each cell and key-value pair a label referred
to as type which will play a role in how the mapping of key-
value pairs into cells is done. Let dc be the number of different
cell types, mi, i ∈ {1, 2, . . . , dc} be the number of cells of
type i, and m =

∑
i mi be the length (number of cells) of

the MET IBLT. For convenience, we assume that the cells are
ordered according to their type, so that cells c1, c2, . . . , cm1

are of type 1, cells cm1+1, cm1+2, . . . , cm1+m2
are of type 2,

and so forth.
Further, let the total number of different key-value pair

types be dd. The type of a key-value pair z is determined
by applying a hash function hp(z.x) to the key z.x, where
hp(z.x) = j maps an input z.x ∈ {0, 1}ν to an output
j ∈ {1, 2, . . . , dd}. This hash function is parameterized by
the probability vector p =

[
p1 p2 . . . pdd

]
. The vectors[

1 2 . . . dd
]

and p describe a probability mass function
(p.m.f.), the so-called type distribution. In particular, under
the assumption that the input z.x is uniformly distributed, the
output of hp(z.x) samples the type distribution.

The mapping of a key-value pair of type j to cells of
type i is achieved through the hash function Hm,dj

(·). It
is parameterized by m =

[
m1 m2 . . . mdc

]
and dj =[

d1,j d2,j . . . ddc,j

]
and is used to sample at random

di,j cells of type i into which the key-value pair of type j
is mapped. The function outputs a vector g = Hm,dj (z.x) of
length

∑dc

i=1 di,j , which contains di,j indices of cells of type i

(where the indices are between 1+
∑i−1

k=1 mk and
∑i

k=1 mk).

Example 1 (Hash function Hm,dj
). Assume m =

[
2 3 5

]
and dj =

[
1 1 2

]
. We have m1 = 2 cells of type 1, m2 = 3

cells of type 2 and m3 = 5 cells of type 3. Hence, indices 1 and
2 are associated with cells of type 1. Indices 3, 4, and 5 are
associated with cells of type 2, and indices 6, 7, 8, 9, and 10
are associated with cells of type 3. The hash function returns
4 indices in total, one index associated with a cell of type 1,
one index associated with a cell of type 2, and two indices
associated with cells of type 3. For a first key x1, the hash
function Hm,dj

(x1) may return Hm,dj
(x1) =

[
1 4 7 9

]
.

For a second key x2, the hash function Hm,dj (x2) may return
Hm,dj (x2) =

[
2 3 6 7

]
.

MET IBLTs support different operations that are discussed
in more detail in the next sections:

• Initialize(). This operation sets the different fields of all
the cells in the IBLT to zero (see Algorithm 1).

Algorithm 1 Initialization
procedure INITIALIZE()

for i = 1, 2, . . . ,m do
ci.count = 0
ci.data = 0

Algorithm 2 Insertion
procedure INSERT(z)

j ← hp(z.x)
g ← Hm,dj (z.x)
for k = 1, 2, . . . , length(g) do

cgk .count = cgk .count + 1
cgk .data = XOR (cgk .data, z)

Algorithm 3 Deletion
procedure DELETE(z)

j ← hp(z.x)
g ← Hm,dj (z.x)
for k = 1, 2, . . . , length(g) do

cgk .count = cgk .count− 1
cgk .data = XOR (cgk .data, z)

Algorithm 4 Recovery
procedure RECOVER()

while ∃i ∈ [1,m]|ci.count = 1 do
add z = ci.data to the output list
call Delete (z)

• Insert(z). The insertion operation adds the key-value
pair z to the IBLT following certain mapping rules (see
Algorithm 2).

• Delete(z). The deletion operation removes the key-value
pair z from the IBLT (see Algorithm 3).

• Recover(). This operation aims at listing all key-value
pairs stored in the IBLT. If this operation provides the full
list of key-value pairs in the IBLT, we say it succeeds,
else it fails (see Algorithm 4).

C. Insertion of a set S into a MET IBLT

We consider now the insertion of a set S = {z1, z2, . . . , zn}
of n elements (key-value pairs) into a MET IBLT that has been
previously initialized to zero by Algorithm 1. The elements
of S are successively inserted into the IBLT as described by
Algorithm 2: first, every element z = (x, y) is assigned a data
node type j = hp(z.x). Next, the hash function Hm,dj

(z.x)
is used to obtain a vector g that contains the indices of the
cells into which z is to be mapped, i.e., those cells whose
data field is XOR-ed with z. The respective count fields are
increased by one.

D. Recovery of the set S
The recovery operation is a low-complexity algorithm that

aims at inverting the IBLT, i.e., its goal is to recover all
the key-value pairs that have been inserted into the IBLT.
Algorithm 4 describes the simplest form of the recovery
operation. This algorithm consists of seeking cells with count
field equal to one. Such cells contain a single element z of

S, which can be directly obtained from their data field. Thus,
one can extract the element z and append it to the output list.
After that, one deletes z from the IBLT by calling Delete(z),
which effectively removes z from all the cells in which it had
been mapped and reduces the count fields by one. This process
is repeated until no more cells with count equal to one can be
found. Recovery succeeds if at the end all m cells of the IBLT
have count field equal to zero. If some cells have a non-zero
count, recovery fails.

As stated in [21], the recovery operation is an instance of
peeling decoding [22]. Peeling decoding is best understood
considering a graph representation of an IBLT. In particular,
we may represent an IBLT with m cells in which a set S of
n elements (key-value pairs) have been inserted as a bipartite
(or Tanner) graph G = (Z∪C, E) composed of a set of n data
nodes Z , a set of m cell nodes C and a set of edges E . As the
names indicate, data nodes represent key-value pairs and cell
nodes represent cells of the IBLT. A data node zi ∈ Z and
a cell node ch ∈ C are connected by an edge if and only if
zi = (xi, yi) is mapped into cell ch. A data node z and a cell
node c are said to be neighbors if they are connected by an
edge. We use the shorthand N (c) or N (z) to denote the set
of all neighbors of a cell node c or a data node z. The degree
of a node is given by the number of edges connected to the
node. Thus, the degree of a cell node equals the count field
of the cell it represents.

Example 2 (Graph representation). Figure 1 shows the graph
representation of an IBLT with m = 4 cells in which n = 3
pairs have been inserted. Key-value pair z1 is mapped into
cells c1 and c4, key-value pair z2 is mapped into cells c1 and
c2 and key-value pair z3 is mapped into cells c2 and c4. Thus,
we have count = 2 at cells c1, c2, and c4, and count = 0 in
c3.

In the graph representation of the IBLT, each key-value pair
z is represented by a data node z, shown as a circle in the
figure. Each cell c is represented by a cell node c, shown as
a square. An edge connects a data node zi to a cell node ch
if and only if zi is mapped into cell ch. For example, z1 is
connected to c1 and c4. We can also observe that the degree
of a cell node c (the number of edges attached to it) equals
the count field of the cell it represents. Thus, cell nodes c1, c2,
and c4 have degree 2, whereas c3 has degree zero.

Recovery of S can be represented as a peeling process on a
bipartite graph. In particular, whenever a cell node c of degree
one is present, its only neighbor N (c) = z is determined. The
key-value pair z which is represented by the data node z is
added to the output list. Next, the retrieved key-value pair is
deleted from the IBLT. This translates into the removal of
all edges attached to its associated data node. This process is
repeated until no more cell nodes of degree one are present.
At this stage, if all cell nodes are of degree zero, recovery
succeeded and all key-value pairs are present in the output list.
Otherwise, if some cell nodes of a degree larger than zero are
present, recovery fails, and the output list will not contain all
key-value pairs. Note that the graph structure is unknown to
the decoder, and is revealed successively during the decoding
process (see Examples 3 and 4).

Figure 1: Graph representation of an IBLT. The data nodes z

are represented by circles and the cell nodes c by squares. An
edge connects a data node zi to a cell node ch if and only if zi
is mapped into cell ch. The degree of a cell node c equals the
count field of the cell it represents. The operator ⊕ denotes a
bit-wise XOR.

Example 3 (Peeling decoding I). The different steps of the
peeling process are shown in Figure 2. Figure 2a shows the
bipartite graph representation of an IBLT before the peeling
process starts. We observe that the IBLT has m = 5 cells and
it stores n = 4 key-value pairs. However, at this stage, the
depicted bipartite graph is unknown to the decoder since it
does not have any knowledge about S. The decoder is only
aware of the m cell nodes. For this reason, the data nodes, as
well as the edges, are shown in gray. The graph structure will
be revealed successively as the recovery operation progresses,
and it will only be completely known if decoding succeeds.
Otherwise, a part of the graph will remain hidden. We can
see that cell node c3 has degree 1, and thus its associated
IBLT cell c3 has count 1. The recovery operation retrieves
the only key-value pair that has been mapped to cell c3,
i.e., data node z2, which is added to the output list of the
recovery operation. Afterwards, z2 is deleted from the IBLT. In
the graph representation, this translates to revealing the only
neighbor of cell node c3, data node z2 (now shown in black),
and deleting all edges attached to it, as shown in Figure 2b.
As a consequence, the degree of c1 becomes one. In the next
step, as shown in Figure 2c, the only neighbor of c1, z1, is
revealed and all edges attached to it are removed. This reduces
the degree from c4 from 2 to 1. Then, data node z4 is revealed
since it is the only neighbor of c4. After all the edges attached
to z4 are removed, as shown in Figure 2d, we have two cell
nodes of degree 1, namely c2 and c5, both of which have as
only neighbor z3. In the last step shown in Figure 2e, z3 is
revealed as the only neighbor of c2. Finally, all edges attached
to z3 are erased from the graph. In this example, the recovery
operation succeeded, and set S was completely recovered.

Example 4 (Peeling decoding II). Consider now the applica-
tion of peeling decoding to the graph in Figure 1. In contrast
to Example 3, peeling decoding now fails. It cannot even get
started since there are no cells with count 1, i.e., there are no
cell nodes of degree 1.

(a) ι = 0 (b) ι = 1

(c) ι = 2 (d) ι = 3

(e) ι = 4

Figure 2: Peeling process on the graph representation of an
IBLT with n = 4 key-value pairs and m = 5 cells. The index
ι is used to denote the different steps of the recovery process.
The data nodes and edges shown in gray are those which, at
the current iteration, are still unknown to the decoder. The
data nodes shown in black have already been recovered by
the decoder at the end of the current iteration ι. The arrows
parallel to the edges indicate the traversal direction of the
peeling process.

III. ANALYSIS

We consider the case where the number of cells m grows
large and are interested in the probability that a random
key-value pair cannot be recovered given that n ≤ m key-
value pairs were previously stored in the MET IBLT. Our
analysis is based on MET density evolution [20] that provides
a general framework to obtain the asymptotic performance of
LDPC code ensembles. In the asymptotic regime, MET density
evolution allows to determine the average probability of a key-
value pair being present in the output list of the recovery
operation, where the average is taken over an ensemble of
bipartite graphs. Even while fixing the IBLT parameters and
hash functions, different graphs are obtained by inserting
different sets S into the IBLT. Therefore, we are interested
in the average probability of recovery failure.

A. MET IBLT description

We associate to each cell node a node type i ∈
{1, 2, . . . , dc}. Cell nodes of the same type may have different

degrees. We introduce the edge-oriented degree distribution
polynomial for cell nodes of type i

ρi(x) =
∑
k=1

ρi,kx
k−1

where the coefficients ρi,k denote the number of edges ema-
nating from cell nodes of type i and degree k divided by all
edges emanating from cell nodes of type i. As we will shortly
see, ρi(x) is induced by the node degree and type distributions
of the data nodes.

Likewise, each data node is associated with a data node type
j ∈ {1, 2, . . . , dd}. We use a dc×dd degree matrix D = [di,j]
to describe the connectivity between the different types of data
and cell nodes, where di,j corresponds to the number of edges
connecting a type-j data node to a type-i cell node (recall
Section II). Considering only edges connected to cell nodes
of type i (i.e, row i of D), we define the expected data node
degree d̄i from the perspective of a cell node of type i as

d̄i =

dd∑
j=1

pjdi,j .

Further, considering still row i of D only, we denote by λi,j

the fraction of edges connected to data nodes of type j, λi,j =
pjdi,j

d̄i
.

Hence, λi = [λi,j], j ∈ {1, 2, . . . , dd} gives an edge-
oriented data node degree distribution considering only edges
connected to type i cell nodes (and ignoring all other edges).

Example 5. Given the degree matrix D =

[
2 0 1
2 3 3

]
and

the probability vector p =
[
0.25 0.25 0.5

]
. We find that

there are three different data node types and two different cell
node types. With probability 1/2 a data node is of type three
while with probability 1/4 it is of type one or two, respectively.
The average data node degrees from the cell node perspective
are d̄1 = 1.00 and d̄2 = 2.75. Further, the data node edge-
oriented degree distributions from the cell node perspective
are λ1 =

[
0.50 0 0.50

]
and λ2 =

[
0.18 0.27 0.55

]
.

Example 6. Assume a MET IBLT with the parameters from
Example 5. In addition, let n = 4, m = 5, and m1 = 2,
m2 = 3. Figure 3 exemplifies a bipartite graph with such
parameters.4

B. Load threshold computation

Definition 5 (Load). Let the load η = n/m, be the ratio
between the number of key-value pairs and cells used to store
those, i.e., the length of the IBLT.

Let us consider the regime for which n and m go to infinity.
We are interested in the maximum load, the so-called load
threshold η⋆ of a MET IBLT ensemble, such that recovery
is successful with high probability. In the context of LDPC
codes, the threshold of code ensembles with peeling decoding
is analyzed via density evolution [22], [23] which restates the

4The connections are data dependent and are chosen at will in this example,
respecting the type constraints.

Figure 3: Bipartite graph example of a MET IBLT with n = 4
data nodes and m = 5 cell nodes of different types.

peeling decoder as an equivalent iterative message passing
algorithm where nodes pass messages along the edges to their
neighbors. The messages exchanged by the nodes can be either
an erasure, i.e., we do not know the corresponding key-value
pair yet, or a non-erasure, meaning that key-value pair is
known.

Let us denote by w̄
(ι)
i the (average) probability that the

message sent from a cell node of type i over an edge at the
ι-th iteration is an erasure and by q̄

(ι)
i the (average) probability

that the message sent from a data node to a cell node of type
j over an edge at the ι-th iteration is an erasure. MET density
evolution iteratively computes w̄

(ι)
i and q̄

(ι)
i .

As a first step in our analysis, we need the edge perspective
degree distribution for cell nodes of type i in the limit when
m → ∞. As shown in [24], it is

ρi(x) = e
− η

fi
d̄i (1−x)

where fi ≜ mi/m is the fraction of cell nodes of type i and
η/fi = n/mi is the load for the mi cell nodes of type i.
The message sent by a cell node of type i will only be a
non-erasure if all other incoming messages are non-erasures,
i.e.,

w̄
(ι)
i = 1− ρi

(
1− q̄

(ι)
i

)
= 1− e

− η
fi

d̄iq̄
(ι)
i . (1)

In other words, if all but one key-value pairs mapped into
a cell are known, also the remaining key-value pair can be
determined (non-erasure message). Let q

(ι)
i,j be the erasure

probability for messages sent from a type-j data node to a
type-i cell node at the ι-th iteration. The message sent by
a data node will only be an erasure if all other incoming
messages are erasures, i.e.,

q
(ι)
i,j =

dc∏
k=1

(
w̄

(ι−1)
k

)bk,j

(2)

where bk,j = dk,j if k ̸= i else bk,j = max(0, dk,j − 1). In
other words, if a key-value pair has been recovered from any
cell, its value can be subtracted from all other cells where it has
been previously mapped into. The average erasure probability

at the input of a cell node of type i at the ι-th iteration q̄
(ι)
i is

given by

q̄
(ι)
i =

dd∑
j=1

λi,jq
(ι)
i,j . (3)

By initially setting q̄
(0)
i = 1 for the 0-th iteration, and

iteratively computing (1),(2),(3) it is possible to derive the
probability that the messages passed along the edges of the
graph are erasures as the number of iterations ι grows.

Let us define by γ
(ι)
j the probability that a data node of type

j is erased at the end of the ι-th iteration. We have,

γ
(ι)
j =

dc∏
i=1

(
w̄

(ι)
i

)di,j

.

The load threshold of a MET IBLT ensemble can be formally
defined in terms of γ(ι)

j as follows.

Definition 6 (Load threshold). The load threshold η⋆ is the
largest value of η such that γ(ι)

j → 0 for all j ∈ {1, 2, . . . , dd}
when m → ∞ and ι → ∞.

Intuitively, in the regime of m → ∞, the probability that
a random key-value pair is successfully recovered from the
IBLT tends to one, as long as the number n of key-value pairs
previously inserted in the IBLT is below η⋆m.

C. Numerical Examples

We report load thresholds complemented by finite-length
simulations of the probability Pe that a randomly chosen key-
value pair is not present in the output list of the recovery
operation. For illustration purposes, we consider two different
MET IBLT designs with different load thresholds η⋆.

Example 7. Consider a design E1 with 3 different data
and cell node types, dd = dc = 3, a probability vector
p =

[
0.2 0.2 0.6

]
, m =

[
m/3 m/3 m/3

]
, and a

degree matrix

D =

1 2 1
2 1 1
1 2 1

 .

We obtain η⋆ = 0.815.

Example 8. For design E2, we have dd = 4, dc = 2, p =[
0.046 0.427 0.398 0.129

]
, m =

[
m/2 m/2

]
, and

D =

[
6 3 1 4
14 0 2 6

]
.

We obtain η⋆ = 0.935.

Figure 4 depicts Pe as a function of η = n/m for different
m considering both MET IBLTs designs E1 and E2. Observe
that for increasing m, Pe shows a sharp drop at η ≈ η⋆

where the load threshold η⋆ is indicated by a vertical line.
Coarsely speaking, for large m one can store approximately
η⋆m key-value pairs in the MET IBLT. The probability that
the recovery of a randomly selected key-value pair fails goes to
zero. Observe that design E2 allows storing more key-value
pairs than design E1 in an IBLT of a given size m (for m

Figure 4: Probability of unsuccessful recovery of a key-value
pair, Pe, as a function of the channel load η for two different
MET IBLT designs and different values of m.

large enough). Note that design E2 was obtained by running a
computer search to improve the load threshold. In Section V
we will build on the analysis introduced earlier in this section
to find good MET designs suitable for a set reconciliation
application.

IV. SET RECONCILIATION PROTOCOL

In this section, we explain how IBLTs can be used for
set reconciliation. We describe a set reconciliation protocol
referred to as rate-compatible protocol which relies on the
presented MET IBLTs.

A. Set Reconciliation with IBLTs

Following [9], let us first illustrate how IBLTs can be used
for set reconciliation. First, hosts A and B insert all the
elements of their sets SA and SB into the IBLTs c{A} and
c{B}, respectively. The mapping rules for both IBLTs c{A}

and c{B} are the same and are agreed upon beforehand by
the hosts. Then, host A sends c{A} to host B that creates a
so-called difference IBLT c{∆}. This is done by subtracting
all the cells of c{A} from those of c{B} applying Algorithm 5
(which simply subtracts the count field of the two cells, and
xors the data field).

We make the following observations regarding the differ-
ence IBLT, c{∆}:

• The elements in SA∩SB , the intersection of SA and SB ,
are not present in the difference IBLT c{∆} (it is as if
they had been first inserted and then deleted).

• The elements in the set difference, ∆ = SA∪SB\SA∩SB

are still present in the difference IBLT. In particular:
– The elements in SB \ {SA ∩ SB}, those present in

SB but not in SA, have been inserted into c{∆} (and
they have not been yet deleted).

– The elements in SA\{SA∩SB}, those present in SA

but not in SB , have been deleted from c{∆}, without
having been inserted before.

• Thus, if we represent the difference IBLT as a bipartite
graph, we obtain a graph with m cell nodes, and δ = |∆|
data nodes (only the elements of the set difference ∆
are present). Furthermore, the degree and connectivity of
the remaining data nodes is preserved compared to the
bipartite graph of the IBLTs of host A and/or B (see
Example 9).

Example 9 (Difference IBLT). For ease of illustration, we
consider an irregular IBLT with 5 cells in which host A has
the set SA = {z1, z2, z3}, whereas host B has SB = {z3, z4},
hence the set difference is ∆ = {z1, z2, z4}. Figures 5a
and 5b, show the bipartite representation of c{A} and c{B}

respectively, as well as the values stored in the cells of the
IBLTs. The bipartite graph associated with c{∆}, which is
obtained by subtracting all cells of c{A} from those of c{B},
is shown in see Figure 5c. Observe that there are no edges
connected to the elements in the intersection of the sets,
SA ∩ SB = {z3}.

For illustration purposes, solid edges are attached to ele-
ments that are only in SB , i.e., in SB \ SA ∩ SB . Whenever
a data node is connected to a cell node by a solid edge, the
count field in the associated IBLT cell will be increased by one.
Dashed edges are attached to elements that are only in SA ,
i.e., in SA \ SA ∩ SB . Whenever a data node is connected
to a cell node using a dashed edge, the count field in the
associated IBLT cell will be decreased by one. By counting
the number of solid and dashed edges we can derive the count
field associated with each cell in c{∆}. Note however that
the count of the cells in c{∆} no longer coincides with the
degree of the associated cell nodes. For example, observing
Figure 5c we can see that in cell c3 we have count = 0,
although actually, its associated cell node has degree 2, i.e.,
we have data = z2 ⊕ z4.

In order to be able to recover the set difference ∆ =
(SA ∪ SB) \ (SA ∩ SB) from c{∆}, the recovery algorithm
must be altered to deal with elements that have been deleted
from the IBLT without having been previously inserted. Let
us recall that the standard recovery algorithm (Algorithm 4)
searches for cells with count = 1, because in such cells a
single set element has been inserted, and thus it can be directly
recovered from the data field. However, the modified recovery
algorithm (Algorithm 7) needs also to account for elements
that have been deleted from the IBLT without having been
previously inserted (elements in SA\{SA∩SB}). In particular,
the modified recovery algorithm has to search for cells where
a single element has been inserted or deleted. Following [9],
we will refer to such cells as pure. When a cell is pure, the
data field of the cell contains a copy of the single element
that has been inserted/deleted.

Example 10 (Purity). In Figure 5c, we can see that cell c1
has count =-1, but it is not pure, since 3 key-value pairs have
been mapped into it, z1, z2, and z4. By contrast, cells c2 and
c4 which have respectively count-1 and 1 are pure since only
one key-value pair has been mapped into them.

An issue consists in detecting pure cells, keeping in mind
that the decoder only has access to the IBLT cells and the

(a) c{A}

(b) c{B}

(c) c{∆}

Figure 5: Example of graph representation of the IBLTs
generated locally by each of the hosts. The local IBLT of
host A (transmitter), c{A}, is shown in (a), and that of host
B, c{B}, is shown in (b). The difference IBLT is illustrated
in (c).

mapping rules, but the graph structure is hidden. It is easy to
see how count = ±1 is a necessary but not sufficient condition
for a cell to be pure. Thus, altering the recovery algorithm
to search for cells with count = ±1 is not sufficient. To
distinguish pure cells, one can rely on the fact that the keys
are obtained from the values by using a function g(·), [9].
Hence, in addition to checking whether count = ±1, we also
check if the key z.x is valid, i.e., whether z.x = g(z.y) (see
Algorithm 6).5 Note however that the function g(·) is a many-
to-one mapping. Thus, this purity check may return true for
an impure cell (see Section IV-C).

Relying on this probabilistic purity check, it is possible
to define a modified recovery algorithm (see Algorithm 7)
to recover the set difference from the difference IBLT c{∆}.
This algorithm searches for pure cells. Whenever a pure cell

5In fact the condition z.x = g(z.y) renders the count field in the
cells unnecessary for set reconciliation applications. Still, we keep it in our
discussion for the sake of clarity.

Algorithm 5 Cell Subtraction

procedure c† = SUBTRACT(c, c′)
c†.count =c.count-c′.count
c†.data =XOR (c.data,c′.data)

Algorithm 6 Check Purity
procedure b=ISPURE(z)

if z.x = g(z.y) then
b = true

else
b = false

Algorithm 7 Modified Recovery
procedure RECOVER()

while ∃i ∈ [1,m] | ci.count = ±1 & IsPure(ci.data) = true do
add z = ci.data to the output list
if ci.count = 1 then

call Delete (z)
else

call Insert (z)

is found, the only element mapped in the cell is added to the
output list, and then this element is removed from the IBLT.
This is achieved by either deleting it from the IBLT in case
we have count = 1 or adding it to the IBLT in case we have
count = −1.

Example 11 (Modified Recovery). Let us consider modified
recovery applied to the difference IBLT shown in Figure 5c.
For simplicity, we assume here that the purity check is perfect.
Under this assumption, cell c2, which has count =-1 can
be determined to be pure, allowing to recover z1, which is
removed from the IBLT by relying on the addition operation.
Similarly, cell c4 is also found to be pure. This allows
recovering z4, which is removed from the IBLT by calling the
delete operation since we had count =1 in c4. Finally, z2 can
be recovered from either c1 or c3.

Fig. 6a shows the sequence diagram of difference digest,
the IBLT based set reconciliation protocol proposed in [9]. For
simplicity, we have assumed here that the size of the set differ-
ence δ is known a priori. As it can be observed, after a request
from node B, node A transmits its complete IBLT c{A}. After
receiving c{A}, node B computes the difference IBLT. Next,
the modified recovery operation is used to attempt reconciling
the sets. Finally, node B sends a (negative) acknowledgement
to node A to communicate whether the reconciliation was
successful or not.

B. Rate-Compatible Set Reconciliation Protocol

We propose a novel rate-compatible protocol that relies on
MET IBLTs. Consider a set reconciliation setting with two
hosts, A and B, which possess sets SA and SB , respectively.
The hosts communicate with each other through a data net-
work to reconcile their sets, and it is assumed that the protocol
parameters, i.e., the parameters that define the IBLTs known
to both parties. The protocol follows the following steps:

1) Hosts A and B initialize to zero a MET IBLT of
length m cells, with dc different cell types and dd
key-value pair types. Next, each host inserts all the

elements of its set into the MET IBLT. The thus obtained
IBLTs of A and B will be denoted c{A} and c{B},
respectively. We assume that the cells of c{A} and c{B}

are ordered according to their type so that the first m1

cells correspond to cells of type 1, followed by m2 cells
of type 2, and so on.

2) Host A starts sending the cells of its IBLT c{A} one by
one, starting with cell c1, followed by c2, and so on.
Host B creates an empty array of IBLT cells c{∆0}.

3) When receiving the i-th cell of c{A}, host B sub-
tracts it from the i-th cell of its local IBLT c{B}

(see Algorithm 5), and it appends the resulting cell to
the difference IBLT c{∆i−1} to obtain c{∆i}. The cell
subtraction operation consists of subtracting the count
fields of the cells and XOR-ing the data fields.

4) Host B runs a modified recovery algorithm on c{∆i}

which, if successful, yields at its output the set difference
∆ between SA and SB (see Algorithm 7).

5) If set reconciliation succeeds, host B sends an acknowl-
edgment to host A. Otherwise, host B does not send any
acknowledgment, and host A continues sending IBLT
cells.

6) If recovery is still unsuccessful after all m cells have
been transmitted, a failure is declared.

Fig. 6b shows the sequence diagram of the proposed rate-
compatible protocol. In this sequence diagram assume that
IBLT cells are not sent one by one, but in groups of h cells.
After having received the first h cells, node B attempts to
renconcile the sets by running the modified recovery operation,
which fails. This leads to the transmission of an implicit
NACK. Here, we say implicit because, in practice, rather than
sending a NACK, node A could simply assume that set recon-
ciliation did not yet succeed whenever no acknowledgement
is received after a predefined amount of time. Next, Node
A sends additional IBLT cells to node B. Node B then re-
attempts set reconciliation by running the modified recovery
operation, which now succeeds. Finally, Node B sends an
acknowledgement to Node A and the protocol ends. We make
the following observations. First, when the protocol succeeds,
only host B is aware of the set difference. This is a common
assumption in set reconciliation protocols. If necessary, host
B can then transmit a message to host A to convey the set
difference. Second, the protocol will fail if recovery is still
unsuccessful after having transmitted all m cells. However,
as illustrated in Section V, one of the advantages of relying
on MET IBLTs is that m may grow on-demand, allowing
in principle to generate an unlimited number of cells so that
reconciliation is eventually successful.

Example 12 (Protocol). Figures 7a and 7b show the graphical
representation of the local IBLTs of host A and B (c{A}

and c{B}), respectively. Both bipartite graphs have a total
of m = 4 IBLT cell nodes, out of which 2 are of type 1
and 2 of type 2, i.e., m1 = m2 = 2. Furthermore, we have
DT =

[
1 1

]
, i.e., there is a single data node type. We have

SA = {z1, z2, z3} and SB = {z2, z3, z4}. Thus we have that
the set difference is ∆ = {z1, z4}.

According to the rate-compatible protocol, host A sends its

(a) Difference digest

(b) Rate-compatible set reconciliation

Figure 6: Sequence diagrams of difference digest and the
proposed rate-compatible protocol. For simplicity, in difference
digest we assume that the size of the set difference δ is known
a priori. In the rate-compatible protocol, we assume that cells
are sent in packets (or groups) of h cells.

local IBLT cells one by one to host B. After receiving the i-th
cell, host B subtracts it from the i-th cell of its local IBLT.
The thus obtained difference IBLT is denoted c{∆i}. Thus, for
h ≤ i, the h-th cell of c{∆i} is obtained by subtracting the
h-th cell of c{A} from the h-th cell of c{B}. Moreover, we
have no information about the h-th cell of c{∆i} for h > i.
These cells are considered erased. After that, host B attempts
to recover the set difference by running the modified recovery
algorithm, which amounts to a peeling operation on the graph
representation of c{∆i}. Figures 7c, 7d, and 7e show the

(a) c{A} (b) c{B}

(c) c{∆1} (d) c{∆2}

(e) c{∆3}

Figure 7: Set reconciliation example. Figures (a) and (b)
show the graph representation of c{A} and c{B}. Figures
(c), (d), and (e) show the graph representation of c{∆i} ,
i = 1, 2, 3, i.e., after having node B has received 1, 2 and
3 cells respectively. The cell nodes shown in gray represent
IBLT cells which have not yet been received and are thus
treated as if they were erased (or punctured).

graph representation of c{∆i}, for i ∈ {1, 2, 3}. Note that
the bipartite graph is provided for illustration purposes only.
In the beginning, it is hidden to host B and it is successively
revealed during the recovery operation. In particular, host B
attempts set reconciliation by inverting c{∆i}, i.e., by carrying
out the modified recovery operation (Algorithm 7), relying only
on the i cells it has so far received, and treating IBLT cells
i + 1 onwards as if they had been erased. For this reason,
when representing c{∆i} we mark cell nodes ci+1, ci+2, . . .
in gray.

Observe that reconciliation is not successful after host B
has received the first IBLT cell since c1 is empty in c{∆}

(and all other cells are still erased). Similarly, after having
received 2 cells, reconciliation is still unsuccessful, since c2
is not pure. Finally, reconciliation is successful after having
received 3 cells. In particular, cell c3 is pure, allowing to
recover z1, which is then removed from the IBLT. This renders
cell c2 pure, allowing to recover z4. Since set reconciliation
is successful on c{∆3}, host B sends an acknowledgment to
host A, and the reconciliation protocol terminates. Cell c4 is
in this case never transmitted.

The set reconciliation protocol described above has the
advantage of exhibiting a low complexity since it relies on the
modified recovery operation, which is equivalent to a peeling

operation applied to the graph representation of the difference
IBLT. One could argue that this is suboptimal since host B is
not making use of his knowledge of SB . In fact, it is possible
to improve the performance of the modified recovery operation
(peeling) by relying on the knowledge of SB . For example,
whenever the modified recovery operation (peeling) gets stuck
because there are no pure cells, one could try to delete different
elements of SB with the hope that they are in ∆ and that their
deletion generates some extra pure cells allowing modified
recovery (peeling). Such an approach was proposed in [25]
and it was shown that it can improve performance at the cost
of an increased complexity.

C. Reconciliation Failures

In the protocol described above, two types of events can lead
to undetected failures. The first type of failure is associated
with the purity check (see Algorithm 6) returning true for a
cell that is not pure. When this happens, an erroneous key-
value pair will be added to the output list of the recovery
algorithm. Furthermore, the removal of this erroneous key-
value pair from the IBLT will corrupt a number of cells. With
high probability, these corrupted cells will lead the receiver
(host B) to believe that there are still some key-value pairs
that have not been recovered, and the set reconciliation will
run until all the m cells have been transmitted, declaring then
a reconciliation failure. Under the assumption that g(x) returns
a random number between 1 and 2κ, we have that the purity
check of an impure cell fails with probability 2−κ. Assuming
a total of m cells, a set difference size δ, and an average
data node degree d̄, the number of different purity checks that
have to be carried out on impure cells can be upper bounded
as m + δd̄. Thus, we have that the probability of this type
of failure can be upper bounded by (m+ δd̄)2−κ. Hence, by
choosing κ to be large enough, this probability can be made
arbitrarily small.

The other source of failure of the protocol is the fact that
host B may mistakenly assume that all key-value pairs have
been recovered, while this is not the case. This happens when,
after having received i cells, the modified recovery (peeling
decoding) of c{∆i} leads to an empty IBLT, however, there are
one or more key-value pairs that have not yet been recovered.
These yet unrecovered key-value pairs are not mapped to any
of the first i cells, i.e., they have no edges to any of the
first i cell nodes. Thus, there is no way for B to detect the
existence of these unrecovered key-value pairs. The best way
of dealing with this second type of failure is to never terminate
the protocol before having received at least m1 cells, i.e., all
the cells of type 1. Assuming that d1,j > 0 ∀j, this effectively
solves the problem since in this case all key-value pairs will
be mapped at least to one of the first m1 cells.

D. Protocol Variants

From a practical viewpoint, it might be of interest to
change the insertion (encoding) and recovery (decoding) of
MET IBLTs in Section II. It is not necessary to generate
all m cells and to recover all m cells at once. Rather,

encoding and decoding can proceed in rounds similar to rate-
compatible coding schemes (see e.g., [26]). We may define
an encoding index vector

[
i0 = 0 i1 i2 . . .

]
of positive

integers 0 < i1 < i2 In encoding round α the encoder
may generate iα − iα−1 additional cell nodes. We may for
instance choose iα − iα−1 = mα. Likewise, we may define
a decoding index vector

[
j0 = 0 j1 j2 . . .

]
of non-zero

integers 0 < j1 < j2 Once jα cells are received, the
decoder performs round α of decoding. If the decoding attempt
fails it waits for additional jα+1 − jα cells and retries again.
For instance, we may choose jα+1 − jα = 1 ∀α, i.e., we
attempt decoding once receiving a cell.

V. MET IBLT DESIGN

The rate-compatible protocol in Section IV requires a suit-
able MET IBLT design that provides good performance for a
wide range of sizes of the set difference δ, considering that δ is
not (perfectly) known a priori. A simple solution would be to
perform an IBLT design for large δ by relying on the results of
Section III. However, when δ is small, there is no guarantee
that this scheme will work with reasonable communication
complexity, i.e., that it will be efficient. To illustrate why this
is the case, let us consider a k-regular6 IBLT of length m. We
focus on the graphical representation of the difference IBLT
c{∆h} after h cells have been exchanged. Let us now consider
a key-value pair node associated with the set difference ∆. The
probability that this node has no edges attached to any of the
first h cell nodes can be approximated as(

m− h

m

)k

. (4)

Note that the expression in (4) yields a lower bound on the
probability of recovery failure Pe. For fixed k, e.g., k = 3,
this probability is high, unless h is close to m (see also [27,
Section 6] for a more detailed discussion). Thus, we expect the
rate-compatible protocol to perform poorly when employing
standard IBLTs. This is illustrated by simulation results in
Section V-C. The issue can be overcome by MET IBLTs.
In particular, we can choose m1 to be small, and forbid the
protocol to terminate before having exchanged m1 cells. This
ensures that every key-value pair in ∆ is mapped to a cell of
type 1.

A. Design Example

Consider a MET IBLT design in which the number of cells
of type i is mi = 2i−1m1. We use the tools in Section III
to predict the asymptotic performance of the MET IBLT. For
simplicity, we set dd = 3, and consider a degree matrix in the
form

DT =

d1,1 d2,1 d3,1 d4,1 d5,1 · · · d5,1
d1,2 d2,2 d3,2 d4,2 d5,2 · · · d5,2
d1,3 d2,3 d3,3 d4,3 d5,3 · · · d5,3

where the fifth and all successive rows of D are equal to
the fourth row. This yields a design in which a potentially

6in a k-regular IBLT all key-value pairs and cells are of the same type, and
all key-value pairs are mapped exactly on k cells. Thus, we have p = p1 = 1,
and D = k.

unlimited number of cell types dc can be generated.7 Let us
now denote by η⋆i be the load threshold of the MET IBLT when
considering only the first

∑i
j=1 mj cells. The parameters of

this design, p and D, are determined by relying on multi-target
optimization. In particular, we choose p and D, to maximize
the minimum among η⋆i ,

(p,D) = argmax
p,D

(
min
i

η⋆i

)
.

An approximate solution to this optimization problem was
obtained by relying on simulated annealing [28], an opti-
mization algorithm to approximate the global optimum of
a given function. For the current design example, we set
i ∈ {1, 2, . . . , 8}. Additionally, we introduce the constraint
di,j ≤ 5∀i, j in order to limit complexity.8 The optimization
yields

p =
[
0.1959 0.1904 0.6137

]
and

DT =

3 1 1 1 1 · · · 1
4 4 4 4 5 · · · 5
2 1 1 1 1 · · · 1

and the load thresholds obtained are

η⋆ = [0.7948, 0.7837, 0.7882, 0.8025

0.8042, 0.7967, 0.7895, 0.7856].

Although we only consider the first 8 cell types in our
optimization, the resulting MET IBLT still retains a good
performance when additional cell types are included by repli-
cating the last row D. In particular, we have η⋆9 = 0.7842,
η⋆10 = 0.7837 and η⋆i = 0.7830 for i ≥ 11.

Remark 1. This multi-target optimization only considers the
performance at intermediate points in which all the cells of
type i have been received. In the Appendix, we introduce an
extension of the analysis in Section III that allows deriving the
load threshold of a MET IBLT when only a fraction of cells
of a certain type has been received.

B. Simulation Setup

We consider a setup with two hosts, A and B, who want to
reconcile their sets SA and SB by communicating over a data
network without having any knowledge about the size of the
set difference δ. We apply the set reconciliation protocol of
Section IV-B with a MET IBLT from Section V and compare
the performance with two other schemes available in the
literature, difference digest [9] and characteristic polynomial
interpolation (CPI) [8].

Difference digest [9] is an IBLT-based set reconciliation
algorithm that relies on the use of regular IBLTs. In contrast
to the other two schemes, difference digest requires an estimate
of the set difference size, which is computed in an initial

7Strictly speaking, the analysis presented in Section III only applies to the
case in which the number of cell types dc is constant. In practice, this does
not hinder us from allowing the number of cell types to grow if needed.

8By removing the constraint our optimization algorithm yields only slightly
higher thresholds.

communication round, in which host B sends to host A a data
structure known as strata estimator which is used to obtain an
estimate δ̂ of the set difference size δ. Host A then calculates
a worst-case set difference size t = c · δ̂, where c is chosen
so that t > δ with high probability (e.g., 0.99). Next, host
A creates an IBLT of size m, where m is chosen so that the
recovery operation is successful with high probability (e.g.,
probability 0.99) when t key-value pairs are inserted in the
IBLT. After that, host A inserts its set SA in the IBLT c{A}

and sends it to host B. Host B then also inserts his set SB

in an IBLT c{B} of size m and then computes the difference
IBLT by subtracting the cells of c{B} and c{A}, which yields
the IBLT c{∆} that also has length m. Next, host B attempts to
recover the set difference ∆ by applying a modified recovery
operation (see Algorithm 7). If recovery is successful, set
reconciliation succeeds, otherwise, we will simply assume that
set reconciliation is declared as unsuccessful.9

The second scheme, CPI, makes use of the characteristic
polynomial of a set. Consider a set S = {z1, z2, ..., zn}
where the elements zi are chosen from U = {0, 1}ℓ. The
characteristic polynomial of set S over the finite field Fq with
q > 2ℓ is defined as

XS(Z) = (Z − z1)(Z − z2) . . . (Z − zn)

where one relies on an injective mapping of elements of U to
Fq . The key principle behind CPI is that given n evaluations of
XS(Z) it is possible to recover the set S since its elements cor-
respond to the zeros of the characteristic polynomial XS(Z).
As we sketch next, CPI can be also operated in a rateless
fashion [8] to minimize the communication cost and does not
require an estimate of the set difference size. First of all, host
A chooses a list of evaluation points r1, r2, . . . at which it
will evaluate the characteristic polynomial of its set.10 Next,
host A continuously evaluates the characteristic polynomial of
his set SA, XSA

(Z), at the evaluation points, r1, r2, . . . and
sends the evaluations XSA

(r1), XSA
(r2), . . . to host B, and

it does so until it receives an acknowledgment from host B
which indicates that reconciliation was successful. Thereby,
host B continuously attempts to recover the set difference
∆, by evaluating the ratio of two characteristic polynomials
XSA

(ri)/XSB
(ri). For aset difference size of δ this protocol

has overall complexity O(d4) [8].

C. Simulation Results

We compare the performance of the three schemes in
terms of communication cost, i.e., in terms of the amount
of data, measured in bits, that needs to be exchanged. For
illustration purposes, we consider the setup from [9] in which
the cardinality of the SA and SB is 105, and the set elements
are chosen from U = {0, 1}32. Following [9], we allocate a
total of 12 bytes for each IBLT cell: 4 bytes for the count
field and 8 bytes for the data field (4 bytes for the key and

9In [9] it was actually proposed to reattempt reconciliation by employing
IBLTs of length 2m. By allowing difference digest to fail we will slightly
penalize the comparison with the two other schemes which continue until
reconciliation is successful.

10in particular, the evaluations points r1, r2, . . . are chosen among those
elements of Fq to which no element of U is mapped.

4 bytes for the value). For difference digest we use the same
configuration as in [9], thus in the initial communication round
to estimate the set difference size, we employ a hybrid strata
estimator with 7 strata, each with 80 cells per IBLT, and a
min-wise estimator with 2160 hashes. Hence, the resulting
strata estimator (the data structure used to estimate the set
difference size) has a total size of 15 kB. In the second
communication round in which the actual set reconciliation
takes place, we use a degree-3 regular IBLT. For CPI, we
use a configuration in which every evaluation point takes 10
bytes.11 Finally, for the rate-compatible protocol we use 12
bytes for each IBLT cell, the same as in difference digest, and
the MET IBLT parameters reported in Section V. In all cases,
we assume that the protocol configuration is known a priori to
both reconciliation parties and does not need to be signaled.
For example, for the rate-compatible protocol, this assumption
translates into the knowledge of the parameters p, D, m as
well as the hash functions Hm,dj

, hp, and g.
Figure 8 shows the communication cost, i.e., the total

amount of transmitted data needed for set reconciliation for the
three schemes. For difference digest, the figure also reports the
total data transmission without considering the strata estimator
(which takes exactly 15 kB in our example). For the rate-
compatible protocol we show two performance curves. The
first one uses the MET IBLT design described in Section V
setting m1 = 50. The second one uses a 3-regular distribution
with m = 104.

Observe that the rate-compatible protocol when using a
MET IBLT has only a slightly higher communication cost than
the more complex CPI scheme, and it outperforms difference
digest. This is remarkable since the complexity of our rate-
compatible protocol, when relying on the design introduced in
Section V, is O(δ log(δ)), whereas that of CPI and difference
digest (ignoring the strata estimator) are O(δ4) and O(δ),
respectively. This can be attributed to two different effects.
The first one is the presence of an initial communication round
to estimate the set difference size in difference digest. This
inefficiency dominates the performance for small δ since in
this case, the size of the strata estimator is much larger than
the actual data that has to be exchanged to reconcile the sets.
The second one is the rate-compatible nature of the protocol
which allows transmitting IBLT cells incrementally.

The performance of the rate-compatible protocol when
using a degree 3 regular IBLT is also depicted. Observe that
the performance is very poor compared to the MET IBLT
design. This is due to the presence of key-value pairs that
are not mapped to the first cells exchanged (see discussion in
Section V) and hence cannot be recovered upon reception of
those cells.

VI. DISCUSSION

In this paper, we have presented a novel set reconciliation
algorithm whose performance can approach that of character-
istic polynomial interpolation (CPI) but with lower algorithmic

11We operate on a finite field with 240. Hence, we need 5 bytes to specify
the point at which we evaluate the polynomial, and another 5 bytes for the
evaluation of the polynomial.

Figure 8: Data transmission required to reconcile sets with
105 elements as a function of the set difference size δ. The
solid line with circle markers represents the data transmitted by
difference digest [9], including the strata estimator. The gray
dashed line with circle markers represents the data transmitted
by difference digest ignoring the size of the strata estimator
for the computation of the communication cost. The solid
line with diamond markers represents the CPI scheme in
[8]. Finally, the solid line with square and pentagon markers
represent the rate-compatible protocol introduced in this paper
using the MET IBLT form Section V-A and a 3-regular IBLT.

complexity. The proposed scheme can be seen as an evolution
of difference digest [9] with two major modifications. The
first one is the concept (and analysis of) MET IBLTs, a
generalization of the IBLT data structure, in which one allows
for different types of IBLT cells and key-value pairs. The
second modification is the fountain-like protocol, meaning
that the number of IBLT cells to be exchanged is not fixed
a priori. Instead, one can incrementally transmit as many cells
as necessary, and new cells can in principle be generated on
the fly.

The novel scheme presents some advantages compared to
difference digest. It is not necessary to estimate the cardinality
of the set difference which usually requires an additional
communication round and introduces a substantial overhead.
Likewise, we only have to transmit as many cells as necessary,
instead of having to oversize the IBLT to cope with errors in
the estimate of the cardinality of the set difference.

The proposed scheme combines the low complexity of
difference digest and the efficiency of CPI, and could thus
represent an appealing solution to many data synchronization
problems in practical distributed systems. A possible applica-
tion is the reconciliation of large databases. A concrete exam-
ple is mempool synchronization in the Bitcoin network [6].
Another important application is remote file synchronization
[3], [29], [30].

There are several of interesting extensions to this work. An
example is the extension of the proposed scheme to a multi-
party set reconciliation setting, as proposed for standard IBLTs

in [4]. Another example concerns a broadcasting setting in
which a parent node holds a set SP and multiple child nodes
hold sets SC1 , SC2 , etc. In this setting, the set difference
between SCi

and SP can be different for different i. The goal
could be for the parent node to convey its set SP efficiently to
the children nodes by transmitting IBLT cells over a broadcast
channel. By relying on the proposed rate flexible constructions,
a child node with a small set difference with respect to the
parent node would obtain SP faster than a child node with a
larger set difference. This extension could have applications
in settings in which a parent node maintains a database and
multiple child nodes maintain a local copy of the database.

ACKNOWLEDGEMENTS

The authors would like to thank Federico Clazzer for
providing some software routines that were used for the Monte
Carlo simulations.

The research leading to these results has been carried
out under the framework of the project ”SiNaKoL”. The
project started in January 2022 and is led by the Program
Coordination Security Research within the German Aerospace
Center (DLR), whose support we greatly appreciate.

REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[2] “Apache Cassandra.” [Online]. Available: https://cassandra.apache.org/
[3] S. Agarwal, V. Chauhan, and A. Trachtenberg, “Bandwidth efficient

string reconciliation using puzzles,” IEEE Trans. Parallel Distrib. Syst.,
vol. 17, no. 11, pp. 1217–1225, 2006.

[4] M. Mitzenmacher and R. Pagh, “Simple multi-party set reconciliation,”
Distributed Comput., vol. 31, no. 6, pp. 441–453, 2018. [Online].
Available: https://doi.org/10.1007/s00446-017-0316-0

[5] P. Ozisik, G. Andresen, B. Levine, D. Tapp, G. Bissias, and S. Katkuri,
“Graphene: Efficient interactive set reconciliation applied to Blockchain
propagation,” in Proc. of Conf. of the ACM Special Interest Group on
Data Commun. Beijing, China: ACM, Aug. 2019, pp. 303–317.

[6] N. Boškov, A. Trachtenberg, and D. Starobinski, “Gensync: A new
framework for benchmarking and optimizing reconciliation of data,”
IEEE Trans. Netw. Service Manag., 2022.

[7] M. Karpovsky, L. Levitin, and A. Trachtenberg, “Data verification and
reconciliation with generalized error-control codes,” IEEE Trans. Inf.
Theory, vol. 49, no. 7, pp. 1–2, 2003.

[8] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with
nearly optimal communication complexity,” IEEE Trans. Inf. Theory,
vol. 49, no. 9, pp. 2213–2218, 2003.

[9] D. Eppstein, M. Goodrich, F. Uyeda, and G. Varghese, “What’s the
difference?: Efficient set reconciliation without prior context,” ACM
SIGCOMM Comp. Commun. Review, vol. 41, no. 4, pp. 218–229, 2011.

[10] M. Goodrich and M. Mitzenmacher, “Invertible Bloom lookup tables,”
in Proc. of 49th Annual Allerton Conf. on Commun., Control, and Comp.
Monticello, IL, USA: IEEE, 2011, pp. 792–799.

[11] P. Elias, “Error-free coding,” IRE Trans. Inf. Theory, vol. PGIT-4, pp.
29–37, Sep. 1954.

[12] M. Rink, “Mixed hypergraphs for linear-time construction of denser
hashing-based data structures,” in Proc. of the Int. Conf. on Current
Trends in Theory and Practice of Comp. Science. Springer, 2013, pp.
356–368.

[13] F. Lázaro and B. Matuz, “Irregular invertible Bloom look-up tables,” in
Proc. of the 11th Int. Symp. on Topics in Coding. IEEE, 2021, pp. 1–5.

[14] K. Narayanan and H. Pfister, “Iterative collision resolution for slotted
ALOHA: An optimal uncoordinated transmission policy,” in Proc. of
7th Int. Symp. on Turbo Codes and Iterative Inf. Processing (ISTC).
Gothenburg, Sweden: IEEE, 2012, pp. 136–139.

[15] M. Skjegstad and T. Maseng, “Low complexity set reconciliation using
Bloom filters,” in Proc. Int. Work. on Foundations of mobile Comp.
(FOMC), no. 2027. ACM, 2011, pp. 33–41.

[16] D. Guo and M. Li, “Set reconciliation via counting Bloom filters,” IEEE
Trans. Knowledge Data Eng., vol. 25, no. 10, pp. 2367–2380, 2013.

[17] L. Luo, D. Guo, O. Rottenstreich, R. Ma, and X. Luo, “Set Recon-
ciliation with Cuckoo Filters,” in Proc. of the Int. Conf. on Inf. and
Knowledge Manag. (CIKM). Beijing, China: ACM, Nov. 2019, pp.
2465–2468.

[18] N. Kruber, “Approximate distributed set reconciliation with defined
accuracy,” PhD Thesis, Humboldt-Universität zu Berlin, 2019.

[19] J. Byers, M. Luby, and M. Mitzenmacher, “A digital fountain approach
to reliable distribution of bulk data,” IEEE J. Select. Areas Commun.,
vol. 20, no. 8, pp. 1528–1540, Oct. 2002.

[20] T. Richardson and R. Urbanke, “Multi-edge type LDPC codes,” in
Workshop honoring Prof. Bob McEliece on his 60th birthday. Pasadena,
California: California Instute of Technology, May 2002.

[21] M. Mitzenmacher and G. Varghese, “Biff (bloom filter) codes: Fast error
correction for large data sets,” in Proc of 2012 IEEE Int. Symp. on Inf.
Theory. IEEE, 2012, pp. 483–487.

[22] M. Luby, M. Mitzenmacher, and A. Shokrollahi, “Analysis of random
processes via and-or tree evaluation,” in Proc. of the 9-th annual ACM-
SIAM Symp. on Discrete Algs. San Francisco, CAL, USA: ACM, 1998,
pp. 364–373.

[23] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. on
Inf. Theory, vol. 47, no. 2, pp. 619–637, 2001.

[24] G. Liva, “Graph-based analysis and optimization of contention resolution
diversity slotted ALOHA,” IEEE Trans. on Commun., vol. 59, no. 2, pp.
477–487, 2011.

[25] R. Gabrys and A. Coker, “Set reconciliation in two rounds of communi-
cation,” in Proc. 18th Int. Command & Control Research & Tech. Symp.
(ICCRTS). Alexandria, Virginia, USA: IC2I, Jun. 2014.

[26] J. Ha, J. Kim, and S. McLaughlin, “Rate-compatible puncturing of low-
density parity-check codes,” IEEE Trans. Inf. Theory, vol. 50, no. 11,
pp. 2824–2836, 2004.

[27] A. Shokrollahi, “Theory and applications of Raptor codes,” Mathknow,
pp. 59–89, 2009.

[28] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[29] H. Yan, U. Irmak, and T. Suel, “Algorithms for low-latency remote file
synchronization,” in Proc of 27th Conf. on Comp. Commun. (INFO-
COM). IEEE, 2008, pp. 156–160.

[30] M. Gentili, “Set reconciliation and file synchronization using invertible
Bloom lookup tables,” Bachelor’s Thesis, Harvard College, 2015.

APPENDIX

For the rate-compatible protocol , cell nodes are transmitted
one by one. The recovery operation can be attempted anytime
even if not all cells of a type have been transmitted and hence
received. We extend the analysis of Section III to this case.
The following analysis is also of interest in case a non-ideal
communication channel between transmitter and receiver is
assumed which introduces losses of cells (erasures).

Let us denote by ϵi the probability that a cell node of
type i is not received (erased). For mi → ∞ (by the law
of large numbers) ϵi is the fraction of erased cell nodes of
type i. For the analysis, we assume that these cell nodes are
part of the IBLTs bipartite graph, but the outgoing messages
(i.e., probability of erasure) on all connected edges are one
throughout all iterations. The remaining fraction of (1 − ϵi)
cell nodes of type i will send out a message given by (1).
Overall, the average erasure probability from a cell node of
type i to a data node in case of erasures is modified as follows,

w̄
(ι)
i = ϵi + (1− ϵi)

(
1− e

− η
fi

d̄iq̄
(ι)
i

)
. (5)

Observe that by not transmitting cell nodes of a certain type,
the load is increased, i.e.,

η =
n∑dc

i=1(1− ϵi)mi

. (6)

Apart from the modification in (5) and the adjustment of the
load in (6) the load threshold computation can be carried out
as described in Section III.

