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Abstract
One of the central applications for quantum annealers is to find the solutions of Ising
problems. Suitable Ising problems, however, need to be formulated such that they,
on the one hand, respect the specific restrictions of the hardware and, on the other
hand, represent the original problems which shall actually be solved. We evaluate suf-
ficient requirements on such an embedded Ising problem analytically and transform
them into a linear optimization problem. With an objective function aiming to mini-
mize the maximal absolute problem parameter, the precision issues of the annealers
are addressed. Due to the redundancy of several constraints, we can show that the
formally exponentially large optimization problem can be reduced and finally solved
in polynomial time for the standard embedding setting where the embedded vertices
induce trees. This allows to formulate provably equivalent embedded Ising problems
in a practical setup.

Keywords Ising problem · Embedding · Quantum annealing · Linear optimization

1 Introduction

1.1 Background

The interest in quantum annealers, such as the devices developed by the company
D-Wave Systems Inc., is still undiminished due to their ongoing fast progression.
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By implementing the adiabatic evolution of an Ising problem over qubits formed
by overlapping superconducting loops, they promise to solve NP-hard problems.
Although several physical effects prevent the ideal realization of the underlying adi-
abatic theorem, and optimal solutions can thus only be found with some probability,
the experimental results appear to be promising for certain applications [1]. However,
the advantage over classical computation is still under discussion [2].

‘Programming’ such an annealer means to provide the input parameters of the spe-
cific implemented Ising problem, that is, theweights on the vertices and the strengths
on the edges of a specific hardware graph. The Chimera and Pegasus hardware
architectures are currently available [3] and a new one, called Zephyr, was recently
announced but is not yet released [4]. Interesting applications, however, do usually not
match those graphs straightforwardly but require what is known as an embedding [5],
where each vertex of the original problem ismapped to several vertices in the hardware
graph to represent the desired connectivity. Unfortunately, the problem of finding such
an embedding is itself an NP-hard problem [6]. Although the connectivity is increased
with every new hardware release, it is apparent that all of the graphs yield some kind
of locality due to physical restrictions. Therefore, the development of a completely
connected hardware graph in the future is rather unlikely and the embedding prob-
lem will remain relevant in the long term. In order to circumvent this bottleneck and
nevertheless enable experiments on these machines for the users, precalculated and
generally applicable embedding templates provide a good starting point, such as for
the complete graph [7]. Furthermore, the D-Wave API provides heuristic algorithms in
the package minorminor [8], which are mainly based on an implementation of [9].

However, with only the embedding, we still cannot perform calculations on the
D-Wave machine. We need to bring together the two different problems: the original
one that shall be solved and the one that can be solved with the annealer. That is, we
need to find suitable parameters, the weights and strengths, of an Ising problem work-
ing on the hardware subgraph induced by the embedding. The resulting embedded
Ising problem should represent the original Ising problem such that the corresponding
solutions can be retrieved from the output of the quantum annealer (at least in theory).
If the embedded Ising problem is formulated wrongly, it either might yield optimal
solutions which are suboptimal for the original problem or, even worse, the solutions
might not even be ‘de-embeddable,’ which means that they have no clear correspon-
dence to any original solution. An example for the latter is a chain of qubits where
we get the solution values -1 for one half and +1 for the other. This can be addressed
by applying a ‘strong coupling’ to vertices that belong to the embedding of a single
original vertex to enforce that they behave collectively during the annealing process.
We say they shall be synchronized. This can be achieved by large absolute strengths
on the edges between the vertices. But what is ‘strong enough’? V. Choi has called
this non-trivial problem of finding suitable parameters for the provable equivalence of
the original and the embedded Ising problem the parameter setting problem [10].

Unfortunately, in practice, we need to take further restrictions on the parameters into
account. First of all, they can only be chosenwithin a certain interval,where the specific
boundary valuesmight vary between the different architectures or even devices. At first
sight, this might not appear to be problematic: We can simply scale the Ising problem
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by multiplying by a constant factor. This, however, decreases the absolute differ-
ence between the problem parameters, while the most critical restriction of D-Wave’s
annealing machines is their parameter precision. Due to the transmission over the
analog control circuits, the problem-defining parameters experience different pertur-
bations [11]. This means that the actually solved problem differs slightly from the one
specified by the user. Thus, problems which shall be solved with these machines need
to be chosen carefully to yield some kind of ‘robustness’ in the parameter precision.

Although the programming interface allows to insert arbitrary float values within
given ranges, the machine can actually realize only a limited discrete parameter range.
In [12], a precision of about 1

30 was estimated for the specific annealer used in the
experiments, which in turn means integer values between − 30 and 30 for a scaled
problem. For problemswith a higher precision, respectively, larger integer parameters,
the success probability is drastically reduced because the annealing machine is not
capable of resolving the parameters. In more recently released machines, the precision
has probably been improved. However, the specific values and boundaries are not
precisely known and can only be estimated through further experiments.

For the users, the programming of such annealing machines is only worth the effort
if themachine canfind the optimal solution to the provided problem in a certain number
of runs, that is, if an acceptable success probability can be achieved.With the concrete
restrictions on the internally implemented parameters not being specified exactly, we
can therefore merely formulate some objectives aiming to improve the parameter
distribution of the encoded Ising problem as much as possible, and thereby hopefully
also the success probability. Because two parameters might appear too close to each
other for the machine in presence of a very large parameter, a first step is therefore
to keep the largest appearing parameter as small as possible (without scaling). This
already concerns the encoding of an arbitrary combinatorial problem as a general
Ising problem but becomes particularly important when the Ising problems shall be
embedded: Such large values usually appear with the strong coupling of the embedded
vertices. Therefore, the coupling strength cannot be chosen arbitrarily large.

Consequently, we do not only need to find a feasible parameter setting, ensuring
the synchronization of the embedded vertices, but it also needs to be optimal in the
sense that the coupling strength is as small as possible to conform with the precision
of the machine. Only if this problem is solved, we can provide suitable embedded
Ising problems and thus run meaningful experiments with the quantum annealers.
Furthermore, this only enables to analyze the actual performance of the machines
because miss-specified problems are not mixed up with the physical effects anymore,
both suppressing the success probability in different ways.

1.2 Related work

The baseline for all the work around minor embedding and the corresponding parame-
ter settingwas developed byV. Choi. In [10], a first upper bound on the strengths on the
coupling edges depending on the original parameters is given, achieved by providing
an explicit non-uniform weighting of the vertices in the hardware graph. However,
in practice, these bounds seem to be too weak and the large strengths they introduce
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suppress the success probability due to the necessary scaling factor. Besides that,
the explicit parameter setting problem is studied less intensively than the embedding
problem, in particular analytically, although the limitations are quite well examined
and understood and the choice of the strengths in the single vertex embeddings was
recognized early to be decisive for the success probability of theD-Wavemachine [11].

By now, there is a common understanding in the quantum annealing community that
the coupling strength, the single strength value that is in most cases simply applied
to all coupling edges, needs to be larger than the largest absolute parameter of the
original Ising problem, but should not be orders of magnitudes larger to not trigger
the precision issues of the annealer. Usually, a factor of 2 is applied, as for instance is
described in [13]. At the same time, the weights are in general distributed uniformly
over the vertices.

Another method used in practice is determining the scaling factor empirically, see,
e.g., [14]. Thismeans that several instances of the sameoriginal problemare transferred
into Ising problems, usually yielding a common structure. By successively solving the
problems with certain parameters and checking the feasibility of the found solutions
afterward, a specific bound or a bounding function in the input parameters is estimated
and assumed to hold also for all other instances of the same problem. In [15] different
coupling strength scaling is tested with several strategies to choose the weights, but
none of them shows a significant advantage over the other. In any case, such scanning
does not provide any provable equivalence of the embedded Ising problem but can
only give some guidelines.

In the packagedwave-system,D-Wave’s programming interface offers amethod
to set the coupling strength called ‘uniform torque compensation’ [16], which is most
likely based on [13]. In the given formulation, it only applies for chains, which means
if the embedding of a single vertex induces a path in the hardware graph. The method
is derived from the idea that a ‘torque’ on the central edge of the chain, caused by the
supposedly random influence of the neighboring chains, needs to be compensated by
setting the weights and strengths accordingly. Although the results of the empirical
study for certain random instances in [13] are promising, an analytical study of the
equivalence of the thus obtained solutions is missing, which is why this method can
also only be considered as a heuristic approach to obtain the coupling strength.

The more recent publication [17] is the first and only one after Choi’s, to our best
knowledge, that provides an analytical investigation of the general parameter setting
problem. Based on arbitrary, but given and fixed weights, the authors derive bounds
on the coupling strength and show that their bounds are stronger than those of Choi
and tight for some special cases.

1.3 Contribution

In this work, we focus on the specific programming restrictions of the annealing
machines, but, apart from that, we consider the annealers as a black box without
questioning their ability to actually solve the programmed problems.We aim to clearly
divide the transformation steps of the problems toward the machine and close the loop
to the embedded Ising problem before the annealers even are involved. Therefore, we
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answer a purely mathematical question here, that is interesting for itself, and thereby
improve the application of quantum annealers.

We provide a mathematical description of an embedded Ising problem that holds
a provable equivalence to the original Ising problem, which means both problems
yield equivalent solutions. This includes embeddings that contain arbitrary embedded
subgraphs rather than only chains as in previous approaches. By concentrating on
synchronized solutions, we formulate general sufficient requirements. The observation
of single vertices with their corresponding embeddings and certain assumptions on
the thus extracted instances allow us to formulate specific constraints on the coupling
strengths.

Indeed the bounds of [17] look similar to the cut constraints which we derive
in Sect. 3.3. However, there is a major difference: Our constraints do not include
the absolute values, which can be a decisive factor regarding the complexity of the
problem. Our top-down approach, with a detailed deduction of our bounds, allows
to clearly indicate why we can omit the absolute values. With this we also prove the
sufficiency ofmore general conditions on an embedded Ising problem.We further state
where we ‘lose the necessity’ but can only derive the sufficiency of our requirements.
Therefore, instances for which the bounds are tight can be identified more easily.

By the choice of specific objective functions and the inclusion of a variable setting
of the weights together with an additional gap parameter, we take a significant step
further and extend the problem to a linear optimization problem yielding the optimal
coupling strength. As such, we provide the first approach of analyzing the parameter
setting problem in terms of mathematical optimization. We show by the reduction of
the number of constraints that it is a problem which, in contrast to the embedding
problem, can be solved easily, that is, in polynomial time if the embedded vertices
induce trees [18].

1.4 Structure

First, we introduce the basic terms and concepts in Sect. 2. After recapturing the
main graph-theoretical terms used in this article in Sect. 2.1, we provide an accurate
background for the two main concepts in quantum annealing, the Ising problem and
the graph embedding, in Sects. 2.2 and 2.3, respectively. Combining both concepts, we
can establish the notation of the embedded Ising problem and general requirements
assuring that it yields solutions from which we can extract those to the original Ising
problem in Sect. 2.4. Hereby, one strategy is to focus on synchronized variables, which
is presented in Sect. 2.5. These steps are depicted in first three layers of Fig. 1, where
we summarize all main deductions and results of this article.

In Sect. 3, we break down the full embedded Ising problem formulated over
unknown parameters into smaller problems, which can be solved individually: By
extracting the part concerning a single vertex, we derive sufficient requirements on
the parameters concerning this vertex in Sect. 3.1. Together with an objective func-
tion aiming at minimizing the largest absolute parameter, they form the constraints
of an optimization problem, which we formulate and simplify in Sects. 3.2 and 3.3.
The resulting problem, named the Gapped Weight Distribution Problem, is
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Fig. 1 Main deduction steps to obtain an embedded Ising problem that provably represents the original
Ising problem

summarized in Sect. 3.4. The individual solutions can then be recombined to a full
equivalent embedded Ising problem. This is shown in the lower part of the chart in
Fig. 1.

The remainder of the article then focuses on the step highlighted in green in Fig. 1
and analyzes the complexity of the deduced problem in Sect. 4. We establish a sim-
plified description of the polyhedron over which it is defined in Sect. 4.1. By reducing
the number of constraints significantly due to redundancy in Sect. 4.2, we can derive
our final theorem about the polynomial-time solvability for trees. Finally, we conclude
our results in Sect. 5.
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2 Basic terms

2.1 General notation

First, we introduce some general notations used throughout this work. For the basic
graph definitions, we generally follow the standard literature in graph theory and opti-
mization, see, e.g., [19] or [20], and briefly recapture the main notations here: With
G = (V , E) we always refer to a simple undirected finite graph with the finite set of
vertices V and the set of edges E ⊆ {{v,w} : v,w ∈ V }. Given a graph G, V (G) and
E(G) provide the vertex and the edge set, respectively, if those are not named specifi-
cally. While a subgraph ofG is formed by arbitrary subsets of edges and vertices ofG,
G[S] refers to the vertex-induced subgraph of graph G for some vertex set S ⊂ V (G),
where we have V (G[S]) = S and E(G[S]) = {{v,w} ∈ E(G) : v,w ∈ S}. For
shortness, we abbreviate an edge {v,w}with the commutative product vw. We denote
the neighbors of a vertex v in the graph G with

N (v) := {w ∈ V (G) : vw ∈ E(G)}.

The incident edges are

δ(S) := {vw ∈ E(G) : v ∈ S, w ∈ V (G) \ S},
δ(S, T ) := {vw ∈ E(G) : v ∈ S, w ∈ T } = δ(S) ∩ δ(T ),

where we use δ(v) to abbreviate δ({v}).
For indexed parameters or variables x ∈ X I with the index set I and the value set X ,

weuse xJ = (xi )i∈J for a subset J ⊆ I of the indices to refer to a subset of these param-
eters or variables, respectively, the corresponding vector. In turn, we ‘apply’ J by

x(J ) =
∑

i∈J

xi .

We denote the vector containing only 1’s or 0’s by 1 and O, respectively. For both,
we add the subscript for the corresponding index set wherever necessary. If a set S is
the disjoint union of two sets S1 and S2, that means S1 ∪ S2 = S and S1 ∩ S2 = ∅,
we use S = S1 ·∪ S2. With 2X , we denote the set of all subsets of a set X .

2.2 Ising problem

In the quantum annealing processor, the magnetism of the superconducting loops and
their couplings can be adjusted with user-defined input parameters. This means we
can encode different quadratic functions. The term ‘Ising model’ also refers to these
objective functions because they are closely related to the formulation of the physical
model [10]. We use throughout this work:
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Definition 1 An Ising model over a graph G with weightsWWW ∈ R
V (G) and strengths

SSS ∈ R
E(G)
�=0 is a function IW ,SIW ,SIW ,S : {−1, 1}V (G) → R with

IW ,S(s) :=
∑

v∈V (G)

Wvsv +
∑

vw∈E(G)

Svwsvsw.

We call G the interaction graph of the Ising model.

Usually, we keep the interaction graph fixed. To be able to differ between two Ising
models for the same graph, we use the symbol IW ,S with the corresponding weights
and strengths in the subscript. In case those are clear from the context, we drop the
subscript. Using this definition, we can formulate a general version of the optimization
problem the quantum annealing machine can process:

Ising Problem. Given a graph G,W ∈ R
V (G) and S ∈ R

E(G), find s that solves

min
s∈{−1,1}V (G)

IW ,S(s).

D-Wave’s quantum annealer can indeed only implement float values with W ∈
[−m,m]V (G) and S ∈ [−n, n]E(G) for specificm, n ∈ N. For instance, for the current
Chimera architecture, we have m = 2 and n = 1. However, due to possible scaling,
this is not a hard restriction. A value which provides more insight into the coefficient
distribution is the maximal absolute coefficient

CmaxCmaxCmax := max
{‖W‖∞, ‖S‖∞

}

= max

{
max

v∈V (G)
|Wv|, max

vw∈E(G)
|Svw|,

}
,

in particular when compared with its counterpart, the minimal absolute coefficient
being unequal to zero, or the minimal difference between two absolute coefficients

min
{|x − y| : x �= y ∈ {Wv : v ∈ V (G)} ∪ {Svw : vw ∈ E(G)} ∪ {0}}.

If we further restrict the weights and strengths to Z according to the differ-
entiation considerations explained in Sect. 1.1, which means on the integer range
{−m,−m + 1, ...,m}, respectively, {−n,−n + 1, ..., n}, the latter becomes 1 after
scaling. Thus, the maximal absolute coefficient Cmax is a decisive value to estimate
whether the problem meets the parameter restrictions and is thus suitable to be solved
with the annealer. According to [12], we need at least Cmax ≤ 30 to achieve an
acceptable success probability.

The decision problem corresponding to the Ising Problem is known to be NP-
complete [21]. This means a variety of problems can be mapped to it in polynomial
time [22]. In particular, it is closely related to the Quadratic Unconstrained
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Binary Optimization Problem (QUBO),more commonly known andwell studied
in combinatorial optimization. See, for example, [23] for more details.

There are preprocessing methods for directly manipulating the Ising model. One of
them is applicable if the weight of a vertex exceeds the influence of the strengths of the
incident edges. We recall the well-known result here because it implies the exclusion
of a certain weight-strengths constellation in the following investigations. Although
it is already used in [10], it is not formally proven there. Therefore, we also add the
proof for completeness.

Lemma 2 For an Ising model IW ,S : {−1, 1}V (G) → R over a graph G with
W ∈ R

V (G) and S ∈ R
E(G), if we have

|Wv| >
∑

n∈N (v)

|Svn|

for some vertex v ∈ V (G), every optimal solution

s∗ ∈ argmin
s∈{−1,1}V (G)

IW ,S(s)

fulfils s∗
v = − sign(Wv).

Proof We extract the part of IW ,S containing s∗
v with

IW ,S(s
∗) =

∑

w∈V (G)\{v}
Wws

∗
w +

∑

wu∈E(G)\δ(v)

Swus
∗
ws

∗
u + Wvs

∗
v +

∑

n∈N (v)

Svns
∗
v s

∗
n

︸ ︷︷ ︸
=:I v(s∗v )

,

wherewekeep the other s-variables apart from s∗
v fixed.With the condition for vertex v,

we have

|Wv| >
∑

n∈N (v)

tn Svn ∀t ∈ {−1, 1}N (v)

and therefore can observe that

I v(sign(Wv)) = |Wv| +
∑

n∈N (v)

Svn
(
sign(Wv)s

∗
n

)

> 0

> −|Wv| +
∑

n∈N (v)

Svn
(− sign(Wv)s

∗
n

)

= I v(− sign(Wv)).

This shows that the contribution of s∗
v = sign(Wv) is always larger than the negated

choice independently of the assignment of the other s-variables. ��
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Remark: It is also easy to see that if the equality holds in the above condition for v,
the optimal solution does not necessarily hold the value − sign(Wv) for s∗

v . Still, this
only happens if the last inequality in the proof collapses to an equality. Therefore,
both choices yield the same optimal value and we can nevertheless choose to set
s∗
v = − sign(Wv) in advance.
Based on this result, we could remove certain variables from our Ising problem

in advance. Therefore, we assume in the following that our given Ising model is not
preprocessable according to the lemma anymore, that is, we have

|Wv| <
∑

n∈N (v)

|Svn| (I)

for all vertices v ∈ V (G).
However, when solving problems with D-Wave’s annealing machines, we cannot

choose the interaction graph G arbitrarily. It needs to correspond to the currently
operating hardware graph. Only if G is a subgraph of the hardware graph, we can
directly solve the Ising Problem with the D-Wave annealer (with some probability)
by setting surplus parameters to 0.

2.3 Graph embedding

D-Wave’s quantum annealers do not realize fully connected graphs, which would
allow for optimizing Ising models with arbitrary interaction graphs with the same or a
smaller number of vertices. They rather provide specific hardware graphs, representing
the connectivity of the overlapping superconducting loops which form the qubits. For
currently operating hardware, those are the Chimera and Pegasus graphs [24].

If the investigated application is not explicitly customized to fit those graphs, the
interaction graph of the corresponding Ising model does in most cases not have any
relation to them. Thus, to be able to calculate on such annealing machines, we always
have to deal with the discrepancy between the problem graphs and the realized hard-
ware graphs:We requirewhat is knownas an embedding. Thatmeans several hardware
vertices are combined to form a logical vertex to simulate an arbitrary problem connec-
tivity. As we base the following work on it, we repeat and slightly extend the definition
of [6] here for completeness:

Definition 3 For two graphs G and H , an embedding of G
in H is a map ϕϕϕ : V (G) → 2V (H) fulfilling the following properties, where we
use ϕvϕvϕv := ϕ(v) for v ∈ V (G) for shortness:

(a) all ϕv for v ∈ V (G) induce disjoint connected subgraphs in H , more precisely

• we have ϕv ∩ ϕw = ∅ for all v �= w ∈ V (G) and
• H [ϕv] is connected for all v ∈ V (G),

(b) for all edges vw ∈ E(G), there exists at least one edge in H connecting the sets
ϕv and ϕw, which means we have δ(ϕv, ϕw) �= ∅.

We call G embeddable into H if such an embedding function for G and H exists.
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−→

Fig. 2 Exemplary complete graph embedding in a broken Chimera graph [7]

An example of such an embedding is shown in Fig. 2. The concept of embeddings
is closely related to graph minors, which is why they are also called minor embed-
dings [5]. General graph minors have been intensively studied even before quantum
annealing became a hot topic and the basis is formed by Robertson and Seymore, see,
e.g., [25]. In the quantum annealing context, H refers to the hardware graph, such as a
Chimera graph, whileG is the problem graph derived from the specific application and
its concrete Ising formulation, which can therefore be fully arbitrary. In the following
work, we consider the embedding to be given.

Note that the above definition does not further restrict the embedded subgraphs
H [ϕv], v ∈ V (G), apart from being connected. Although some embedding schemes
produce only trees [9], trees forming crosses [7], like in Fig. 2, or even just paths [26],
which are also called qubit chains, the subgraphs can in general form arbitrary graphs.
However, we can always exclude surplus edges as long aswe preserve the connectivity,
by presetting their strengths to zero. This does not influence the connectivity between
the subgraphs of different original vertices. Therefore, all subgraphs could be reduced
to minimal connecting trees, which might be beneficial as several problems are much
easier on trees. Indeed, we use this fact in our final theorem. Apart from that we deal
with the most general version, with arbitrary graphs, throughout this article.

2.4 Embedded Ising problem

The Isingmodel as given in Definition 1 is defined over arbitrary graphs, thus also over
the possible hardware graphs. As explained before, typical applications however need
an embedding. Therefore, we introduce an extended definition of the Ising model in
this section to combine both concepts. For this we first extend the embedding notation
of Definition 3 by the following graph structures:
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Definition 4 For two graphs G and H and an embedding ϕ : V (G) → 2V (H) of G
in H , let the embedded graph, the subgraph of H resulting from the embedding, be

HϕHϕHϕ := H

⎡

⎣
⋃

v∈V (G)

ϕv

⎤

⎦ =
⎛

⎝
⋃

v∈V (G)

ϕv, Eϕ ·∪ Eδ

⎞

⎠

with

EϕEϕEϕ :=
⋃

v∈V (G)

E(H [ϕv]),

EδEδEδ :=
⋃

vw∈E(G)

δvwδvwδvw :=
⋃

vw∈E(G)

δ(ϕv, ϕw),

denoting the intra-connecting and inter-connecting edges, respectively.

Using the embedding objects of Definition 4, we can now formulate an Ising model
over the given embedded graph. The following concepts are mainly well known in the
quantum annealing community, see, e.g., [10] and [13], but we want to bring them
into a more formal format here.

Definition 5 An embedded Ising model for two graphs G and H and an embedding
ϕ : V (G) → 2V (H) of G in H is an Ising model over Hϕ , where we have I W ,SI W ,SI W ,S :
{−1, 1}V (Hϕ) → R with

I W ,S(s) :=
∑

v∈V (G)

⎛

⎝
∑

q∈ϕv

Wqsq +
∑

pq∈E(H [ϕv])
S pqspsq

⎞

⎠+
∑

vw∈E(G)

∑

pq∈δvw

S pqspsq

=
∑

q∈V (Hϕ)

Wqsq +
∑

pq∈Eϕ∪Eδ

S pqspsq

for the weightsWWW ∈ R
V (Hϕ) and the strengths SSS ∈ R

E(Hϕ).

In this case, we call the corresponding Ising Problem of finding an s that solves

min
s∈{−1,1}V (Hϕ)

I W ,S(s)

with the above embedded Ising model I W ,S the Embedded Ising Problem.
With this formulation and H = C forC being a currently operating brokenChimera

graph of D-Wave, we could solve the corresponding Embedded Ising Problem
with the D-Wave annealer (with some probability). However, given an arbitrary Ising
model whose underlying connectivity graph requires an embedding, we need to find
a suitable corresponding embedded Ising model. This requires to choose the weights
and strengths in a certain way such that an optimal solution of the new Ising problem
corresponds to an optimal solution of the original one in the end.
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In particular, as we usually do not only want to know the optimal value but also
the optimal solution itself, we need a recipe how to get from an embedded to an
original solution. We therefore need a ‘de-embedding’ function that can be computed
easily, which means in polynomial time. This is more formally stated by the following
definition, where we drop the weights and the strengths in the subscript for simplicity.

Definition 6 For two graphs G and H and an embedding ϕ : V (G) → 2V (H) of G
in H , an equivalent embedded Ising model I : {−1, 1}V (Hϕ) → R to a given Ising
model I : {−1, 1}V (G) → R fulfils the following properties:

(a) The corresponding Ising problems are equivalent in the sense that we have

min
s∈{−1,1}V (Hϕ)

I (s) + c = min
t∈{−1,1}V (G)

I (t)

for a known constant c ∈ R and
(b) there exists a mapping from an optimal solution s∗ ∈ {−1, 1}V (Hϕ) of the embed-

ded Ising problem to an optimal solution t∗ ∈ {−1, 1}V (G) of the (unembedded)
Ising problem which can be computed in polynomial time.

This would have been sufficient to use the quantum annealing machines if the
underlying physical system had ideally realized the corresponding physical model.
However, this is impossible in the real world and the machines thus only work heuris-
tically providing solutions only with some unknown probability. In general, it remains
unclear whether we have found the optimal solution, a sub-optimal solution or no
solution at all. Thus, the user does not only need to have access to the mentioned
mapping of the optimal solutions but rather needs more information to deal with the
results of the machine.

In practice, we need an extended version of the above definition to overcome this
issue: For each solution provided by the annealer, not only optimal ones, we want to
know whether we can de-embed it to an original solution and if we can, we also want
to know how to do it. We define:

Definition 7 An equivalent embedded Ising model I : {−1, 1}V (Hϕ) → R to a given
Ising model I : {−1, 1}V (G) → R for two graphs G and H and an embedding
ϕ : V (G) → 2V (H) of G in H is called de-embeddable if we have two functions

ψψψ : {−1, 1}V (Hϕ) → {0, 1}

and

τττ : {s ∈ {−1, 1}V (Hϕ) : ψ(s) = 1
}→ {−1, 1}V (G)

which can both be computed in polynomial time. While

ψ(s) =
{
1 if s is de-embeddable,

0 otherwise
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tells whether we can compute an original solution to the embedded one, the function τ

provides the corresponding de-embedded solution, where we have

I (s) + c = I (τ (s)) ∀s ∈ {−1, 1}V (Hϕ) with ψ(s) = 1

for the constant c ∈ R. We call

ψ−1(1) = {s ∈ {−1, 1}V (Hϕ) : ψ(s) = 1
}

the set of de-embeddable solutions.

Thus, for

s∗ ∈ argmin
s∈{−1,1}V (Hϕ)

I (s),

we have by Definition 6

τ(s∗) ∈ argmin
t∈{−1,1}V (G)

I (t).

The most useful in practice would be if all original solutions had a corresponding
embedded counterpart, which means if τ is surjective. This in turn would mean we
have ψ−1(1) ∼= {−1, 1}V (G) and at least 2|V (G)| solutions that are de-embeddable.

To find such functions, we need to decide at some point what structure the embed-
ded solutions should follow. Although different options might be possible due to the
large number of adjustable parameters, the most straightforward way is to restrict the
considerations to solutions where all variables corresponding to the embedding of a
single original vertex hold the same value. This principle called synchronization is
explained in the following section in more detail.

2.5 Variable synchronization

The main aspect of the equivalence of the given and the embedded Ising problem is
the retrieval of the original solution from the embedded one. For this we need to be
able to ‘de-embed’ the embedded solution. This in turn requires this solution to hold a
certain structure. By enforcing the synchronization of all variables in the embedded
Ising model that correspond to a single original variable, which means that all those
variables should hold the same value, we have a simple criterion on the solutions of the
embedded Ising problem. This idea was already introduced in [10] and means more
formally

Definition 8 For two graphs G and H , a solution of the embedded Ising problem
s ∈ {−1, 1}V (Hϕ) is called a synchronized solution with respect to an embedding
ϕ : V (G) → 2V (H) of G in H if we have

sq = tv ∈ {−1, 1} ∀q ∈ ϕv ∀v ∈ V (G).
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For such a synchronized solution, we can easily provide the functions required for
the de-embedding with

ψ(s) =
{
1 if sq = sp ∀p, q ∈ ϕv ∀v ∈ V (G),

0 otherwise

and

τ(s) = sX

for some vertex set X ⊆ V (Hϕ) with |X ∩ϕv| = 1 for all v ∈ V (G). The vertex set X
just serves as a placeholder, as we can simply choose a random vertex from ϕv to
obtain the value of its variable because all of them hold the same value. It is easy to
recognize that τ is surjective and both functions can be computed in polynomial time.

In case the embedded variables do not hold a common value, it is unclear which
value to assign to the corresponding original variable. In such cases, the common
practice is to apply a post-processing on these unsynchronized solutions. A popular
example is the heuristic of majority voting, where the original variable gets the value
which appears in themajority of the assignments of the embeddedvariables [11]. Those
heuristics might be useful, when considering the non-optimal solutions provided by
the D-Wave machine due to its physical ‘imperfectness.’ That means, for instance, if
only a few variables are flipped in the found solution compared to the optimal solution
due to single-qubit failures or read-out errors.

However, if the embedded Ising model is ill-defined, which means that its optimal
solution does not yield a clear correspondence to an original solution, those heuristics
will not be able to extract the optimal original solution: Switching the value of an
embedded variable, to the one of the majority, also changes the contribution of some
edges by their strength to the objective value, which in turn influences the neighboring
vertices. Thus, broken embeddings might have a global impact on the assignment of
a large number of variables, which can usually not be ‘repaired locally.’ Applying
such methods in these cases will therefore in general not increase the probability
of finding the optimal solution. On the other hand, we do not see a way how to
construct an embedded Ising model tailored to obtain the provable equivalence to
the original Ising model under such ‘majority solutions’ due to the large number of
possible distributions.

Therefore, we focus here on synchronized embedded solutions, which have a
one-to-one correspondence to original solutions, thus can be de-embedded straight-
forwardly. But, how do we ensure that such an embedded Ising model based on
synchronization, which means it yields the given functions of Definition 8 as a de-
embedding, is also an equivalent embedded Isingmodel to our given one?According
to Definition 6, the optimal solution of the embedded Ising problem should also be
a synchronized one in this case, corresponding to the original optimal solution. The
annealer could therefore find it, at least in theory, by solving the embedded problem.
Note that we do not evaluate here how to deal with unsynchronized solutions, probably
returned by the annealing machines due to their heuristic nature.

123



305 Page 16 of 44 E. Lobe, V. Kaibel

Obviously, the weights and the strengths of the embedded Ising model depend on
the original parameters. If the weights and the strengths fulfil

Wv =
∑

q∈ϕv

Wq

and

Svw =
∑

pq∈δvw

S pq ,

respectively, we have for a synchronized solution s as given in Definition 8

I (s) =
∑

v∈V (G)

⎛

⎝
∑

q∈ϕv

Wqsq +
∑

pq∈E(H [ϕv])
S pqspsq

⎞

⎠+
∑

vw∈E(G)

∑

pq∈δvw

S pqspsq

=
∑

v∈V (G)

⎛

⎝
∑

q∈ϕv

Wqtv +
∑

pq∈E(H [ϕv])
S pq tvtv

⎞

⎠+
∑

vw∈E(G)

∑

pq∈δvw

S pq tvtw

=
∑

v∈V (G)

tv
∑

q∈ϕv

Wq +
∑

v∈V (G)

∑

pq∈E(H [ϕv])
S pq +

∑

vw∈E(G)

tvtw
∑

pq∈δvw

S pq

=
∑

v∈V (G)

Wvtv +
∑

vw∈E(G)

Svwtvtw +
∑

pq∈Eδ

S pq

= I (t) +
∑

pq∈Eδ

S pq .

(II)

This means, for all such synchronized solutions, we have I (s) + c = I (t) with

c = −
∑

pq∈Eϕ

S pq .

Thus, the strengths SEϕ only introduce an offset to the overall objective value for these
solutions. Furthermore, we ensure that for an optimal solution

t∗ ∈ argmin
t∈{−1,1}V (G)

I (t)

we have I (s∗) + c = I (t∗) for s∗ = (t∗v1ϕv )v∈V (G) and s∗ thus also is the minimum
over all synchronized solutions, which means

s∗ ∈ argmin
{
I (s) : s ∈ {−1, 1}V (Hϕ), sϕv ∈ {−1,1}∀v ∈ V

}
.
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However, for the given s∗, we do not necessarily have

s∗ ∈ argmin
s∈{−1,1}V (Hϕ)

I (s),

which means it would also be the optimum over all solutions of the embedded Ising
problem. Theremight be unsynchronized variable assignments yielding a lower objec-
tive value. This is the case if the contribution of the intra-connecting edges does not
suffice.

As it can be seen in (II), if the variables sq and sp for pq ∈ E(H [ϕv]) are syn-
chronized, their product reduces to 1 and the corresponding strength S pq is added
to the objective value. In turn, if the variables are assigned to different values, the
product is −1 and S pq is subtracted. Due to the minimization, it is therefore prefer-
able to set S pq to a negative value. However, its contribution also needs to exceed
the benefit of breaking the synchronization in the remaining part of the objective
function.

To ensure the synchronization, we could, in theory, set S pq = −∞ for all pq ∈ Eϕ

or at least to a very large negative value, e.g., exceeding the sum of the abso-
lute values of all coefficients in the embedded Ising model. In this case, we could
also choose W and SEδ arbitrarily within the sum bounds. However, these large
strength values cannot be realized in practice because the annealing machines have
a limited parameter precision and height due to physical restrictions. Thus, how do
we need to choose the parameters SEϕ such that they suffice for the synchroniza-
tion and how does their choice influence possible choices for W and SEδ and vice
versa?

3 Optimization problem extraction

For calculations on the D-Wave machine, it is essential for the user that the encoded
problem indeed represents the original problem the user wants to solve. In this section,
we extract and simplify the sufficient requirements on the parameters that need to be
fulfilled such that the resulting embedded Ising problem provably holds equivalent
solutions to those of the given problem, based on the synchronization of all variables in
the embedded problem corresponding to one variable of the original one. By observing
a single original vertex and adding an objective function aiming to minimize the
absolute height of the parameters, we can extract a specific optimization problem
respecting the physical restrictions of the machine.

We assume the two graphs GGG and HHH , the embedding ϕϕϕ : V (G) → 2V (H) of G
in H with the corresponding graph structures of Definition 4 and an Ising model
IW ,SIW ,SIW ,S : {−1, 1}V (G) → R with the weights WWW ∈ R

V (G) and strengths SSS ∈ R
E(G)
�=0 to

be given and fixed in the following. Given this data, how do we find an equivalent
embedded Ising model I W ,S : {−1, 1}V (Hϕ) → R to IW ,S with weights W ∈ R

V (Hϕ)

and strengths S ∈ R
E(Hϕ)? Note that we drop the subscripts of the Ising models in

most cases for simplicity.
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3.1 Single vertex evaluation

To answer the question stated at the end of Sect. 2.5,we extract the part of the embedded
Ising model that concerns a single original vertex v ∈ V (G):

I (s) =
∑

w∈V (G)\{v}

⎛

⎝
∑

q∈ϕw

Wqsq +
∑

pq∈E(H [ϕw])
S pqspsq

⎞

⎠

+
∑

wu∈E(G)\δ(v)

∑

pq∈δwu

S pqspsq

+
∑

q∈ϕv

Wqsq +
∑

pq∈E(H [ϕv])
S pqspsq +

∑

w∈N (v)

∑

pq∈δvw

S pqspsq

︸ ︷︷ ︸
=:I v(s)

.

(III)

By this the remaining part I−v(s)I−v(s)I−v(s) := I (s) − I v(s) does only depend on the vari-
ables s ∈ {−1, 1}V (Hϕ)\ϕv . By replacing s ∈ {−1, 1}ϕv∪N (ϕv) in I v(s) with (r , s) ∈
{−1, 1}ϕv × {−1, 1}N (ϕv) we get

I v(r , s)I v(r , s)I v(r , s) :=
∑

q∈ϕv

Wqrq +
∑

pq∈E(H [ϕv])
S pqrprq +

∑

w∈N (v)

∑

pq∈δvw

S pqrpsq

and can clearly indicate the different influencing parts. All variables corresponding to
the embedding of vertex v, the r -variables, nowonly appear in I v , while the s-variables
form the connection to the remaining part, thus appear in both I−v = I − I v and I v .

In the following, we want to enforce the synchronization of the r ’s independently of
the influence ‘from the outside,’ which means for arbitrary s. Due to the minimization
of the Ising models, this means that the minimum of the partial Ising problem should
always be either 1 or −1, more formally

argmin
r∈{−1,1}ϕv

I v(r , s) ⊆ {−1,1} ∀s ∈ {−1, 1}N (ϕv).

In other words, we have

min
r∈{−1,1}ϕv

I v(r , s) = min
{
I v(−1, s), I v(1, s)

}

but with

I v(r , s) > min
{
I v(−1, s), I v(1, s)

} ∀s ∈ {−1, 1}N (ϕv)

∀r ∈ {−1, 1}ϕv \ {−1,1}.

Do these conditions applied to all vertices v ∈ V (G) ensure that the embed-
ded problem is provably equivalent to the original one? We can indeed show their
sufficiency:
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Lemma 9 With

I v(r , s) > min
{
I v(−1, s), I v(1, s)

} ∀s ∈ {−1, 1}N (ϕv)

∀r ∈ {−1, 1}ϕv \ {−1,1}

for all v ∈ V (G), we have for all

s∗ ∈ argmin
s∈{−1,1}V (Hϕ)

I (s)

that s∗ = (t∗v1ϕv )v∈V (G) with t∗ ∈ {−1, 1}V .
Proof Assume there exists

s∗ ∈ argmin
s∈{−1,1}V (Hϕ)

I (s)

with s∗
ϕv

/∈ {−1,1} for some vertex v ∈ V (G). Then, we have

I (s∗) = I v
(
s∗
ϕv

, s∗
N (ϕv)

)
+ I−v

(
s∗
V (Hϕ)\ϕv

)

> min
{
I v
(
−1, s∗

N (ϕv)

)
, I v
(
1, s∗

N (ϕv)

)}
+ I−v

(
s∗
V (Hϕ)\ϕv

)

by the given conditions and we can further deduce

I (s∗) = I v
(
r∗1, s∗

N (ϕv)

)
+ I−v

(
s∗
V (Hϕ)\ϕv

)

= I
(
s̃∗)

for s̃ ∈ {−1, 1}V (Hϕ) with s̃V (Hϕ)\ϕv
= s∗

V (Hϕ)\ϕv
and s̃ϕv = r∗1 for

r∗ =
{
1 if I v

(
−1, s∗

N (ϕv)

)
≥ I v

(
1, s∗

N (ϕv)

)
,

−1 otherwise.

This contradicts to s∗ being an optimal solution. ��
With this result, we can now clearly formulate the requirements on an embedded

Ising model:

Theorem 10 For two graphs G and H, an embedding ϕ : V (G) → 2V (H) of G in H
and an Ising model IW ,S : {−1, 1}V (G) → R with weights W ∈ R

V (G) and strengths
S ∈ R

E(G), the Ising model I W ,S : {−1, 1}V (Hϕ) → R with weights W ∈ R
V (Hϕ) and

strengths S ∈ R
E(Hϕ) forms an equivalent embedded Ising model to IW ,S if we have

Wv =
∑

q∈ϕv

Wq ∀v ∈ V (G),
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Svw =
∑

pq∈δvw

S pq ∀vw ∈ E(G),

I v

W ,S
(r , s) > min

{
I v

W ,S
(−1, s), I v

W ,S
(1, s)

}
∀s ∈ {−1, 1}N (ϕv)

∀r ∈ {−1, 1}ϕv \ {−1,1}
∀v ∈ V (G).

Proof The optimality is clear with the deductions from the beginning of this section
and Lemma 9. Furthermore, from an optimal solution

s∗ ∈ argmin
s∈{−1,1}V (Hϕ)

I (s),

we can easily get a solution of the original Ising problemwith t∗v = s∗
q for an arbitrarily

chosen p ∈ ϕv for all v ∈ V due to the enforced synchronization. ��
Note that this theorem only shows the sufficiency of our derived conditions. How-

ever, it does not state anything about the necessity. In the constraints for a specific
vertex v, we assume the s-variables to be fully arbitrary. If we took into account that
some of them are not independent from each other as they belong to the embedding of
a single neighbor of v, whose embedded vertices should equivalently be synchronized,
we would possibly retrieve a stronger set of constraints. This introduces another level
of complexity, which we keep for future research.

Even if these variables are in turn all independent, it is still only an assumption we
have made earlier that the single weights shall sum up to the original weights as well
as the single strengths to the original strengths. However, based on this assumption,
the constraints on the Ising model values are indeed necessary in this case. This aspect
is also discussed in more detail in Sect. 3.3.

3.2 Problem instance definition

In the following, we only concentrate on a single arbitrary but fixed ver-
tex vvv ∈ V (G). From the corresponding part of the embedded Ising model
I v : {−1, 1}ϕv × {−1, 1}N (ϕv) → R and the constraints on the weights and strengths
that concern v, we derive a specific optimization problem that needs to be solved to
obtain those parameter values that ensure that the embedded vertices in ϕv represent
the original one v.

Input
Thepart of the embeddedgraph I v isworking on is the embedded subgraph structure

H [ϕv ·∪ N (ϕv)] = (ϕv ·∪ N (ϕv), E(H [ϕv]) ·∪ δ(ϕv) ·∪ E(H [N (ϕv)])),

where we have

• the connected inner graph H [ϕv] =: (V , E
)
with vertices VVV := ϕv and edges

EEE := E(H [ϕv])
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−→

Fig. 3 Example for an embedded subgraph structure of a single vertex with all outer neighbors, extracted
from the complete graph embedding in the broken Chimera graph of Fig. 2

• the outer neighbors NNN := N (ϕv) ⊆⋃{p ∈ ϕw : w ∈ N (v)},
• the set of edges to the outer neighbors DDD := δ(ϕv) and
• the edges between the outer neighbors E(H [N (ϕv)]).
An example is shown in Fig. 3. Note that the quadratic terms for the edges between

the outer neighbors of the last point do not include variables corresponding to vertices
in V . Therefore, they are not considered in the definition of I v . In the following section,
we nevertheless argue why we can omit these edges.

Although, apart from the constraints

Svw =
∑

pq∈δvw

S pq ∀w ∈ N (v)

as stated inSect. 2.5,we are free to choose the values for the strengths on the outer edges
S pq for all pq ∈ D, this introduces another level of complexity to the overall problem.
Their choice does not only concern the evaluated vertex v but also its neighbors in G.
We keep this additional level for future research and assume in the following that S pq

is validly chosen in advance and thus given and fixed , allowing to handle all vertices
v separately. Nevertheless, we discuss possible choices supporting the simplification
of the problem in the following section and see that our approach can be applied in
any case.

Todiffer between the outer edgeswith the given strength and the inner edgeswith the
strength to be found, we rename themwithααα := SD ∈ R

D andβββ := − SE ∈ R
E . Note

the extraction of the negative sign in the definition of β. For simplicity of the notation,
we also use for the variable weights ωωω :=Wϕv ∈ R

V . With these notations and the

simplifications of the previous section, we have for r ∈ {−1, 1}V and s ∈ {−1, 1}N

I
v
(r , s) =

∑

q∈V
ωqrq −

∑

pq∈E
βpqrprq +

∑

q∈V

∑

qn∈D
αqnrqsn
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=: I α
ω,β(r , s)I α
ω,β(r , s)I α
ω,β(r , s),

the Ising model I α
ω,β : {−1, 1}V × {−1, 1}N → R, where we drop the bar and the

superscript v for simplicity. All in all, we assume to be given

• the strengths on the outer edges α ∈ R
D and

• the total weight λλλ :=Wv ∈ R

and search for

• the weights ω ∈ R
V and

• the strengths on the inner edges β ∈ R
E .

Note that we could ‘cut off’ vertices from the embedded graph, where there are no
outer edges incident to these vertices or all of them have zero strength, that means there
is no ‘influence fromoutside’ on these vertices. In turn,we thus assumewe always have
at least one outer edgewith a nonzero strength, that is, {n ∈ N : 
n ∈ D, α
n �= 0} �= ∅
for all leaves 
 of H [ϕv].
Output and objective
The larger we choose βpq , the stronger the vertices p and q are coupled due to the
negative sign in I α

ω,β . As discussed in Sect. 2.2, we cannot simply set these strengths
to some very large value compared to the remaining parameters due to the machine
restrictions. In the literature, the coupling strength is mentioned to be decisive for the
success probability; however, usually yielding the maximal absolute coefficient Cmax
at the same time. Therefore, the question arises: How small can we set these strengths
such that we can still achieve an equivalent embedded Ising? This means that a first
step based on current practice would be to simply minimize ‖β‖∞.

However, by only minimizing the strengths, a corresponding suitable weighting
could exceed the corresponding bound in some vertices. Hence, with the strengths
on the outer edges assumed to be fixed, the more interesting objective would be the
maximal absolute value of all remaining parameters of the observed part of the Ising
model max{‖ω‖∞, ‖β‖∞}, which should be minimized in total.

As already mentioned before, H [ϕv] could be reduced to a tree by excluding pos-
sibly existing additional inner edges. We use this fact in our final theorem, as several
problems are much easier on trees. However, in the following, we consider H [ϕv] to
be an arbitrary graph to deal with the most general problem version in this regard.

Constraints
By the previous section, we can already derive the following constraints on the
introduced parameters ω and β: The weights should sum up to the total weight with

λ =
∑

q∈V
ωq =: ω(V )ω(V )ω(V )

and, from the conditions of Lemma 9, we need

I α
ω,β(r , s) > min

{
I α
ω,β(−1, s), I α

ω,β(1, s)
}

∀s ∈ {−1, 1}N

∀r ∈ {−1, 1}V \ {−1,1},
(IV)
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to ensure that the full embedded problem is provably equivalent to original one in the
end.Note that the latter condition is comprised of an exponential number of constraints,
more precisely 2|N |(2|V | − 2

)
many. Although they are linear inequalities, the overall

optimization problem is therefore not solvable in polynomial time in a straightforward
way. Thus, it could only be used for small embedded subgraph instances H [ϕv] in
practice.

By introducing a gap value γγγ ∈ R>0, we can relax the order relation to a greater
or equal:

I α
ω,β(r , s) ≥ min

{
I α
ω,β(−1, s), I α

ω,β(1, s)
}

+ γ ∀s ∈ {−1, 1}N

∀r ∈ {−1, 1}V \ {−1,1}.

By this we can also influence how ‘far away,’ in terms of the difference of their objec-
tive values, unsynchronized variable assignments are from the synchronized ones.
Breaking the synchronization introduces a penalty of at least this gap value for each
original vertex, such that synchronized solutions are preferred in the minimization. In
particular, this results in the optimal solution of the embedded Ising problem being
also synchronized and having a distance to the next unsynchronized solution of at
least γ . Therefore, in theory, any gap value larger than 0 is sufficient to provide the
provable equivalence of the problems.

However, this value might become important for the user of the actual D-Wave
machine when trying to improve the success probability of finding optimal or
close-to-optimal solutions, because it influences the distribution of synchronized and
unsynchronized solutions: Depending on the distribution of the objective values of
the original problem, the distance to the closest sub-optimal synchronized solution
might be larger than γ and several unsynchronized solutions might therefore have an
objective value in between. This could mean that the annealing machine even misses
any synchronized solution, due to its heuristic nature, and instead only returns unsyn-
chronized solutions. In this case the gap value is chosen too small and needs to be
increased. However, due to the parameter restrictions of the machine, we will proba-
bly not be able to increase the gap until only synchronized solutions are preferred, as
this increases the resulting coupling strength, too. In future research, we might need to
evaluate the effects of the gap parameter on actual machines and could also investigate
different approaches in trading off the gap against the strength. This however shall not
be part of this work. In the following, we assume this value is given with the input and
fixed.

In a nutshell
By the previous notations and reformulations, we can now summarize the problem.
While in [18] the problem was split up in two problems with two different objective
functions, this is not relevant for our hardness result here. Therefore, we concentrate
on the full problem with
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Gapped Parameter Setting Problem. Given an embedded subgraph struc-
ture (V ·∪ N , E ·∪ D), α ∈ R

D , λ ∈ R and γ ∈ R>0, find ω and β that
solve

min max
{‖ω‖∞, ‖β‖∞

}

s.t. ω ∈ R
V , β ∈ R

E ,

ω(V ) = λ,

I α
ω,β(r , s) ≥ min

{
I α
ω,β(−1, s), I α

ω,β(1, s)
}

+ γ

∀s ∈ {−1, 1}N
∀r ∈ {−1, 1}V \ {−1,1}.

3.3 Simplifications

The instance defined in the previous section can be simplified due to some properties
of the Ising models. We can apply several steps, which are discussed in the following.

Common strength

Theβ-variables only introduce an offset for synchronized variable assignments. As the
total size of this offset is irrelevant, we can choose to set all strengths to the samemaxi-
mal value. Thus, withϑϑϑ := ‖β‖∞, we can set βpq to ϑ for all pq ∈ E and therefore get

I α
ω,ϑ (r , s) =

∑

q∈V
ωqrq − ϑ

∑

pq∈E
rprq +

∑

q∈V

∑

qn∈D
αqnrqsn . (V)

The constant c describing the difference to the original Isingmodel is now simplyϑ |E |.
This also allows to further simplify the problem formulation: Instead of using

max
{‖ω‖∞, ϑ

}
as the objective function to be minimized, it can be reduced to only ϑ

by introducing the additional constraint ϑ ≥ ‖ω‖∞. This means the minimal coupling
strength also serves as an upper bound for the weights which we can assign.

Non-negative input parameters due to symmetry
Furthermore, we can take advantage of the symmetry in the Ising model being defined
over variables in {−1, 1}. By replacing s with s̄ = −s, we can switch the sign of the
strengths on the intra-coupling edges:

I α
ω,ϑ (r , s) =

∑

q∈V
ωqrq − ϑ

∑

pq∈E
rprq +

∑

q∈V

∑

qn∈D
αqnrqsn

=
∑

q∈V
ωqrq − ϑ

∑

pq∈E
rprq +

∑

q∈V

∑

qn∈D
(−αqn)rq s̄n

= I−α
ω,ϑ (r , s̄).
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We can see that the different assignments of the s-variables in (IV) cover all possible
sign combinations of the strengths on the outer edges α. Thus, we can restrict α toR

D≥0
in the following evaluations.

Note that this does not mean that we restrict the original Ising instances which
can be reformulated using our method to specific cases. We can rather handle all
Ising models analogously by replacing possibly appearing negative strengths by their
absolute values and proceed with the resulting Ising instance. However, in the final
embedded Ising problem formulation, we need to refer to the original strengths for
the corresponding quadratic terms.

Additionally, by replacing (r , s) with (r̄ , s̄), we observe a symmetry for the ω’s:
We have

I α
ω,ϑ (r , s) =

∑

q∈V
ωqrq − ϑ

∑

pq∈E
rprq +

∑

q∈V

∑

qn∈D
αqnrqsn

=
∑

q∈V
(−ωq)r̄q − ϑ

∑

pq∈E
r̄ pr̄q +

∑

q∈V

∑

qn∈D
αqnr̄q s̄n

= I α−ω,ϑ (r̄ , s̄)

with

∑

q∈V
(−ωq) = −λ.

This means we can analogously restrict the total weight to λ ∈ R≥0. Similar to
the outer strengths as explained before, Ising instances with a negative total weight
can be handled by setting λ to |λ|. However, in this case, we also need to apply
a transformation to the ω-values, once we have found them, to obtain the correct
embedded Ising formulation: We need to revert the sign change by replacing the
found ω with sign(λ) · ω for the original total weight λ.

Independent outer neighbors
By the embedding definition, a single edge connecting the embeddings of different
vertices is sufficient. In practice, we usually have |δvw| > 1 for at least a few pairs
of original vertices vw due to the symmetric structure of the Chimera. This can also
be seen in Fig. 3. Here, we discuss some options how to deal with multiple inter-
connecting edges and the assumptions which we base the following work on.

If there are multiple edges between the embeddings of two vertices, one possibility
could simply be to choose a certain edge ē ∈ δvw and ‘ignore’ the others. This means,
for the embedded Ising model, we could set

αē = Sē := Svw,

αe = Se := 0 ∀e ∈ δvw \ {ē}

and further only deal with δvw = {ē}. This would influence the former graph structure
in two ways:
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1. No two vertices of V share an outer neighbor, which means that we have |{q :
qn ∈ δ(ϕv)}| = 1 for all n ∈ N and thus D = δ(ϕv) ∼= N .

2. We have E(H [N (ϕv)])) = ∅, which means that no two outer neighbors are
connected by an edge.

By this, on the one hand, we have already achieved a simplification of the problem
and, on the other hand, we have ensured that all the outer neighbors are independent
of each other because they belong to different original neighbors of v.

However, another possibility also offers advantages: By spreading the strength
equally over all of the available edges as suggested in [13] with

αpq = S pq := Svw

|δvw| ∀pq ∈ δvw,

the coefficients are decreased as much as possible. This seems to be beneficial for
complying with the parameter range of the machine. As the variables corresponding
to the embeddings of the other vertices shall be synchronized, too, the outer neighbors
of some inner vertices are not independent of each other in this case. While in the
Chimera graph no triangles exist, they might be present in other hardware graphs,
such as the Pegasus graph, and might cause inner vertices that even share a common
outer neighbor.

Howsoever, the strengths are distributed, we want to take advantage of both strate-
gies. Thus, we simplify the embedded graph structure by splitting up possibly existing
shared vertices and simply considering all outer vertices to be pairwise independent of
each other as if they would belong to different neighbors of the original vertex. Thus,
for the following considerations in this work, we assume that we have D ∼= N and that
ααα ∈ R

D≥0 = R
N≥0 are given and fixed strengths yielding the points 1 and 2 from above.

These assumptions become relevant in the following section, where we estimate the
worst cases of the ‘outer influence,’ the contribution of the strengths on the edges to
the outer neighbors multiplied by the s-variables, to further simplify I v . If there exist
two variables sn and sm corresponding to two outer neighbors n,m ∈ N that belong
to the same embedding ϕw of an original neighboring vertex w, those variables would
get the same value in a synchronized solution of the overall problem. As we however
assume they can be chosen arbitrarily and independently, the worst case might be
overestimated. This means our derived bounds still hold, but the found strength might
be larger than actually necessary in this case. Additionally, the actual minimal gap
between a synchronized and an unsynchronized solution might be larger than intended
by the user. This is another point where we can only derive the sufficiency but not the
necessity of our conditions.

In turn, if the given embedding does not contain any multiple inter-connecting
edges, we do not have the choice to split the strength of the original edge but rather
need to assign it to the single corresponding edge in the hardware graph. Thus, in this
case, our bounds are tight in this regard and we would not lose the necessity here.

Single outer neighbor
Finally, we further reduce the problem such that the given graph instance does only
have a single outer neighbor for each vertex q ∈ V . This would mean we had N ∼= V .
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If this is not the case, which means there are at least two outer neighbors for a single
inner vertex, the following lemma shows that a synchronization of the variables over
these outer neighbors suffices to also cover those cases where the strengths on the
outer edges get different signs.

Lemma 11 For I α
ω,ϑ : {−1, 1}V × {−1, 1}N as given in (V) with α ∈ RD≥0, the gap

value γ ∈ R≥0, a vertex q ∈ V and its neighbors n,m ∈ N with qn, qm ∈ D, we
have

I α
ω,ϑ (r , s) ≥ min

{
I α
ω,ϑ (−1, s), I α

ω,ϑ (1, s)
}+ γ for sn = sm ∈ {−1, 1}

⇒ I α
ω,ϑ (r , s) ≥ min

{
I α
ω,ϑ (−1, s), I α

ω,ϑ (1, s)
}+ γ for sn, sm ∈ {−1, 1}

for all r ∈ {−1, 1}V and all sN\{m,n} ∈ {−1, 1}N\{m,n}.

Proof In the following proof, we drop the sub- and superscripts on I for simplicity.
With

I (r , s) = αqnsnrq + αqmsmrq − ϑ |E | + γ + rq

(
ωq − ϑ

∑

pq∈E
rp +

∑

q
∈D

 �=n,m

αq
s


︸ ︷︷ ︸
=:A(r ,s)

)

+ ϑ |E | − γ +
∑

p∈V \{q}
ωprp − ϑ

∑

pu∈E
p,u �=q

rpru +
∑

p∈V \{q}

∑

p
∈D
αp
s
rp

︸ ︷︷ ︸
=:B(r ,s)

and

I (±1, s) = ±
(

αqnsn + αqmsm +
∑

p
∈D

 �=n,m

αp
s
 + λ

︸ ︷︷ ︸
=:C(r ,s)

)
− ϑ |E | + γ,

the functions A, B and C are independent of rq , sn and sm . By the condition of the
lemma, we know

αqnsnrq + αqmsmrq + A(r , s)rq + B(r , s) ≥ −∣∣αqnsn + αqmsm + C(r , s)
∣∣

∀sn === sm ∈ {−1, 1} ∀rq ∈ {−1, 1}
∀s ∈ {−1, 1}N\{n,m} ∀r ∈ {−1, 1}V \{q} \ {−1,1}

and it remains to show that from this follows

αqnsnrq + αqmsmrq + A(r , s)rq + B(r , s) ≥ −∣∣αqnsn + αqmsm + C(r , s)
∣∣
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∀sn �=�=�= sm ∈ {−1, 1} ∀rq ∈ {−1, 1}
∀s ∈ {−1, 1}N\{n,m} ∀r ∈ {−1, 1}V \{q} \ {−1,1}.

More simply, this means to show that, for any fixed A, B,C ∈ R and X ,Y ∈ R≥0
with

(X + Y )sr + Ar + B ≥ −|(X + Y )s + C | ∀r , s ∈ {−1, 1}, (i)

it follows that

(X − Y )sr + Ar + B ≥ −|(X − Y )s + C | ∀r , s ∈ {−1, 1}. (ii)

This can be achieved by the following two case distinctions. By inserting s = −1 and
r = 1 in inequality (i), we obtain due to X ,Y ≥ 0

• for C ≤ X + Y

−X − Y + A + B ≥ −| − (X + Y ) + C | = −X − Y + C

⇔ A + B ≥ C

⇔ (X − Y )s + A + B ≥ (X − Y )s + C

≥ −|(X − Y )s + C | ∀s ∈ {−1, 1}

• and for C > X + Y

−X − Y + A + B ≥ −| − (X + Y ) + C | = X + Y − C

⇒ (X − Y )s + A + B ≥ −X − Y + A + B

≥ X + Y − C

≥ −(X − Y )s − C

≥ −|(X − Y )s + C | ∀s ∈ {−1, 1}.

Thus, we have shown the implication of inequality (ii) for r = 1 and arbitrary s. By
inserting s = 1 and r = −1 in inequality (i), we obtain in turn

• for C ≥ −X − Y

−X − Y − A + B ≥ −|X + Y + C | = −X − Y − C

⇔ −A + B ≥ −C

⇔ −(X − Y )s − A + B > −(X − Y )s − C

≥ −| − (X − Y )s − C |
= −|(X − Y )s + C | ∀s ∈ {−1, 1}

• and for C < −X − Y

−X − Y − A + B > −|X + Y + C | = X + Y + C
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⇒ −(X − Y )s − A + B ≥ −X − Y − A + B

≥ X + Y + C

≥ (X − Y )s + C

≥ −|(X − Y )s + C | ∀s ∈ {−1, 1}.

This means we have also shown implication of inequality (ii) for r = −1 and
arbitrary s, which completes the proof. ��

With the conditions of the lemma, we can replace the single occurrence of sm with
sn in I α

ω,ϑ (r , s). This way sn gets the coefficient αqn + αqm and we have reduced
the outer neighbors by 1 by removing m. We can apply this lemma iteratively to all
outer neighbors that share an inner vertex. Hence, by the lemma, we can say that the
synchronization of the variables corresponding to the outer neighbors forms the ‘worst
case’ with respect to the outer influence. Note that this step only reduces the number
of cases which need to be considered but does not lead to weaker bounds, even if the
‘merged’ outer neighbors have not been independent before.

By defining the weighting σσσ ∈ R
V≥0 with

σqσqσq :=
∑

qn∈D
αqn ∀q ∈ V ,

we can therefore reduce the Ising model to

I σ
ω,ϑ (r , s)I σ
ω,ϑ (r , s)I σ
ω,ϑ (r , s) =

∑

q∈V
ωqrq − ϑ

∑

pq∈E
rprq +

∑

p∈V
σqrqsq ,

where we reindexed the s-variables accordingly, that is s ∈ {−1, 1}V . Thus, only
σ ∈ R

V≥0 is considered in the following as an input for the weight distribution problem

and we do not require the outer neighbors N and the edges to them D anymore.

Graph cuts
With the former simplifications, we can now further evaluate the condition

I σ
ω,ϑ (r , s) ≥ min

{
I σ
ω,ϑ (−1, s), I σ

ω,ϑ (1, s)
}+ γ ∀s ∈ {−1, 1}V

∀r ∈ {−1, 1}V \ {−1,1}

for fixed parameters and reformulate it using graph cuts. Inserting the full formulation
for I σ

ω,ϑ in the above inequality, we have for all s ∈ {−1, 1}V and for all r ∈ {−1, 1}V \
{−1,1}:
∑

q∈V
ωqrq − ϑ

∑

pq∈E
rprq +

∑

q∈V
σqrqsq

123



305 Page 30 of 44 E. Lobe, V. Kaibel

≥ min

⎧
⎨

⎩
∑

q∈V
−ωq − ϑ

∑

pq∈E
1 +

∑

q∈V
−σqsq ,

∑

q∈V
ωq − ϑ

∑

pq∈E
1 +

∑

q∈V
σqsq

⎫
⎬

⎭+ γ

= min

⎧
⎨

⎩−
∑

q∈V
(σqsq + ωq),

∑

q∈V
(σqsq + ωq)

⎫
⎬

⎭− ϑ |E | + γ,

which is equivalent to

ϑ |E | − ϑ
∑

pq∈E
rprq

= ϑ
(|E | − |{pq ∈ E : rp = rq}| + |{pq ∈ E : rp = −rq}|

)

= 2ϑ |{pq ∈ E : rp = −rq}|

≥ min

⎧
⎨

⎩
∑

q∈V
(σqsq + ωq), −

∑

q∈V
(σqsq + ωq)

⎫
⎬

⎭−
∑

q∈V
(σqsq + ωq)rq + γ

= min

⎧
⎨

⎩
∑

q∈V
(σqsq + ωq)(1 − rq),

∑

q∈V
(σqsq + ωq)(−1 − rq)

⎫
⎬

⎭+ γ

= 2min

{ ∑

q∈V
rq=−1

(σqsq + ωq), −
∑

q∈V
rq=1

(σqsq + ωq)

}
+ γ.

By combining all the lower bounds, we can further deduce stronger conditions,
where we have for all r ∈ {−1, 1}V \ {−1,1}

ϑ |{pq ∈ E : rp = −rq}|
≥ max

s∈{−1,1}V
min

{ ∑

q∈V
rq=−1

(σqsq + ωq), −
∑

q∈V
rq=1

(σqsq + ωq)

}
+ 1

2γ

= min

{ ∑

q∈V
rq=−1

(σq + ωq),
∑

q∈V
rq=1

(σq − ωq)

}
+ 1

2γ.

It is easy to recognize that the maximum in the former relation is achieved when
setting sq to −rq for all q ∈ V , leading to the last equality. Note that we already

reduced the number of constraints to 2|V | − 2 with this step.
With the vertex set definition of S = {q ∈ V : rq = −1} for a specific assignment

of the r -variables and

σ(S)σ (S)σ (S) :=
∑

q∈S
σq ,
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we can equivalently formulate for all ∅ �= S � V :

ϑ |{pq ∈ E : p ∈ S, q ∈ V \ S}| = ϑ |δ(S)|
≥ min

{∑

q∈S
(σq + ωq),

∑

q∈V \S
(σq − ωq)

}
+ 1

2γ

= min
{
σ(S) + ω(S), σ (V \ S) − ω(V \ S)

}+ 1
2γ.

Note that the empty set and the full vertex set are excluded because the r -variables
cannot get all the value 1 or all the value −1. As furthermore the graph H [ϕv] is
connected by the embedding definition, we have |δ(S)| > 0 for all non-trivial cuts S.
As ϑ is the objective function, we can reformulate the conditions to lower bounds on
the optimal value with

ϑ ≥ min{σ(S) + ω(S), σ (V \ S) − ω(V \ S)} + 1
2γ

|δ(S)| ∀∅ �= S � V .

We refer to them as cut inequalities in the following. They can equivalently be
combined all in one with

ϑ ≥ max
∅�=S�V

{
min{σ(S) + ω(S), σ (V \ S) − ω(V \ S)} + 1

2γ

|δ(S)|

}
.

Note that, according to the preprocessing step based on Lemma 2 of Sect. 2.2,
there are instances for which the weight of the original vertex predominates all outer
influences caused by its incident edges. The variable corresponding to such a vertex
can be preprocessed before the embedding anyway by setting it according to the sign
of the weight. This case appears if we have λ ≥ σ(V ). Thus, we also only consider
instances with σ(V ) > λ in the following. We summarize the resulting problem in the
next section.

3.4 The problem

In this section, we briefly summarize the problem that is derived from the Gapped
Parameter Setting Problem, where the sufficient requirements on the embedded
Ising Problemare combined. Previously,we have considered amore complex objective
function, which has now been reduced to simply optimize ϑ while distributing the
weights ω. Therefore, we have
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Gapped Weight Distribution Problem. Given a graph G = (V , E),
σ ∈ R

V≥0, λ ∈ R≥0 with λ < σ(V ) and γ ∈ R>0, find ϑ and ω that solve

min ϑ

s.t. ϑ ∈ R, ω ∈ R
V ,

ϑ ≥ min
{
σ(S) + ω(S), σ (V \ S) − ω(V \ S)

}+ γ

|δ(S)| ∀∅ �= S � V ,

ω(V ) = λ,

ϑ ≥ ‖ω‖∞.

Note that we have now switched to the standard notation of a graph G = (V , E) as
the input for the Gapped Weight Distribution Problem for simplification. This
graph G does however not correspond to the interaction graph of the original Ising
problem, which we introduced in the beginning of this article. By solving the above
problem with G = H [ϕv],

σq =
∑

pq∈δ(ϕv)

∣∣S pq
∣∣ ∀q ∈ ϕv,

and λ = |Wv| as explained in Sect. 3.3, we can find the corresponding optimal strength
andweights for vertex v in the embedded problem. Thus, to get the full embedded Ising
problem, we need to repeat the optimization for all vertices and their corresponding
subgraph structures and combine the results into a full embedded Ising model accord-
ing to equation (III). Remembering the simplification steps of Sects. 3.2 and 3.3, we
set

Wϕv = sign(Wv) · ω∗,
SE(H [ϕv]) = −ϑ∗1

for each original vertex v and its corresponding optimal solution (ϑ∗, ω∗) of the
above problem. The strengths on the inter-connecting edges SEδ remain as chosen in
advance.

Additionally, we have also substituted 1
2γ with γ in the problem for simplicity.

This means that the actual distance between a synchronized and a non-synchronized
solution is 2γ in the end. Furthermore, note the restriction λ < σ(V ), which results
from Lemma 2 and is the reformulation of (I) with the new notation. It is important in
the next section.

Just considering the cut constraints, we can see a relation to a graph property
called the edge expansion of the graph [27]. In our case, we additionally have a
weighting σ on the vertices, rather than just counting the number of vertices. This
is in turn closely related to the minimum cut density as introduced in [28]. There
the authors show that, in case of trees, the minimum cut density can be solved by
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just evaluating those partitions which are derived from cutting at each edge. Thus,
the problem can be solved in a time quadratically in the number of vertices if the
examined graph is a tree. Although our problem formulation is slightly different to
both mentioned ones, we can establish a similar results for our problem.

4 Analysis

As δ(S) is constant for every set S, we only have linear functions and the Gapped
Weight Distribution Problem thus belongs to the class of linear optimization
problems (LPs). Although we have already reduced and simplified the requirements
on the embedded Ising problem, we still have to take every possible constellation of
the signs of the outer influences on the embedded vertices into account. This is results
in a constraint for every non-trivial subset of the vertices of H [ϕv]. Their number is
exponentially large and we therefore have exponentially large LPs, which cannot be
solved in polynomial time in a straightforward way. We need to analyze the problem
in more detail.

4.1 Polyhedral description

In the following, let the graphGGG = (VVV , EEE), the strengthsσσσ ∈ R
V≥0, the total weightλλλ ∈

R≥0 with λ < σ(V ) and the gap γγγ ∈ R>0 be given and fixed. For ∅ �= S1 ⊆ S2 ⊆ V ,
we see the σ -sums are monotonic over the partial ordering of the subset relation with

0 ≤ σ(S1) ≤ σ(S2) ≤ σ(V )

due to σ ≥ O. Furthermore, we have

ω(S) + ω(V \ S) = ω(V ) = λ

for arbitrary ∅ �= S ⊆ V . With

σ(S) + ω(S) � σ(V \ S) − ω(V \ S)

⇔ σ(S) � 1
2 (σ (V ) − λ)

⇔ σ(V \ S) � 1
2 (σ (V ) + λ)

and

σ(V ) + λ ≥ σ(V ) ≥ σ(V ) − λ

for λ ≥ 0, we get by the resolution of the minimum the constraint

ϑ ≥
{

σ(S)+ω(S)+γ
|δ(S)| if σ(S) < 1

2 (σ (V ) − λ) ,
σ(V \S)−ω(V \S)+γ

|δ(S)| otherwise
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for all ∅ �= S � V . This can be used for the following polyhedra and other helpful
definitions:

Definition 12 Let

ϑ1
2

ϑ1
2

ϑ1
2
:= 1

2 (σ (V ) − λ) ,

�(S)�(S)�(S) := {(ϑ, ω) ∈ R × R
V :

ϑ |δ(S)| ≥ min{σ(S) + ω(S), σ (V \ S) − ω(V \ S)} + γ
}
,

�λ�λ�λ := {(ϑ, ω) ∈ R × R
V : ω(V ) = λ

}
,

��� :=
⋂

∅�=S�V

�(S) ∩ �λ,

��� := {(ϑ, ω) ∈ R × R
V : ϑ ≥ ‖ω‖∞

}
.

We have

�(S) = {(ϑ, ω) ∈ R × R
V : ϑ |δ(S)| ≥ σ(S) + ω(S) + γ

}

if σ(S) < ϑ1
2
and

�(S) = {(ϑ, ω) ∈ R × R
V : ϑ |δ(S)| ≥ 2ϑ1

2
− σ(S) + ω(S) + γ

}

otherwise by the given relations and due to

σ(V \ S) − ω(V \ S) = σ(V ) − σ(S) − ω(V ) + ω(S)

= σ(V ) − λ − σ(S) + ω(S)

= 1
2ϑ1

2
− σ(S) + ω(S).

Note that, with λ < σ(V ), we always have ϑ1
2

> 0.
Now we can reformulate the problem:

Corollary 13 The Gapped Weight Distribution Problem can be written as the
LP

min {ϑ : (ϑ, ω) ∈ � ∩ �} .

With these definitions, we can easily see that � is an unbounded, |V |-dimensional
polyhedron described by an exponential number of inequalities. The domain of the
Gapped Weight Distribution Problem is then the intersection of � with the
cone �, which is defined by only 2|V | constraints since ϑ ≥ ‖ω‖∞ is equivalent to

ϑ ≥ |ωv| ∀v ∈ V ,
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or without any absolute value also to

ϑ ≥ ωv ∀v ∈ V ,

ϑ ≥ −ωv ∀v ∈ V .

4.2 Connected vertex sets

Note that we restrict our considerations to 0 ≤ λ < σ(V ) to focus on the cases that
are not preprocessable according to Lemma 2. This implies ϑ1

2
> 0, which is indeed

necessary for the constructions. We further assume GGG and σσσ ∈ R
V≥0 to be given and

fixed again.
To reduce the complexity of the description of � from Definition 12, we need to

reduce the number of inequalities. By the following result, we can indeed show that
some inequalities describing � are redundant due to the monotonicity of the σ -sums:

Theorem 14 We have

� =
⋂

S∈C
�(S) ∩ �λ

for CCC := {∅ �= S � V : G[S] connected and G[V \ S] connected}.
Proof Due to the reduction of the number of constraints, the left-hand side is contained
in the right-hand side. In the following, we show the reverse direction by establishing
the redundancy of the constraints associated with sets in 2V \ {∅, V } that are not
included in C. For this we introduce the type t(S) of a vertex set ∅ �= S � V
denoting the number of connected components of the corresponding induced subgraph
G[S]. Note that every non-empty vertex set has at least a type of 1 and we only have
t(S) = 1 ifG[S] is connected. As the equalityω(V ) = λ is important for the following
derivations, we furthermore work on the hyperplane �λ but do not explicitly mention
it for simplicity.

The first step is to show the sufficiency of the restriction to vertex sets that induce
connected subgraphs, which means

⋂

∅�=S�V

�(S) ⊇
⋂

S∈C′
�(S)

with C′C′C′ = {∅ �= S � V : G[S] connected} = {∅ �= S � V : t(S) = 1
}
. Suppose this

does not hold. Let S∗ ∈ 2V \ (C′ ∪ {∅, V }) = {∅ �= S � V : t(S) > 1
}
be a vertex

set with

�(S∗) �

⋂

S∈C′
�(S) (i)

having minimal type. Then there exist two non-empty vertex sets S1 and S2 with
S∗ = S1 ·∪ S2 and δ(S1, S2) = δ(S1) ∩ δ(S2) = ∅. Due to t(S1) + t(S2) = t(S∗) and
the minimality of S∗, we have t(S1) = t(S2) = 1 and therefore S1, S2 ∈ C′ with
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�(S1) ∩ �(S2) ⊇
⋂

S∈C′
�(S). (ii)

In the following, we show that the inequality defining �(S∗) can be derived from
the inequalities defining �(S1) and �(S2) by summation. Because

{x ∈ X : f (x) + g(x) ≤ 0} ⊇ {x ∈ X : f (x) ≤ 0, g(x) ≤ 0}

holds for arbitrary domains X and functions f , g : X → R, this results in

�(S∗) ⊇ �(S1) ∩ �(S2),

which is, together with (ii), a contradiction to (i). This is supported by the additivity
of σ and ω with

σ(S∗) = σ(S1) + σ(S2),

ω(S∗) = ω(S1) + ω(S2)

and

|δ(S∗)| = |δ(V \ S∗)| = |δ(S1)| + |δ(S2)| − 2|δ(S1, S2)| = |δ(S1)| + |δ(S2)|.

We have two different cases concerning S∗:
(A) σ(S∗) < ϑ1

2
: Due to the monotonicity of σ , we have σ(S1), σ (S2) ≤ σ(S∗) < ϑ1

2
.

From the inequalities defining �(Si ),

ϑ |δ(Si )| ≥ σ(Si ) + ω(Si ) + γ

for i = 1, 2, we get

ϑ |δ(S∗)| = ϑ |δ(S1)| + ϑ |δ(S2)|
≥ σ(S1) + ω(S1) + σ(S2) + ω(S2) + 2γ

= σ(S∗) + ω(S∗) + 2γ

≥ σ(S∗) + ω(S∗) + γ

with γ > 0, which provides the constraint defining �(S∗).
(B) σ(S∗) ≥ ϑ1

2
: In this case, we cannot derive conditions on σ(S1) and σ(S2). Thus,

there are three possibilities, which follow the same construction as in case (A):

(a) σ(S1), σ (S2) < ϑ1
2
: From

ϑ |δ(Si )| ≥ σ(Si ) + ω(Si ) + γ

for i = 1, 2, we get

ϑ |δ(S∗)| = ϑ |δ(S1)| + ϑ |δ(S2)|
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≥ σ(S1) + ω(S1) + σ(S2) + ω(S2) + 2γ

≥ σ(S∗) + ω(S∗) + γ

analogously to (A) and further by ‘adding 0’

= 2σ(S∗) − σ(S∗) + ω(S∗) + γ

≥ 2ϑ1
2

− σ(S∗) + ω(S∗) + γ.

Thus, we obtained the inequality of �(S∗) in this case.
(b) σ(S1), σ (S2) ≥ ϑ1

2
: From

ϑ |δ(Si )| ≥ 2ϑ1
2

− σ(Si ) + ω(Si ) + γ

for i = 1, 2 and ϑ1
2

> 0 for λ < σ(V ), we get

ϑ |δ(S∗)| = ϑ |δ(S1)| + ϑ |δ(S2)|
≥ 4ϑ1

2
− σ(S1) + ω(S1) − σ(S2) + ω(S2) + 2γ

≥ 2ϑ1
2

− σ(S∗) + ω(S∗) + γ.

(c) σ(S1) < ϑ1
2
and σ(S2) ≥ ϑ1

2
w.l.o.g.: From

ϑ |δ(S1)| ≥ σ(S1) + ω(S1) + γ,

ϑ |δ(S2)| ≥ 2ϑ1
2

− σ(S2) + ω(S2) + γ,

we get

ϑ |δ(S∗)| = ϑ |δ(S1)| + ϑ |δ(S2)|
≥ 2ϑ1

2
+ σ(S1) + ω(S1) − σ(S2) + ω(S2) + 2γ

≥ 2ϑ1
2

− σ(S1) + ω(S1) − σ(S2) + ω(S2) + 2γ

≥ 2ϑ1
2

− σ(S∗) + ω(S∗) + γ

due to σ(S1) ≥ 0 ≥ −σ(S1).

Therefore, the constraint associated with S∗ is redundant if S∗ does not induce a
connected subgraph.

Next we show that the vertex sets whose complement also does not induce a
connected subgraph are unnecessary, too, hence

⋂

S∈C′
�(S) ⊇

⋂

S∈C
�(S).
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Fig. 4 Connected components
for unconnected G[V \ S∗]

Note that, with the former definition of C′, we have C = {S ∈ C′ : t(V \ S) = 1
}
. We

derive an analogous contradiction as before and therefore assume the above relation
does not hold. Let S∗ ∈ C′\C = {∅ �= S � V : t(S) = 1, t(V \ S) > 1

}
be a vertex

set with

�(S∗) �

⋂

S∈C
�(S), (iii)

whose complement V \ S∗ has minimal type. We can derive analogously to the first
part that G[V \ S∗] needs to consist of only two connected components induced by
vertex sets in C. However, we need a minor additional step: Let

V \ S∗ =
k⋃·

i=1

Xi ,

with t(Xi ) = 1 for all i = 1, ..., k and |δ(Xi , X j )| = ∅ for all i �= j ∈ {1, ..., k},
be a partition of V \ S∗ into the vertex sets inducing the connected components of
G[V \ S∗] for t(V \ S∗) = k > 1. Since the graph G is connected, the complement of
two of the above vertex sets, w.l.o.g. X1 and X2, induces a graph, G[V \ (X1 ∪ X2)],
which needs to be connected, too. Then we have t(V \ (X1 ∪ X2)) = 2, which would
contradict the choice of S∗ if we had k > 2. This means we have V \S∗ = X1 ·∪ X2
with X1, X2 ∈ C and symmetrically also V \ X1, V \ X2 ∈ C. This is illustrated in
Fig. 4.

The construction follows the same structure as in the first part, only with a slight
deviation, because we use the complements in the following relations:

�(S∗) ⊇ �(V \ X1) ∩ �(V \ X2) ⊇
⋂

S∈C
�(S).

In order to establish the desired contradiction to (iii), the first relation remains to be
shown. Remember, due to the additivity, we have

λ = ω(S∗) + ω(X1) + ω(X2),

σ (V ) = σ(S∗) + σ(X1) + σ(X2),

|δ(S∗)| = |δ(V \ S∗)| = |δ(X1)| + |δ(X2)|.
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Analogously to before, we need to distinguish between different cases. However,
the different possibilities for S∗ ‘arise naturally’ and we therefore only consider the
sets X1 and X2:

(a) σ(V \ X1), σ (V \ X2) ≥ ϑ1
2
: From the inequalities which define �(V \ X1) and

�(V \ X2),

ϑ |δ(Xi )| = ϑ |δ(V \ Xi )| ≥ 2ϑ1
2

− σ(V \ Xi ) + ω(V \ Xi ) + γ

for i = 1, 2, we get

ϑ |δ(S∗)| = ϑ |δ(X1)| + ϑ |δ(X2)|
≥ 4ϑ1

2
− σ(V \ X1) + ω(V \ X1) − σ(V \ X2) + ω(V \ X2) + 2γ

= 4ϑ1
2

− σ(V \ X1) + ω(V \ X1) − σ(S∗ ∪ X1) + ω(S∗ ∪ X1) + 2γ

= 4ϑ1
2

− σ(V ) + σ(X1) + λ − ω(X1)

− σ(S∗) − σ(X1) + ω(S∗) + ω(X1) + 2γ

≥ 2ϑ1
2

− σ(S∗) + ω(S∗) + γ,

which is the inequality defining �(S∗) in case of σ(S∗) ≥ ϑ1
2
. For σ(S∗) < ϑ1

2
,

we can extend the chain of relations by

> 2σ(S∗) − σ(S∗) + ω(S∗) + γ

= σ(S∗) + ω(S∗) + γ,

which provides the inequality defining �(S∗) in this case.
(b) σ(V \ X1), σ (V \ X2) < ϑ1

2
: These conditions contradict each other due to

σ(X1) = σ(V ) − σ(V \ X1) > σ(V ) − 1
2

(
σ(V ) − λ

) = 1
2

(
σ(V ) + λ

) ≥ ϑ1
2
,

while we require at the same time σ(V \ X2) = σ(X1) + σ(S∗) < ϑ1
2
.

(c) σ(V \ X1) < ϑ1
2
and σ(V \ X2) ≥ ϑ1

2
w.l.o.g.: From

ϑ |δ(X1)| = ϑ |δ(V \ X1)| ≥ σ(V \ X1) + ω(V \ X1) + γ

ϑ |δ(X2)| = ϑ |δ(V \ X2)| ≥ 2ϑ1
2

− σ(V \ X2) + ω(V \ X2) + γ

for i = 1, 2, we get with

ϑ |δ(S∗)| = ϑ |δ(X1)| + ϑ |δ(X2)|
= 2ϑ1

2
+ σ(V \ X1) + ω(V \ X1) − σ(V \ X2) + ω(V \ X2) + 2γ

= 2ϑ1
2

+ σ(S∗ ∪ X2) + ω(S∗ ∪ X2) − σ(V \ X2) + ω(V \ X2) + 2γ

= 2ϑ1
2

+ σ(S∗) + σ(X2) + ω(S∗) + ω(X2)

123



305 Page 40 of 44 E. Lobe, V. Kaibel

− σ(V ) + σ(X2) + λ − ω(X2) + 2γ

= σ(S∗) + 2σ(X2) + ω(S∗) + 2γ

≥ σ(S∗) + ω(S∗) + γ

the inequality defining �(S∗) in case of σ(S∗) < ϑ1
2
or by extending

= 2σ(S∗) − σ(S∗) + ω(S∗) + γ

≥ 2ϑ1
2

− σ(S∗) + ω(S∗) + γ

the inequality defining �(S∗) in the other case where σ(S∗) ≥ ϑ1
2
.

Therefore, the constraint for S∗ is also redundant if V \ S∗ is not connected. ��
Although the�-polyhedron can now be described with less inequalities, their num-

ber might still be exponential in an arbitrary graph. This means that expanding the
whole optimization problem to provide it to the optimizer would already take expo-
nential time and we thus cannot solve this problem as such in less than exponential
time, which is of course intractable for problem instances above a certain size.

By the requirements of an embedding, however, we can always restrict ourselves
to trees by simply ignoring surplus edges in the graph, as explained in Sect. 2.3. For
a lot of problems, it is known that trees yield better solvability because of their much
simpler structure. This also holds in our case, and we can finally state:

Theorem 15 If G is a tree, the Gapped Weight Distribution Problem can be
solved in polynomial time.

Proof For G being a tree, it is easy to see that the set of cuts C of Theorem 14 is only
formed by cutting at single edges of the tree. More formally, this means

C =
⋃

e∈E(G)

{Se, V \ Se},

where (Se, V \ Se) denotes the partitions derived from cutting the tree at edge e.
Thus, we have |C| = 2|E | = 2|V | − 2. Together with the single inequality for �λ

and the 2|V | additional inequalities describing �, the LP for the Gapped Weight
Distribution Problem has a linear size in the number of vertices. Therefore, we
can derive the stated result due to the general solvability of polynomial LPs. ��

This means, with the restriction to trees, which is always feasible in the embedding
setup as stated before, the formerly exponentially large optimization problem can be
significantly reduced, finally yielding only a linear number of constraints. Therefore,
we can now provide it to a standard LP solver to get the optimal solution to the problem
in a practically feasible time. To obtain all weights and strengths which are needed to
formulate a provably equivalent embedded Ising model to a given one, our approach
requires to solve a Gapped Weight Distribution Problem for each vertex of the
original graph and its corresponding embedded subgraph. This means that the total
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runtime to obtain the final full embedded Ising model can be estimated in the worst
case by the number of vertices of the original graph times a polynomial over the largest
number of embedded vertices in a subgraph.

In particular, the above result also shows that the additional weight bounds, restrict-
ing the weights to be smaller than or equal to the coupling strength, do not increase
the complexity of the problem. But, the thus found weights are optimized regarding
the height of the final coefficients of the embedded Ising model and therefore promise
a better performance of the quantum annealing machines.

5 Conclusion

Whether the quantum annealers, in particular those built by D-Wave, show an advan-
tage over classical computers is still under discussion and will only reveal with the
further development of such machines. To evaluate the great potential of this technol-
ogy however, we need to design our experiments carefully. If the architecture does not
change drastically, the two programming steps, minor embedding and parameter set-
ting, will remain relevant in the long term. They are critical when it comes to providing
meaningful input for the annealing machines. While the necessary minor embedding
can prevent calculations on the machine at all, that is, if no embedding can be found,
the specific parameter setting decisively influences the success in solving the actual
problem.

We provide the first polynomial but rigorous description to find the parameters of
the embedded Ising problem for a given problem and its corresponding embedding
such that both problems are provably equivalent. Due to the structure of the embed-
dings, the restriction on trees, required for the solvability proof, is a condition which
can always be established, e.g., by ignoring surplus edges in the embedded subgraphs.
Furthermore, while the embedding problem is strongly related to the specific hard-
ware graphs ofD-Wave, ourweight distribution approach is applicable for all hardware
which implements an Ising problem over graphs that do not yield an all-to-all con-
nectivity and thus require an embedding. Although our formulation makes several
assumptions on the structure of the problem, Sect. 3.3 clearly shows where they come
from and in which cases they might deviate from the actual bound. In turn, we can
deduce that there are several instances for which our bounds are tight.

Thinking ahead, the parameter precision issues support the assumption that it is
preferable to have as few different values for the parameters of the Ising model as
possible, while those should have the largest possible pairwise absolute difference,
to achieve an acceptable success probability. If our original Ising problem is already
defined only over integer parameters, a possible approach would be to also allow only
integer parameters for the embedded Ising problem rather than dealing with rational
parameters. This fixes the distance of the parameters to at least 1, whichmight increase
the success probability. Minimizing the largest absolute integer parameter however
increases the complexity of the problem significantly, as it is the step from an LP to
an ILP. The evaluation of this problem will be the next step in our research.

Another interesting research direction might be to extend the approach of [13]:
Rather than evaluating the worst case scenario, as we do in this publication, where the
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embedded vertices must be synchronized for all possible neighboring constellations,
the average case, where they ‘only’ must hold for most of the cases, might also suffice
in practice but yield an even smaller coupling strength.

Apart from that, with our results, the formulated Ising problems can now directly
be transferred to the D-Wave machines. This means, the computational properties of
these machines can now be investigated even further: Do the theoretically optimal
coupling strengths also hold under the perturbations of the machine, that is, do they
suffice to enforce the synchronization of the variables in practice?While, in theory, any
positive gap is sufficient for the equivalence of the problems, an ideal quantumannealer
should thus indeed return the optimal solution after a sufficiently long annealing time,
the gap value most likely needs to be increased for any physical annealing machine.
This gap parameter is a tool which provides different but, most importantly, equivalent
encodings of the same problem and thus allows to study the difference between the
theoretical and the effective coupling strength,whichmeans the onewhich is necessary
for the real machine to return the optimal value with an acceptable success probability.
With this we will get a deeper understanding of the problem-independent behavior of
such machines, supporting their further development.
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