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ABSTRACT

We present a highly efficient method for the numerical solution of coupled Gross–Pitaevskii equations describing the evolution dynamics of
a multi-species mixture of Bose–Einstein condensates in time-dependent potentials. This method, based on a moving and expanding refer-
ence frame, compares favorably to a more standard but much more computationally expensive solution based on a frozen frame. It allows an
accurate description of the long-time behavior of interacting, multi-species quantum mixtures including the challenging problem of long free
expansions relevant to microgravity and space experiments. We demonstrate a successful comparison to experimental measurements of a
binary Rb–K mixture recently performed with the payload of a sounding rocket experiment.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0163850

I. INTRODUCTION

Degenerate atomic mixtures are a very rich system and have
inspired a wealth of theoretical1–13 and experimental research.14–25

They may consist of two (or more) components, which can be the
internal spin states of a single species of a Bose–Einstein Condensate
(BEC),5 two isotopes of a single species,19 or two different spe-
cies.7,8,22,25 In recent years, interest in binary mixtures has spread from
pure quantum gas physics to metrology, and in particular to their use
in high-precision atomic interferometry experiments. Indeed, two
atomic species could be used as input states of a dual-atom interferom-
eter to test fundamental principles such as the universality of free fall.
In this context, recent proposals26–29 predict the manipulation of
quantum mixtures over large distances, in weak traps or in free fall,
which could last tens of seconds, thus increasing the sensitivity of the
atomic sensor.30 These time scales challenge the current state of the art
in computational resources, since one has to solve at least a coupled set
of Gross–Pitaevskii equations (GPE) in the mean-field framework to
reproduce the complex dynamics driven by the interaction of the two
quantum gases. Indeed, approaches based on a Thomas–Fermi
approximation or dimension reduction, e.g., by adopting spherical
coordinates, remain specific to a few examples of experimental settings

and cannot be generalized to time-dependent situations where the
interactions lead to exotic states or symmetry breaking.

In this work, we generalize grid scaling techniques developed in
the single-species case31–35 to the multi-species case in order to effi-
ciently handle the transport, or expansion dynamics of these systems.
This method turns out to be numerically very efficient and allows access
to time regimes that are inaccessible with static grid arrangements. We
expect this scheme to be instrumental in describing quantum gases at
long expansion times as proposed in microgravity or space experi-
ments.36–45 We illustrate our findings by solving the ground states and
dynamics of mixtures of 41K and 87Rb, as these are the systems consid-
ered in these projects. Finally, to validate the theoretical treatment, we
compare our results with the detected images of BEC mixtures recorded
by the MAIUS-2 sounding rocket team during the ground tests of its
payload.46 We find an excellent agreement and prove the relevance of
the developed toolbox for microgravity and space investigations.

This paper is organized as follows: Sec. II is devoted to the devel-
opment of our theoretical approach aimed at solving the coupled
multi-species BEC dynamics in a general 3D time-dependent trap or
during a free expansion stage. In Sec. III, we first present two generic
examples: the transport of a Rb–K two-species condensate in
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microgravity and its free expansion in the presence of gravity. The
results obtained with our grid-scaling approach are systematically
compared with the more standard, but much more time-consuming,
calculations obtained with a fixed grid. In the same section, we also
compare the predictions of our efficient numerical approach with
experimental test measurements performed on the ground with the
MAIUS-2 sounding rocket platform. Finally, a summary and conclu-
sion are given in Sec. IV.

II. THEORETICAL APPROACH
A. Theoretical model

At zero temperature and within the mean-field approximation, the
time evolution of a multispecies mixture of Bose–Einstein condensates is
described by the time-dependent coupled Gross–Pitaevskii equations,

i�h @tWjðr; tÞ¼ � �h2

2mj
r2

r þ Ujðr; tÞ þ
Xnsp
j0¼1

Nj0 gjj0 jWj0 ðr; tÞj2
2
4

3
5Wjðr; tÞ;

(1)

where j and j0 ¼ 1; 2;…; nsp are the labels associated with the nsp dif-
ferent atomic species. In this expression, r ¼ ðx; y; zÞT denotes the
position vector in a fixed frame of reference, and T is a simple notation
used here to indicate transposition. Wjðr; tÞ is the normalized wave
function of the species number j, of mass mj. Nj and Ujðr; tÞ are the
atom number and the external potential of species j. The scattering
amplitudes gjj0 are related to the corresponding s-wave scattering
lengths ajj0 by the relation

gjj0 ¼
2p�h2ajj0

mjj0
; (2)

wheremjj0 denotes the reduced mass

mjj0 ¼
mjmj0

mj þmj0
: (3)

In the following, we assume that the multispecies condensate is
trapped in a general external potential given by the functions Ujðr; tÞ,
which we decompose into the sum of a harmonic and an anharmonic
part, according to

Ujðr; tÞ ¼ Vjðr; tÞ þWjðr; tÞ; (4)

where

Vjðr; tÞ ¼ 1
2
mj ðr� rjðtÞÞT X2

j ðtÞ ðr� rjðtÞÞ: (5)

This decomposition is made to emphasize the simple result that can
be obtained when the trapping is purely harmonic, while highlighting
the corrections that need to be made when higher order correction
terms have to be taken into account. In this expression, rjðtÞ
¼ ðxjðtÞ; yjðtÞ; zjðtÞÞT is the position of the trap minimum for species
j at time t in the fixed reference frame. The axis and coordinate systems
introduced here are shown schematically in Fig. 1. We assume that at
each time t the harmonic traps Vjðr; tÞ associated with the different
species are characterized by eigenaxes pointing in the directions
XjðtÞ; YjðtÞ, and ZjðtÞ. In the following, we consider examples of
applications in a quasi-cylindrical geometry, where one axis exhibits a
weak confinement and the other two axes define a plane in which the

confinement is much stronger. We arbitrarily denote the weak axis as
Xj and the other two axes as fYj;Zjg. This choice is completely arbi-
trary. The advantage of introducing these eigenaxes fXj;Yj;Zjg is that
the expression of the harmonic trapping potential is simpler in the
associated reference frame. The unitary rotation matrix that allows us
to pass from the particular system of eigenaxes ½XjðtÞ;YjðtÞ;ZjðtÞ� to
the fixed frame of reference (x, y, z) at time t is denoted byMjðtÞ. The
3� 3 squared harmonic frequency matrices X2

j ðtÞ are then defined in
the fixed reference frame (x, y, z) as

X2
j ðtÞ ¼ MjðtÞ

x2
j;Xj

ðtÞ 0 0

0 x2
j;Yj

ðtÞ 0

0 0 x2
j;Zj

ðtÞ

0
BB@

1
CCAMjðtÞT : (6)

The eigenvalues of X2
j ðtÞ, thus, coincide with the squared instanta-

neous eigenfrequencies x2
j;Xj

ðtÞ; x2
j;Yj

ðtÞ, and x2
j;Zj

ðtÞ of the traps

along their principal axes ½XjðtÞ;YjðtÞ;ZjðtÞ�. In our study, the calcula-
tion of the dynamics is carried out in the reference frame correspond-
ing to the eigenaxes of a particular species, the species of index j ¼ j�,
which in principle can be chosen freely. In all that follows, we will
assume that for this particular species, the eigenaxes of the trap do not
rotate during the dynamics. Thus, the rotation matrixMj� ðtÞ will sim-
ply be denotedMj� , and will be assumed to be independent of time. In
practice, this approach can be used as long as the rotation of these eige-
naxes is sufficiently slow so that the effect of non-inertial forces due to
the rotation of the eigenaxes associated with this reference species j�

can be neglected. This is the case in most situations, especially when
the rotation is slow enough not to induce the appearance of vortices, as
shown for example in Refs. 34, 47, and 48.

In the reference frame associated with the eigenaxes of the species
j�, the matrix of the squared harmonic frequencies associated with
each species j writes

X02
j ðtÞ ¼ MT

j� X
2
j ðtÞMj� : (7)

This matrix is generally a non-diagonal but symmetric matrix. In fact,
the matrixX02

j ðtÞ is diagonal only if the trap associated with the species

FIG. 1. Schematic representation of the condensate (in blue) associated with the
species j, centered on the point of coordinates rj ¼ ðxj ; yj ; zjÞT in the fixed refer-
ence frame (x, y, z). The reference frame ðXj ; Yj ; ZjÞ associated with the eigenaxes
of the harmonic trap Vj is shown in orange.
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j has the same principal axes as the trap associated with the reference
species j�. We can also verify by a simple use of Eqs. (6) and (7) that
X02

j� ðtÞ is the diagonal matrix of the squares of the instantaneous eigen-
frequencies x2

j� ;Xj� ðtÞ; x2
j�;Yj� ðtÞ, and x2

j�;Zj� ðtÞ, as expected.

B. Moving the grid

When a temporal variation in the position and/or frequency of
the traps induces a displacement of the multispecies condensate, and
when the amplitude of this displacement is large, it can be extremely
useful to shift the grid (or equivalently the reference frame) in which
the dynamics is computed in order to save computational time. This is
especially important when implementing condensate transport over
distances significantly larger than the characteristic size of the conden-
sate, as in the recent space atom chip manipulation of a BEC of Ref.
37. We, therefore, want the computational grid to follow the global dis-
placement dictated by the classical evolution of the condensate center
of mass of the reference species j ¼ j�. This approach consists in a fur-
ther development of the treatments that have already been presented
in Refs. 13, 33, 34, and 49. The change of variable associated with this
transformation results in the introduction of the new coordinate

R ¼ r� rcm;j� ðtÞ; (8)

where rcm;j� ðtÞ is computed by simply solving Newton’s equation for a
classical particle of mass mj� initially at rest and subjected to the time-
dependent harmonic potential Vj� ðr; tÞ of Eq. (5). rcm;j� ðtÞ, therefore,
approximately corresponds to the position of the center of mass of the
condensate associated with the species j� at time t when the interac-
tions with the other species are neglected. This allows us to define the
quantum displacement operator in coordinate and momentum space,

D̂jðtÞ ¼ exp i kcm;jðtÞ � r̂ � rcm;j� ðtÞ � k̂
h i� �

; (9)

where k̂ ¼ �irr and kcm;jðtÞ ¼ pcm;jðtÞ=�h. In this expression, we find
the momentum pcm;jðtÞ ¼ mj _rcm;j� ðtÞ with _pcm;j� ðtÞ ¼ �mj� X

02
j� ðtÞ

�½rcm;j� ðtÞ � rj� ðtÞ�. Following Ref. 34, the unitary transformation

Wjðr; tÞ ¼ eiSjðtÞ=�h D̂jðtÞWD
j ðR; tÞ (10)

with an adapted global phase SjðtÞ which satisfies
dSj
dt

¼ � _pcm;j � rcm;j� þ 1
2
d
dt

rcm;j� � pcm;j½ � �
p2cm;j

2mj

�mj

2
ðrcm;j� � rjÞTX02

j ðrcm;j� � rjÞ (11)

leads to the following transformed Gross–Pitaevskii equation for the
species j, written in the frame associated with the motion of the classi-
cal center of mass of the species j�

i�h @tW
D
j ðR; tÞ ¼

�
� �h2

2mj
r2

R þ
mj

2
RT X02

j ðtÞRþ �WjðR; tÞ

þ Vcor
j ðR; tÞ þ

Xnsp
j0¼1

Nj0 gjj0 jWD
j0 ðR; tÞj2

�
WD

j ðR; tÞ;

(12)

where �WjðR; tÞ ¼ Wjðr� rcm;j� ; tÞ and where Vcor
j ðR; tÞ is a linear

correction term written as

Vcor
j ðR; tÞ ¼ mj ðrcm;j� � rjÞT X02

j ðtÞ � ðrcm;j� � rj� ÞT X02
j� ðtÞ

h i
R:

(13)

If we now substitute j for j� in Eq. (13), we see that the correction term
(13) disappears and as a consequence for the reference species Eq. (12)
reduces to

i�h @tW
D
j� ðR; tÞ ¼

�
� �h2

2mj�
r2

R þ
mj�

2
RTX02

j� ðtÞRþ �Wj� ðR; tÞ

þ
Xnsp
j0¼1

Nj0 gj�j0 jWD
j0 ðR; tÞj2

�
WD

j� ðR; tÞ: (14)

Equation (12) can, thus, be considered as a general equation applicable
to any species, whether or not it is the reference species in the displace-
ment operation being performed.

C. Expanding or compressing the grid

If the condensate size varies significantly during the dynamics, it
may also be useful to compress or expand the grid accordingly during
the course of the propagation to save computational time. This
approach is especially important when considering a free expansion of
the condensate. To define the time-dependent scaling factors applied
to the computational grid, we choose the same reference species as
before, corresponding to the index j ¼ j�, and we define a new rescaled
coordinate n satisfying

KðtÞ n ¼ R; (15)

where

KðtÞ ¼
kXj� ðtÞ 0 0

0 kYj� ðtÞ 0

0 0 kZj� ðtÞ

0
BB@

1
CCA (16)

is a diagonal matrix whose elements are three scalar and adimensional
time-dependent scaling functions kXj� ðtÞ; kYj� ðtÞ, and kZj� ðtÞ that we
apply to the three coordinates associated with the eigenaxes of the trap
experienced by the species number j�. Since the definition of these scal-
ing functions is arbitrary, we chose to force the computational grid to
compress or expand according to the dynamics that can be predicted
by the so-called “scaling law” approximation obtained in the
Thomas–Fermi regime.31,32 For a single species BEC with a high num-
ber of atoms such that the Thomas–Fermi approximation holds, one
can indeed use a classical scaling approximation to describe the 3D
size evolution of the BEC in a time-dependent harmonic trap. This
amounts to solving the differential equation [written here in a matrix
form for a diagonal scaling matrixKðtÞ]

KðtÞ€KðtÞ þ X02
j� ðtÞK2ðtÞ ¼ X02

j� ð0Þ
det KðtÞ½ � ; (17)

where det½KðtÞ� stands for the determinant of the matrix KðtÞ of Eq.
(16). Provided that at time t¼ 0 the initial conditions verify Kð0Þ ¼ 1
and _Kð0Þ ¼ 0, the scaling factors kIðtÞ with I 2 fXj� ;Yj� ;Zj�g usually
give a good estimate of the evolution of the BEC size in the three direc-
tions fXj� ;Yj� ;Zj� g.
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To take into account the introduction of the scaled coordinate n,
inspired by Meister et al.34 we perform the following unitary transfor-
mation to the wave function associated with each reference species j,

WD
j ðR; tÞ ¼

e
i
�h nTAjðtÞn�bjðtÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det KðtÞ½ �p WS
j ðn; tÞ; (18)

where

AjðtÞ ¼ 1
2
mj KðtÞ _KðtÞ; (19a)

bjðtÞ ¼
ðt
0

lj
det Kðt0Þ½ � dt

0: (19b)

This transformation leads to an adapted set of coupled time-
dependent Gross–Pitaevskii equations for all species, which reads

i�h @tW
S
j ðn; tÞ ¼

"
� �h2

2mj
rT

nK
�2rn þ �WjðK n; tÞ

þ

mj

2
nTX02

j� ð0Þ nþ
X
j0

Nj0 gjj0 jWS
j0ðn; tÞj2 � lj

det KðtÞ½ �

þ Vcor
j ðK n; tÞ þmj

2
nTKTðX02

j ðtÞ � X02
j� ðtÞÞK n

#

�WS
j ðn; tÞ; (20)

where lj is the chemical potential associated with the species j at time
t¼ 0 and where K�2 is a notation for the diagonal matrix ½K�1K�1�.
Note that for the reference species j ¼ j�, this equation simplifies to

i�h @tW
S
j� ðn; tÞ ¼

"
� �h2

2mj�
rT

nK
�2rn þ �Wj� ðK n; tÞ

þ

mj�

2
nTX02

j� ð0Þ nþ
X
j0

Nj0 gj�j0 jWS
j0ðn; tÞj2 � lj�

det KðtÞ½ �

#

�WS
j� ðn; tÞ: (21)

These series (20) and (21) of coupled differential equations, which
constitute the main result of this paper, are solved numerically
using the second-order split-operator technique50 with fast
Fourier transforms (FFT). This technique is first used in imagi-
nary time51,52 to compute the ground state of the binary mixture,
which is taken as the initial state of the system at time t¼ 0. It is
then used in real-time to compute the temporal dynamics of the
system.11,53 The chosen time step is equal to one thousandth of
the shortest time period associated with the trap of the K atom.
Although in a multi-species mixture the individual species j are
typically trapped in potentials with different trap frequencies lead-
ing to unequal expansion dynamics, the scaling introduced in Eqs.
(20) and (21) still absorbs most of the dynamics such that the
numerical solution of the time evolution can be obtained much
faster compared with a static grid. Moreover, in the special case
of equal trap frequencies for both species, which could be
realized with dedicated optical traps,13 Eqs. (20) and (21) further
simplify.

III. APPLICATIONS

In Secs. IIIA and III B, we discuss two typical examples of the
dynamics of a binary mixture of 41K and 87Rb that strongly benefit
from applying our scaling techniques for an efficient numerical simula-
tion. Furthermore, in Sec. III C we present a direct comparison of this
theoretical approach with experimental measurements recently carried
out on ground with the payload of the sounding rocket MAIUS-2.

A. Transporting a binary mixture in microgravity

The first example consists of a transport of the mixture confined
on an atom chip by shifting the trap minimum over a distance of about
20lm in 10ms, followed by a holding period of 20ms in the final trap.
Throughout the transport duration, we assume that the trap remains
almost cylindrically symmetric, and the size of the condensate varies
only slightly. Such transport protocols are mandatory for preparing
the mixture as a source for subsequent atom interferometry measure-
ments for conducting a test of the universality of free fall,28 where
transports up to millimeter distances are needed.53,54

1. Sequence details

We assume that the atoms are trapped by the magnetic field pro-
duced by a Z-shaped atom chip configuration53,55–58 in the presence of a
time-dependent homogeneous magnetic field generated by magnetic
coils through which flows a tunable current. The transport dynamics
considered in this example is induced by a linear variation of the coil cur-
rent during 10ms. Since the relative variation of this current remains
small, the trajectory followed by the center of the trap during these 10ms
is also linear and it is uniform, and the evolution of the trapping frequen-
cies over time is also linear. The dynamics is assumed to take place in
microgravity, and the position of the center of the trap is, therefore, the
same for potassium and rubidium. At time t¼ 0 its initial position is
314.97lm above the atom chip. The transport consists of a translation
in the z direction, perpendicular to the chip, bringing the center of the
trap to the distance z¼ 333.56lm from the chip. The total length of the
transport is, thus, 18.59lm, to be compared with the initial width
(FWHM) of the atomic density distribution along z of about 2lm. In
the following, we will associate index 1 with rubidium and index 2 with
potassium. For rubidium, the trapping frequencies vary from

x1;X1ð0Þ ¼ 2p� 24:8Hz; (22a)

x1;Y1ð0Þ ¼ 2p� 378:3Hz; (22b)

x1;Z1ð0Þ ¼ 2p� 384:0Hz; (22c)

to

x1;X1ðtf Þ ¼ 2p� 24:9Hz; (23a)

x1;Y1ðtf Þ ¼ 2p� 340:9Hz; (23b)

x1;Z1ðtf Þ ¼ 2p� 346:4Hz: (23c)

The initial and final trapping frequenciesx2;R2 for potassium are given
by the relation

x2;R2ðtÞ ¼
m1

m2

� �1
2

x1;R1ðtÞ (24)

valid for magnetic trapping with R ¼ X, Y, or Z.
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We consider a binary mixture of 43900 rubidium atoms with
14 400 potassium atoms similar to what can be achieved regularly with
the MAIUS-2 experiment on ground.46 To explore different miscibility
regimes, we consider the case of 3 values of the interspecies scattering
length a12 ¼ 0, 1, or 8.747 nm. This variation of the scattering length
can, in principle, be realized experimentally using the Feshbach reso-
nances observed in 41K and 87Rb mixtures around 35 and 79G using a
dipole trap.20 The last value a12 ¼ 8:747 nm corresponds to the natu-
ral scattering length between 41K and 87Rb in the absence of any
Feshbach resonance.

2. Ground state

Before the transport dynamics of this double-species conden-
sate can be studied, it is necessary to determine the steady state of
the binary mixture confined in the initial trap. The ground state of
this quantum mixture depends non-trivially on the respective
strengths of the inter-species and intra-species interactions, which
determine the miscibility of the two quantum fluids.2,59,60 This
dependence is illustrated in Fig. 2, which shows the influence of the
value of the interspecies scattering length a12 on the spatial distri-
bution of the ground state atomic density obtained by solving the
coupled Gross–Pitaevskii equation (1) in imaginary time.51,52 The
first two columns correspond to two miscible cases associated with
a12 ¼ 0 and a12 ¼ 1 nm, respectively. The third column corre-
sponds to the immiscible case a12 ¼ 8:747 nm, which fulfills the
immiscibility condition g212 > g11g22.

16,61,62 The first row shows a
3D representation of the atomic density associated with Rb (blue)
and K (red). The immiscible nature of the mixture in the a12
¼ 8:727 nm case is clearly visible in this 3D representation, which
shows a discriminating hamburger-like structure. In contrast to
the separation observed in this case between K and Rb, the two
miscible cases are characterized by a large spatial overlap of the
two condensates. The last three rows in Fig. 2 show the average
atomic densities,

Pxðx; tÞ ¼
ð1
�1

ð1
�1

Nj jWjðr; tÞj2 dy dz; (25a)

Pyðy; tÞ ¼
ð1
�1

ð1
�1

Nj jWjðr; tÞj2 dx dz; (25b)

Pzðz; tÞ ¼
ð1
�1

ð1
�1

Nj jWjðr; tÞj2 dx dy; (25c)

for Rb (blue) and K (red) along the three directions x, y, and z at initial
time t¼ 0. These plots lead to the conclusion that the two miscible
cases considered here are very similar. Hence, compared to the non-
interacting case (a12 ¼ 0, left column of Fig. 2), the introduction of a
weak repulsive interaction between Rb and K (a12 ¼ 1 nm, central col-
umn of Fig. 2) has very little impact on the initial spatial distribution
of the atomic densities. In comparison with these miscible cases, the
non-miscible case shows spatial distributions along y and z [panels (i)
and (l), right column in Fig. 2] that are relatively unaffected by the
introduction of a strong repulsion between Rb and K atoms, with
a12 ¼ 8:747 nm. The spatial discrimination is only observed in the
direction of the weak axis of trapping, i.e., in the x direction [see panel
(f) in Fig. 2].

3. Transport dynamics

Figure 3 shows the calculated probability densities for Rb and K
at the end of the transport and holding, at time t ¼ tf ¼ 30 ms. The
first row shows a 3D representation of the atomic densities. The next
three rows show the averaged probability densities Px, Py, and Pz calcu-
lated with the present grid-scaling method (blue and red solid lines for
Rb and K, respectively) and with a fixed grid (green and black dashed
lines for Rb and K, respectively). The probability densities calculated
with these two different methods are perfectly superimposed, demon-
strating the validity of the grid-scaling approach, whatever the chosen
interaction regime, whether the mixture is miscible or not. It can be
noted that if the results of these two approaches are identical, it is
because these two methods are mathematically equivalent and there-
fore they can, in principle, differ only by the numerical errors induced
by the limited precision of the calculations. A comparison of the panels
(d) and (e) in Fig. 3 also shows that the introduction of a weak interac-
tion between Rb and K [a12 ¼ 1 nm in panel (e), 0 in panel (d)] indu-
ces significant perturbations in the spatial density profile in the x
direction corresponding to the weakest trapping axis, whereas the
effect of these interactions was negligible in the ground state [see pan-
els (d) and (e) in Fig. 2]. We can, therefore, conclude that the transport
acts here as a detector of these interspecies interactions, even if they
are relatively weak. Comparing panels (j) and (k), we also see that this
weak interspecies interaction induces a shift in the average position of
the two atomic species in the z-direction of transport, which is not the
case in the absence of such interaction. The 3D visualization of the
dynamics resulting in the plots of panels (a)–(c) from Fig. 3 can be
seen in animations 1, 2, and 3 from the supplementary material. These
animations show the evolution, every millisecond, of the two species
during the transport and holding dynamics for the different values of
the interspecies scattering length.

It can already be noted that in order to converge the calculation,
it was necessary to use a larger number of grid points in the fixed-grid
approach than in the grid-scaling approach. In fact, the fixed-grid
approach uses ðNx ¼ 256;Ny ¼ 64;Nz ¼ 576Þ grid points, while the
grid-scaling approach uses ðNx ¼ 256;Ny ¼ 64;Nz ¼ 192Þ grid
points. The total number of Nx � Ny � Nz grid points required is,
thus, three times larger for the fixed-grid approach than for the grid-
scaling approach. As shown in Table I, this variation in the number of
grid points obviously has a strong impact on the computational time.
In fact, for the present calculation, the computation time, either for
obtaining the fundamental state using the imaginary time
approach51,52 or for calculating the dynamics, is on average three times
longer with the fixed grid than with the grid-scaling approach. The
ratio of 3 obtained here is due to the necessity of increasing the size of
the grid in the z direction, i.e., in the direction in which the transport
takes place. In this example, it is limited to the value 3 because the
transport achieved (with a displacement of about 18lm) is not very
large compared to the initial size of the condensate [about 2lm
FWHM in the z direction, as shown in panels (j)–(l) of Fig. 2].
However, many experiments in the past have required the realization
of condensate displacements over distances of the order of a millime-
ter.37,40,41 It can, thus, be estimated that the calculation of transport
dynamics in such situations would require the use of 100 to 200 times
more grid points in a fixed-grid calculation than in the grid-scaling
approach, making this type of calculation extremely demanding in
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FIG. 2. Calculated ground state of a dual Rb–K condensate in microgravity in two miscible phases (left and central columns) and one immiscible phase (right col-
umn), in a cigar-shaped trap. The 3D representations are shown in the first row [panels (a)–(c)] and the integrated longitudinal and transverse density profiles Px,
Py, and Pz for Rb and K are shown in the next three rows [along x: panels (d)–(f); along y: panels (g)–(i); along z: panels (j)–(l)]. The density profiles of rubidium
and potassium are shown in blue and red, respectively. The intraspecies interaction parameters are a11 ¼ 5:237 nm and a22 ¼ 3:204 nm. The interspecies scatter-
ing length is a12 ¼ 0 in the left column, a12 ¼ 1 nm in the central column and a12 ¼ 8:747 nm in the right column. The trap frequencies are given in Eqs. (22)
and (24). The numbers of rubidium and potassium atoms are 43 900 and 14 400, respectively. The center of the trap is marked in each subplot by a black vertical
dotted line.
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FIG. 3. Probability density of a dual Rb–K condensate in microgravity after 10 ms of transport and 20ms of holding. Shown are the 3D representations [first row, panels (a)–(c)]
and the integrated longitudinal and transverse density profiles Px, Py, and Pz for Rb and K [next three rows, along x: panels (d)–(f); along y: panels (g)–(i); along z: panels
(j)–(l)]. The interspecies scattering length is a12 ¼ 0 in the left column, a12 ¼ 1 nm in the central column and a12 ¼ 8:747 nm in the right column. The numbers of Rb and K
atoms are 43 900 and 14 400, respectively. The center of the trap is marked in each subplot by a black vertical dotted line. In panels (d) to (l), the Rb probability densities calcu-
lated with the present grid-scaling approach and with a fixed grid are shown as solid blue lines and dashed green lines, respectively. Similarly, the K probability densities calcu-
lated with the present grid-scaling approach and with a fixed grid are shown as solid red lines and dashed black lines, respectively. The full 3D evolution of the dynamics can
be seen in animations 1, 2, and 3 of the supplementary material.
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terms of memory resources as well as computational time, or even
impossible with standard computing facilities.

We will now present a more precise study of the displacement
dynamics by calculating the average positions of the two condensates
over time (quantities that we will consider as the “trajectories” followed
by the two atomic clouds) and by calculating the evolution of the aver-
age “size” of the two condensates, defined as the standard deviations of
the Rb and K atomic densities. The average trajectories followed by the
two condensates defined as

hzi ¼
ð ð ð

W�
j ðr; tÞ zWjðr; tÞ dr (26)

are shown in the first row of Fig. 4 using the same color coding as in
Fig. 3. We see in the panels (a)–(c) that the fixed-grid calculations and
the grid-scaling approach give the same results regardless of the inter-
action regime considered. It can be seen in panels (g)–(i) of Fig. 4 that
the condensates start to oscillate in their respective potential wells
from the beginning of the transport. This is because the transport is
too fast to be adiabatic. Furthermore, these oscillations, which occur at
different frequencies for Rb and K, continue into the holding phase.
When Rb and K do not interact, we see in panel (g) that the two con-
densates collide at regular time intervals. In the presence of interspecies
interactions these collisions strongly perturb the trajectories followed
by the two condensates. Consequently, even if the average positions of
the two condensates obey the classical laws of motion when the inter-
species interaction is suppressed [see panel (d)], this is no longer the
case in the presence of an interaction [see panel (f)], even if this inter-
action is relatively weak [see panel (e)]. Finally, panels (g)–(i) show
that the remaining oscillations observed in the holding phase are char-
acterized by multiple modes that differ as a function of the interspecies
scattering length.

The evolution of the average sizes of the two condensates, defined
as the standard deviations of the Rb and K atomic densities along x, y,
and z, are shown in Fig. 5 using the same color coding as in Fig. 3. We
see in this figure that also for the evolution of the sizes, the fixed-grid
calculations and the multi-species grid-scaling approach presented
here give identical results, regardless of the interaction regime. During
transport, the trapping frequencies for Rb and K in the x direction
remain nearly constant, while the trapping frequencies along the y and
z axes decrease by slightly less than 10%. This relatively small evolution
of the trap frequencies during the transport leads to a smooth evolu-
tion of the size of the two atomic clouds when the interspecies interac-
tion is absent (a12 ¼ 0, left column of Fig. 5). In contrast, panels (e),
(f), (h), and (i) in Fig. 5 show that the presence of a non-zero

interspecies interaction (a12 ¼ 1 nm in the middle column and a12
¼ 8:747 nm in the right column) leads to relatively strong collective
excitations of the two condensates in the y and z directions, which con-
tinue into the holding phase. Since the change of the trap frequencies
along the x direction is close to zero, no such perturbation effect is
observed in this particular direction [see panels (b) and (c) in Fig. 5].

B. Free expansion of a binary mixture under gravity

The second exemplary application of this multi-species grid-scal-
ing approach is a free expansion of a binary Rb–K mixture in the pres-
ence of gravity. The number of atoms considered is again 43900 for
Rb and 14400 for K. We simulate the free expansion of the Rb–Kmix-
ture, starting at t¼ 0 from the ground state of this binary mixture. Due
to the gravitational sag, the centers of the trapping potentials associated
with each species are shifted, mainly in the z direction, which is the
direction in which gravity acts. In addition, the eigenaxes of the traps
associated with Rb and K are very slightly rotated. The initial trap uses
the same electric current flowing through the magnetic coil as in the
example presented earlier in Sec. IIIA, which discussed the dynamics
of transport and holding in microgravity. In the case of Rb, the initial
trap is positioned at x ¼ �1:62 lm, y¼ 2.23lm, z¼ 332.43lm. The
trapping frequencies are

x1;X1ð0Þ ¼ 2p� 25:3Hz; (27a)

x1;Y1ð0Þ ¼ 2p� 345:1 Hz; (27b)

x1;Z1ð0Þ ¼ 2p� 347:1 Hz: (27c)

For K, the initial trap is positioned around x ¼ �1:76 lm,
y¼ 2.24lm, z¼ 331.35lm, and the trapping frequencies are

x2;X2ð0Þ ¼ 2p� 36:5Hz; (28a)

x2;Y2ð0Þ ¼ 2p� 504:1Hz; (28b)

x2;Z2ð0Þ ¼ 2p� 509:8Hz: (28c)

The first row of Fig. 6 shows the spatial distribution of the dual-
species condensate at time t¼ 0, to be compared with the distribution
shown in the last column of Fig. 2, which shows the same data in a
microgravity environment. From this comparison, we can already con-
clude that the presence of gravity significantly affects the initial struc-
ture of the condensate. The first notable change is that, in the presence
of gravity, the symmetry of the hamburger-like structure of the con-
densate is broken. There are also significant areas where the two
atomic clouds overlap. This was not the case in microgravity and this
is due to the fact that in the presence of gravity, the two traps are spa-
tially offset from each other.

Since the size of the two-species condensate increases rapidly as
the trap is released, we have limited the duration of the time-of-flight
to 5ms only, so that a fixed grid calculation remains feasible. The sec-
ond row of Fig. 6 shows the spatial distribution of the dual-species con-
densate at time t¼ 5ms, i.e., at the end of this expansion. It can be
seen that during this time, the sizes of the Rb and K clouds typically
grow by a factor of about 10 in both the y and z directions. On the con-
trary, in the weak axis direction x, the sizes of the clouds remain almost
unchanged. Finally, the second row of Fig. 6 compares the probability
densities calculated at the end of the expansion with the present grid-
scaling method (blue and red solid lines for Rb and K, respectively)
with those obtained using a fixed grid (green and black dashed lines

TABLE I. Transport dynamics computation (CPU) time. The calculations were per-
formed parallelizing 16 cores of an Intel Xeon Gold 6230 processor running at
2.1 GHz. The real calculation time is roughly the displayed values of the table divided
by the number of cores.

a12 (nm)

Ground state Ramp and holding

Fixed grid Scaled grid Fixed grid Scaled grid

0 9 h 10min 3 h 02min 9 h 25min 3 h 03min
1 9 h 39min 3 h 00min 9 h 37min 2 h 58min
8.747 24 h 19min 8 h 03min 9 h 23min 3 h 04min
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for Rb and K, respectively). The probability densities calculated with
these two methods are in perfect agreement, thus confirming the valid-
ity of the grid-scaling approach in this example, where the atomic
expansion dynamics occurs in the presence of gravity. The evolution
of the two species during the free expansion can be observed in anima-
tion 4 of the supplementary material. This animation shows how the
geometric aspects of the different components change over time.

As with the transport and holding example discussed in Sec.
IIIA, describing the expansion with a fixed grid required a larger num-
ber of grid points than with the grid-scaling approach in order to
achieve convergence. In fact, in this example, the fixed-grid approach
uses (Nx¼ 64, Ny¼ 256, Nz¼ 256) grid points, while the grid-scaling

approach uses (Nx¼ 64, Ny¼ 64, Nz¼ 64) grid points. The total num-
ber ofNx � Ny � Nz grid points required is, therefore, 16 times greater
for the fixed-grid calculation (4 194304) than for the grid-scaling
approach (262 144). As shown in Table II, this variation in the number
of grid points has a strong impact on the computation time, dramati-
cally favoring the grid-scaling approach in terms of both CPU time
and, of course, memory consumption. One can note that the increase
in the number of grid points affects the y and z directions along which
the condensate expansion is most significant in the first 5ms. The
computation time, both for obtaining the ground state and for com-
puting the dynamics, is on average 18 times larger with the fixed grid
than with the grid-scaling approach, which is consistent with the ratio

FIG. 4. Evolution of the atomic clouds’ average positions along z during the transport and holding dynamics for the three values of interspecies scattering lengths considered
here: a12 ¼ 0 left column, a12 ¼ 1 nm central column, and a12 ¼ 8:747 nm right column. The first row [panels (a)–(c)] shows the average position hzi for Rb and K as a func-
tion of time. The second row [panels (d)–(f)] shows the offset between this average position hzi and the trajectory zclðtÞ expected if Newton’s law applied independently for
each species. The third row [panels (g)–(i)] shows the offset between the average position hzi and the center of the trap. The color code associated with Rb and K is the same
as in Fig. 3. The end of the transport and the beginning of the holding time is marked in each subplot by a black vertical dotted line.
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of grid sizes. Of course, this factor of 18 depends on the expansion
time, since the size of the condensate increases linearly with time after
the initial acceleration phase. As shown in Table II, for an expansion
time of 8ms, the computation time in a fixed grid is on average 68
times larger than in the grid-scaling approach. In fact, this compu-
tation requires 64� 512� 512 grid points, i.e., 64 times more than
with the grid-scaling approach. In practice, many free expansion
experiments are performed over durations of several tens of milli-
seconds.37,40,41 A simple extrapolation of the results obtained here
gives a gain in computational time of the order of 600 for a free
expansion of 25ms and of 10 000 for a time of flight of 100ms.
Such calculations quickly become cumbersome in the standard
fixed-grid approach, which confirms the importance of developing
the grid-scaling approach proposed here for an efficient treatment

of the expansion dynamics of multispecies quantum mixtures.
Reaching the regime of a few seconds of free expansion is also
within reach since the scaled grid calculation time scales linearly
with the expansion time and would amount to around one hour of
real computation time for 1 s when using, as in our case, 16 cores
(see Table II).

C. Comparison with experiment: Free expansion
of a binary mixture under gravity

The successful launch of the MAIUS-1 mission led to the first
demonstration of Bose–Einstein condensation in space41 and to the
realization of the first interference experiments on board a sounding
rocket.63 The MAIUS-2 and MAIUS-3 missions aim to study the
dynamics of 87Rb and 41K mixtures in zero gravity and to prepare a

FIG. 5. Evolution of the size (atomic density standard deviation) of the Rb and K clouds along x [panels (a)–(c)], y [panels (d)–(f)], and z [panels (g)–(i)] during the transport and
holding dynamics for the three values of interspecies scattering lengths considered here: a12 ¼ 0 left column, a12 ¼ 1 nm central column, and a12 ¼ 8:747 nm right column.
The color code associated with Rb and K is the same as in Fig. 3. The end of the transport and the beginning of the holding time are marked in each subplot by a black vertical
dotted line.
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quantum test of the universality of free fall in space. These missions
have led to the development of a new atom chip device for trapping,
condensing and manipulating 87Rb and 41K atoms together.46 Using
this setup, quantum degenerate mixtures with variable ratios of Rb to
K atom numbers could be prepared, and this has led recently to the
realization of several free expansion experiments of these binary mix-
tures on ground.46 Here, we present a small subset of these results to
verify the applicability of our computational method by comparing its
predictions with experimental measurements.

The first column of Fig. 7 shows measured absorption images of
the K [first row, panel (a)] and Rb [second row, panel (d)] clouds after
a free expansion of 25ms. The bright red regions correspond to density
maxima and the dark blue regions to low atomic densities. The num-
bers of Rb and K atoms, calibrated by experimental measurements, are
43900 and 14 400, respectively. Comparing panels (a) and (d), we can
see that the experimental image of K is characterized by a background
noise that is more important than for Rb because there are about three
times less atoms of K than of Rb. The intensity of the peak is therefore
lower for K than for Rb, and the signal-to-noise ratio is thus lower.
The vertical direction XC of the camera corresponds to the direction z
of gravity. The horizontal axis YC of the camera is in the (x, y) plane
and makes an angle of 46 degrees with the x axis of Fig. 6. The initial
Rb and K trapping frequencies are given in Eqs. (27) and (28) and the
initial state of the condensed binary mixture has already been shown
in the first row of Fig. 6. The second column of Fig. 7 shows the con-
densate atomic densities calculated after 25ms of free expansion by
numerical solution of the coupled Gross–Pitaevskii Eq. (1) in the pre-
sent grid-scaling approach, with K in the first row [panel (b)] and Rb
in the second row [panel (e)]. The grid used in the numerical calcula-
tion has been translated so that the position of the maximum K density
is the same for the experimental and simulated data. A comparison of
the Rb panels (d) and (e) then shows a slight shift between the mea-
sured position for the Rb cloud and its calculated position. This shift is
about 81.6lm in the XC direction of gravity and about 16.3lm in the

FIG. 6. Probability density of a dual Rb–K condensate in the presence of gravity. Shown are the 3D representations [first column, panels (a) and (e)] and the integrated longitudi-
nal Px and transverse Py and Pz density profiles for Rb and K [second column panels (b) and (f): along x, third column panels (c) and (g): along y, fourth column panels (d) and
(h): along z]. The first row shows the initial (t¼ 0) ground state, while the second row shows the same density after 5 ms of free expansion. The intraspecies interaction param-
eters are a11 ¼ 5:237 nm and a22 ¼ 3:204 nm. The interspecies scattering length is a12 ¼ 8:747 nm. In the first row, the centers of the Rb and K traps are marked by blue
and red vertical dotted lines, respectively. The trap frequencies at t¼ 0 are given in the text. The number of rubidium and potassium atoms is 43 900 and 14 400, respectively.
Gravity points in the positive z direction. In the second row, the Rb probability densities calculated with the present grid-scaling approach and with a fixed grid are shown as
solid blue lines and dashed green lines, respectively. Similarly, the K probability densities calculated with the present grid-scaling approach and with a fixed grid are shown as
solid red lines and dashed black lines, respectively. The 3D evolution of the mixture during the 5ms free expansion can be seen in animation 4 from the supplementary
material.

TABLE II. Computation (CPU) time for the calculation of a dual-species condensate
free expansion dynamics in gravity. The calculations were performed parallelizing 16
cores of an Intel Xeon Gold 6230 processor running at 2.1 GHz. The real calculation
time is roughly the displayed values of the table divided by the number of cores.

TOF (ms)

Ground state Expansion dynamics

Fixed grid Scaled grid Fixed grid Scaled grid

5 11 h 06min 31min 00 s 55min 00 s 3min 40 s
8 39 h 07min 31min 00 s 6 h 12min 6min 06 s
25 16 daysa 31min 00 s 7 daysa 18min 32 s
100 266 daysa 31min 00 s 432 daysa 78min 31 s
1000 N/A 31min 00 s N/A 16 h 23min

aEstimation based on the number of grid points required.
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transverse YC direction. Compared to the distance of 3066lm covered
by the atoms during the 25ms of free fall, this global shift of 83.2lm
between experiment and theory remains relatively limited, since it rep-
resents only 2.7% of the total displacement. This small shift may be
due to an initial oscillation of the atoms before the expansion stage in
the experiment, or to an additional kick experienced by the atoms dur-
ing the trap suppression, two effects that are not considered in the sim-
ulation. Nevertheless, it can be concluded that the comparison of the
experimental measurements with the numerical simulation shows at
this stage a good qualitative agreement between theory and experiment
in the region of interest captured by the CCD camera. It should also be
noted that an efficient simulation of the 3D dynamics of the mixture
was only possible by considering the scalings for the center of mass
and the size expansion presented in Secs. II B and IIC.

A more quantitative study was then performed to refine this com-
parison. The size of the image shown in Fig. 7 corresponds to the
region of interest taken for data analysis, and the intensity information
given by the pixels of the camera was integrated in each direction to
obtain the integrated 1D signals shown as blue solid lines in Fig. 8.
These integrated experimental data are characterized by bimodal struc-
tures, with quasi-Gaussian pedestals corresponding to the presence of
a thermal cloud. To extract these thermal components associated with
K and Rb, we perform 2D fits of the 2D bimodal experimental signals
shown in Figs. 7(a) and 7(d) using a fit function constructed as the
sum of a 2D Gaussian with an inverted 2D parabola. The 2D Gaussian
is used to represent the thermal cloud. This component is then inte-
grated in one direction to obtain a 1D Gaussian representing the inte-
grated thermal cloud signal. These integrated 1D thermal fits

associated with K and Rb are shown as green dashed–dotted lines in
each subplot of Fig. 8. Finally, these 1D thermal components are added
to the Rb and K atomic densities predicted by our GPE simulation,
after being (1) numerically convolved with the Gaussian function
A exp ½�ðx2 þ y2Þ=ð2r2Þ� with 1=A ¼ 2pr2 and r¼ 15lm to mimic
the effect of camera resolution, (2) translated according to the observa-
tions made earlier in Fig. 7 (81.6lm in the XC direction and 16.3lm
in the YC direction) to take into account the different initial velocities
of the Rb and K condensates which are not included in the simulation,
and (3) integrated in 1D. Using this procedure, the simulated data
describing the total density associated with the thermal and condensed
atoms are finally plotted as solid red lines in Fig. 8. The comparison
between the experimental measurement (solid blue line) and the result
of the numerical simulation using the grid-scaling approach presented
here (solid red line) shows a very good agreement. The result of this
numerical model taking into account simulated condensed and fitted
thermal atoms is also shown in 2D in the right column of Fig. 7, which
also compares very favorably with the image captured by the camera
(see left column of Fig. 7). As a result, we conclude that our numerical
approach enables efficient and accurate simulation of the dynamics of
BEC mixtures in a wide range of realistic situations. It is worth noting
that the centers of the condensed and thermal fraction distributions do
not coincide, as is commonly expected, especially for the lighter K spe-
cies (see Fig. 8). This non-obvious effect is due to the repulsion
between the dense, interacting, degenerate parts of the clouds, which
causes a shift of the center of each BEC with respect to its thermal
counterpart. This can be seen as a signature of the bimodal distribu-
tions of interacting quantum mixtures.

FIG. 7. Normalized atomic densities of K
(first row) and Rb (second row) after a
free expansion of 25 ms, starting from the
initial trap described in Sec. III B. First col-
umn [panels (a) and (d)]: False-color
absorption images measured by the
MAIUS-2 apparatus in a ground-based
experiment.46 The direction of gravity, indi-
cated by white arrows, is vertical, along
the camera axis XC, and the plane of the
atom chip is perpendicular to gravity. The
Rb and K images are normalized for bet-
ter visibility. The fitted atom numbers are
43 900 for Rb and 14 400 for K.46 Second
column [panels (b) and (e)]: Condensate
probability densities calculated with the
present grid-scaling approach in the plane
(XC, Y C) of the camera, after 25 ms of
free expansion. Third column [panels (c)
and (f)]: Calculated total probability densi-
ties, including thermal atoms.
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Finally, it should be noted that in this calculation the volume of
the computational grid increases from 107� 7.84� 9.16lm3, or
7:68� 103 lm3 at the beginning, to 172� 617� 734lm3, or 7:79
�107 lm3 at the end of the TOF. The increase in volume therefore
corresponds to a factor of about 104, which is extremely challenging
for numerical simulation. This increase is so large that a simulation
with a fixed grid would not have been feasible.

IV. CONCLUSION

This article presents an efficient method for describing the
dynamics of interacting quantum mixtures. It is based on the transla-
tion and rescaling of the computational grid during the simulation of
the coupled multi-species Gross–Pitaevskii equations. Perfect agree-
ment with previous methods is shown in regimes where they could be
computed. In addition, experimental validation was performed for
time scales that would have been very challenging with previously used
static-resolution grids. The validity of the developed approach allows
its implementation in the context of microgravity and space experi-
ments, where transports over long distances are realized at very low
frequencies (a few Hz) and for long free expansion times of seconds,
necessary in metrology applications such as fundamental physics
tests26,29 or in the Earth observation context with space quantum grav-
imeters.64 In these latter cases, our method would take few hours
whereas fixed-grid ones are not possible to implement at reasonable
time scales. Furthermore, this approach could be considered beyond
the mean-field level in the context of the truncatedWigner approxima-
tion,65,66 especially when the introduction of very large computational
grids is required.67

SUPPLEMENTARY MATERIAL

See the supplementary material for animations that show the 3D
dynamics of a mixture of Rb (in blue) and K (in red), with atom num-
bers of 43 900 for Rb and 14 400 for K, calculated by solving the cou-
pled GPE with the scaled grid approach. They illustrate the evolution
of the atomic clouds from the ground state to the final state for the
cases of Secs. III A and IIIB.

Animations 1, 2, and 3 show the evolution of the mixture with 1-
ms steps for different interspecies scattering lengths: a12 ¼ 0; a12 ¼ 1
nm and a12 ¼ 8:747 nm. We can distinguish the transport along the
z-direction for the first 10ms, followed by the oscillation dynamics
during the 20ms-long holding in the final trap. For better visualiza-
tion, the chosen (fixed) grid used in these animations correspond to
the grids required to treat the entire dynamics. Animation 4 shows the
free expansion of the mixture in the presence of gravity for 5ms. The
(variable) grid used in this animation is the one used in the scaled grid
approach. It can be seen that for long expansion times, there is virtually
no variation in cloud size or aspect ratio, suggesting that the clouds
expand at a rate proportional to the scaling factor used to define the
scaled grids.
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