PyranoCam: Simple measurement system for all components of solar irradiance in arbitrary planes

Bijan Nouri¹, Niklas Blum^{*1}, Stefan Wilbert¹, Yann Fabel¹, Jonas Stührenberg², Luis F. Zarzalejo³

¹German Aerospace Center (DLR), Institute of Solar Research, Almería, Spain ¹German Aerospace Center (DLR), Institute of Networked Energy Systems, Oldenburg, Germany ³CIEMAT Energy Department – Renewable Energy Division, Madrid, Spain *niklas.blum@dlr.de

Motivation

Accurate, robust and cost-efficient measurements of different solar irradiance components in arbitrary planes are of great interest for solar energy applications. A wide range of costeffective and robust measurement systems are currently available on the market.

Available measurement techniques exhibit at least one of these

- Benchmark limited to DHI and GHI
 - PyranoCam uses a ISO 9060:2018 class A pyranometer for GHI
 - The superior performance of PyranoCam for GTI against transposition based models was shown in [1]
 - Transposition models based on DNI and DHI measured by ISO 9060:2018 class A pyrheliometer and shaded

Sensor	Strongest influence on measured irradiance component (DNI, DHI)		
	Situations with DNI > 100 W/m ²		All-sky conditions
	DNI	DHI	DHI
RSP	Sun elevation angle,	Sun elevation angle,	Sun elevation angle,
	ρ=-0.33	ρ=0.2	ρ=0.24
PyranoCam	DNI clear sky index, p=0.40	Circumsolar irradiance, p=-	DNI clear sky index,
		0.47	ρ=0.51
MS-90	Circumsolar irradiance,	Circumsolar irradiance, p=-	Circumsolar irradiance,
	ρ=0.68	0.72	ρ=-0.68
SPN1	Circumsolar irradiance,	DNI clear sky index, ρ =-	DNI clear sky index,
	ρ=0.76	0.27	ρ=-0.50

- SPN1 and MS-90 show significant variations between the sites
 - Indicating impacts of the prevailing atmospheric conditions
- The influence of atmospheric conditions on the observed relative deviations is evaluated via the spearman coefficient of correlation
 - Circumsolar irradiance is found to be the strongest influence on the often noticeable DNI deviations of MS-90 and SPN1

shortcomings: intensive maintenance, high acquisition cost, increased deviations or restrictions to single planes (global tilted irradiance).

PyranoCam is a robust and inexpensive setup of a thermopile pyranometer and an all-sky imager (ASI) for measurements of GHI, DHI, DNI and GTI (for any arbitrary plane) [1].

Objectives

- Benchmarking of PyranoCam and different established systems:
 - Rotating Shadowband Irradiometer/Pyranometer (RSI/RSP 4G)
 - Delta-T SPN1 •
 - EKO MS-90
- Evaluation at two sites with distinct conditions
 - Tabernas (Spain) & Oldenburg (Germany)
 - Analysis of distinct atmospheric conditions on the measurement performance \rightarrow dedicated auxiliary measurements are used for this purpose: e.g. spectroradiometers, tracked and shaded pyranometers, ...

- pyranometer
- Reference systems use sun tracker with sun sensor equipped with ISO 9060:2018 Class A pyrheliometers (DNI) and shaded pyranometers (DHI)

Overview of the PyranoCam method

- The PyranoCam method can be divided into two main sections, as depicted in the flowchart.
 - Physical model [1]
 - Machine learning based corrections [2]

Results

- Benchmark over 117 days lasting data set
- **Used error metrics**
 - Root mean square deviation (RMSD)
 - Mean absolute deviation (MAD)
 - Bias
- RSI/RSP and PyranoCam show a similar performance and both clearly outperform the remaining radiometers at both sites

Summary & Outlook

- PyranoCam is operational
- Benchmark showed best performance in terms of DNI and DHI for PyranoCam and RSI/RSP
- PyranoCam outperforms transposition based models in terms of GTI
- Future publications will present validation results from six measurement sites located in various climates
- The PyranoCam hardware can additionally be used to derive cloud coverage/classification and short-term deterministic and probabilistic forecasts of the solar irradiance [4, 5]

References

[1] Blum, N. B., et al., (2022). Measurement of diffuse and plane of array irradiance by a combination of a pyranometer and an all-sky imager. Solar Energy, 232, 232-247. [2] Broda, R., (2022). Development of Machine Learning Based Correction for Cloud Camera Based Solar Radiation Measurement. Master thesis. RWTH Aachen. [3] Demain, C., et al., (2013). Evaluation of different models to estimate the global solar radiation on inclined surfaces. Renewable energy, 50, 710-721. [4] Fabel, et al., (2022). Applying self-supervised learning for semantic cloud segmentation of all-sky images. Atmospheric Measurement Techniques, 15(3), 797-809. [5] Nouri, B., et al., (2023). Probabilistic solar nowcasting based on all-sky imagers. Solar Energy, 253, 285-307.

Supported by:

