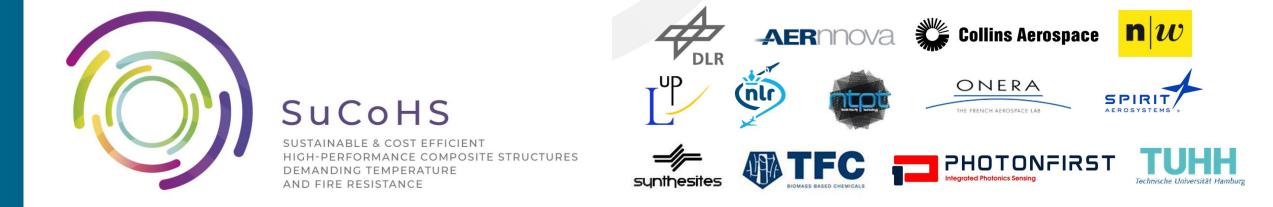
CHALLENGES IN THE LIFE CYCLE ASSESSMENT OF FIBRE REINFORCED POLYMERS USING THE EXAMPLE OF A COMPOSITE AIRCRAFT INTERIOR SHELL

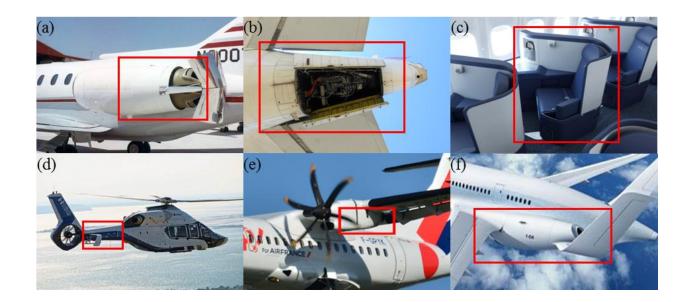
EASN 2023, Salerno, 2023-09-05


J.Bachmann¹, A. Blackwood², D. Jose², W. Gerrits³

¹ DLR German Aerospace Center

² Collins Aerospace

³ NLR Netherlands Aerospace Centre


- Several aeronautical applications demanding high temperature and fire conditions
- Maintain industrial leadership through expanded use of composites for:

 $\dot{}$

(E)

 \checkmark

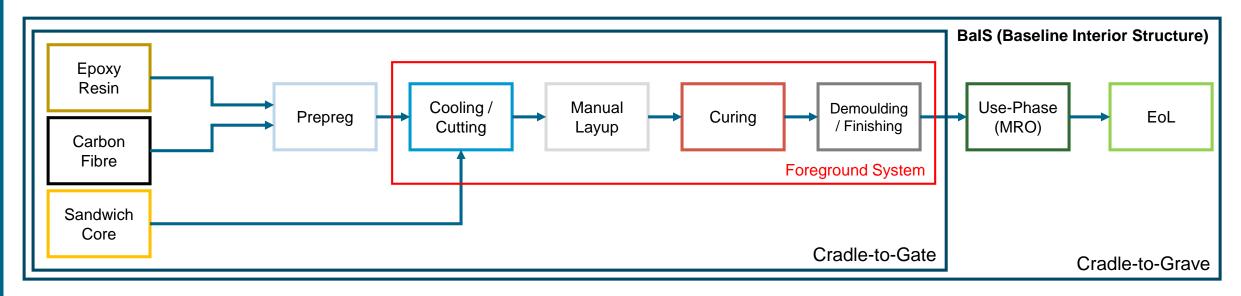
- Reduced weight
- Improved performance
- Increased efficiency
- Reduced costs
- Improved sustainability

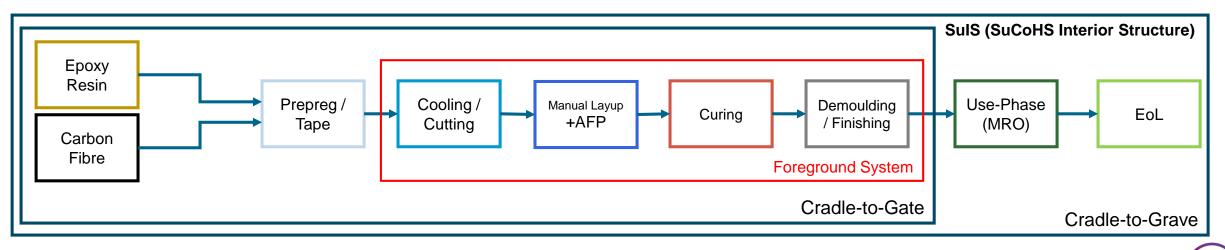
www.sucohs-project.eu

SuCoHS Industrial Demonstration and Use-Cases

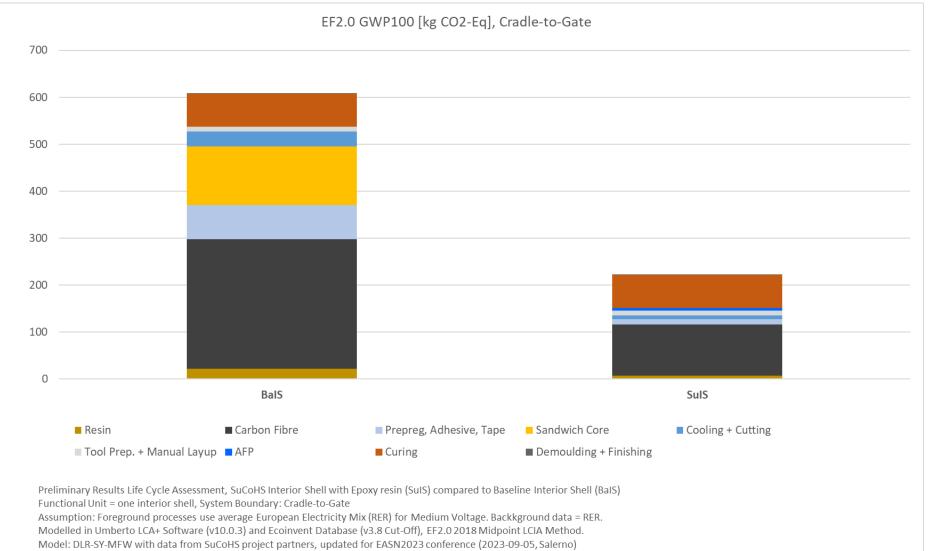
Sandwich structure – 2 C 2 Carbon fibre epoxy woven fabric Nomex core

UD or woven fabric skin Automated tape laid-up carbon fibre UD stringers




(ກໄກ

Goal and Scope


- fU = finished Interior Shell
- Foreground data: Different TRL level, partly laboratory data
- Background data: Ecoinvent v3.8cut-off (RER), Literature
- Software: Umberto LCA+ Version 10.0 (build 10.0.3.200)
- LCIA Method: EF2.0, all categories

(Preliminary) LCIA Interior Shell, Cradle-to-Gate

Contact: Jens Bachmann, +495312953218 jens.bachmann@dlr.de

Life Cycle Inventory **Example 1: Carbon Fibres**

- Today: PAN based Carbon Fibres
 - Different grades of CF, e.g. HT, HM
- No primary data available
- No CF data in Ecoinvent
 - Other databases only aggregated, if any...
- Published LCIA results?
 - e.g. "Carbon-Footprint" in EPD

I iterature?

- Wide range of energy consumption reported
- Specifications often unclear
- Cradle-to-Gate or Gate-to-Gate LCI?
 - Precursor Line included?
 - What form of energy?
 - Equipment / Periphery included?
 - . . .

9	1:	Reported	energy	intensities	for	PAN-based	precursor	manufacturing	

Liddell et al., 2016 Liddell et al., 2017 Das, 2011

System boundary	cradle-to-gate, primary energy	gate-to-gate	gate-to-gate
Total [MJ/ kg PAN]	245	394	312
Spinning [MJ/ kg PAN]	N/A	195	194
Polymerisation [MJ/ kg PAN]	N/A	199	118

Table 2: Reported energy intensities for carbon fibre manufacturing

Table

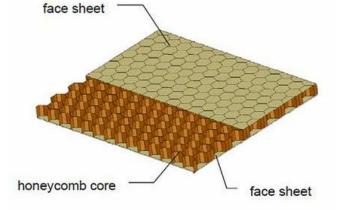
	Tuble 2. Rep	sited energy	interistics for	carbon nore	manaraotam	9	
	De Vegt and Haije, 1997	Suzuki and Takahashi, 2005b	Griffing and Overcash, 2009	Das, 2011	iddell et al., 2016	-iddell et al., 2017	Arnold et al., 2018
Stabilization	N/A	N/A	N/A	N/A			N/A
[MJ/ kg CF]					316	195	
Carbonization [MJ/ kg CF]	N/A	N/A	4.47	N/A			N/A
Surface Treatment [MJ/ kg CF]	N/A	N/A	0.05	N/A	25	24	N/A
Total [MJ/ kg CF]	7.56	286-478	4.52	704	341	219	255.02
Fibre properties	N/A	N/A	high strength	N/A	N/A	N/A	N/A
System boundary	gate-to- gate	N/A	gate-to- gate	primary energy	gate-to- gate	gate-to- gate	gate-to- gate

[Dér et al. 2021] https://doi.org/10.1016/j.jclepro.2021.127105

Table 1 Total energy consumption per kg carbon fibre

Source	Total Energy [MJ/kg]	Data origin	Comment
Arnold et al. [16]	255	Experimental data, simulation	Heat and electricity
Das [3]	459	Experimental data, databases	Little details about system
Suzuki et al. [17]	286	unclear	No details about system
Liddell et al. [18]	219	Experimental data, databases, estimations	US industry average
Liddell et al. [19]	195	Experimental data, databases, estimations	"State of the art" average
Dér et al. [15]	1150	Experimental data	Incl. peripheral processes

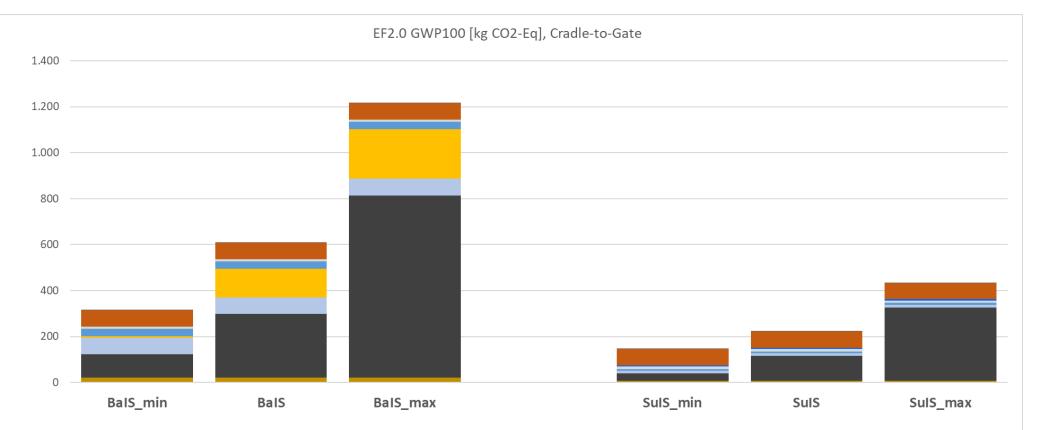
[Groetsch et al. 2021] https://doi.org/10.1016/j.procir.2021.01.146


VCF

· Material conversion yield of PAN precursor to VCF is 58%. Electricity, natural gas, and steam consumption include 150 MJ, 178 MJ and 31.4 kg per kg VCF produced.5 Emission data for CF production obtained from literature.⁶

[Meng et al. 2021] https://doi.org/10.1021/acs.est.1c05462

Life Cycle Inventory Example 2: Sandwich Core


- Aramid fibre and phenolic resin
- Energy intensive production process
- No data in any LCA database
- Literature survey
 - Example
 - Proxy fibre: Nylon 6-6
 - Other processes neglected!

(Preliminary) LCIA Interior Shell, Cradle-to-Gate Uncertainty Analysis for Carbon Fibre and Sandwich Core

Resin Carbon Fibre Prepreg, Adhesive, Tape Sandwich Core Cooling + Cutting Tool Prep. + Manual Layup AFP Curing Demoulding + Finishing

Preliminary Results Life Cycle Assessment, SuCoHS Interior Shell with Epoxy resin (SuIS) compared to Baseline Interior Shell (BaIS)

Functional Unit = one interior shell, System Boundary: Cradle-to-Gate

Assumption: Foreground processes use average European Electricity Mix (RER) for Medium Voltage. Backkground data = RER.

Modelled in Umberto LCA+ Software (v10.0.3) and Ecoinvent Database (v3.8 Cut-Off), EF2.0 2018 Midpoint LCIA Method.

Model: DLR-SY-MFW/ECO with data from SuCoHS project partners, modified CF and Sandwich Core data for EASN2023 conference (2023-09-05, Salerno)

Contact: Jens Bachmann, +495312953218 jens.bachmann@dlr.de

Conclusion and Outlook

- Relative differences of <u>similar</u> composite systems can be modelled in LCA
- Absolute values are not reliable
- \rightarrow LCI data is crucial LCA decision making
 - \rightarrow Unit Processes with Material and Energy I/O data
 - \rightarrow Transparent Data Quality Rating (DQR)
- Further Challenges
 - Allocation / EoL Formulas
 - Most databases incompatible
 - LCIA Methods and their implementation in the software
 - Aviation Use-Phase not fully represented in LCA
 - Missing Characterisation Factors (e.g. indirect Hydrogen impact on GWP)

SuCoHS

SUSTAINABLE & COST EFFICIENT HIGH-PERFORMANCE COMPOSITE STRUCTURES DEMANDING TEMPERATURE AND FIRE RESISTANCE

in <u>www.sucohs-project.eu</u> <u>https://www.linkedin.com/company/sucohs-project/</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 769178.

Deutsches Zentrum für Luft- und Raumfahrt (DLR)

German Aerospace Center Institute of Lightweight Systems | Lilienthalplatz 7 | 38108 Braunschweig | Germany

Jens Bachmann | Department Sustainability Technologies - Deputy Head of Department Telephone +49 531 295-3218 | jens.bachmann@dlr.de www.DLR.de/SY